
Interpolating Between Types and Tokens
by Estimating Power-Law Generators∗

Sharon Goldwater Thomas L. Griffiths Mark Johnson
Department of Cognitive and Linguistic Sciences

Brown University, Providence RI 02912, USA
{sharon goldwater,tom griffiths,mark johnson}@brown.edu

Abstract

Standard statistical models of language fail to capture one of the most
striking properties of natural languages: the power-law distribution in
the frequencies of word tokens. We present a framework for developing
statistical models that generically produce power-laws, augmenting stan-
dard generative models with anadaptor that produces the appropriate
pattern of token frequencies. We show that taking a particular stochastic
process – the Pitman-Yor process – as an adaptor justifies the appearance
of type frequencies in formal analyses of natural language, and improves
the performance of a model for unsupervised learning of morphology.

1 Introduction

In general it is important for models used in unsupervised learning to be able to describe
the gross statistical properties of the data they are intended to learn from, otherwise these
properties may distort inferences about the parameters of the model. One of the most strik-
ing statistical properties of natural languages is that the distribution of word frequencies is
closely approximated by a power-law. That is, the probability that a wordw will occur with
frequencynw in a sufficiently large corpus is proportional ton−g

w . This observation, which
is usually attributed to Zipf [1] but enjoys a long and detailed history [2], stimulated intense
research in the 1950s (e.g., [3]) but has largely been ignored in modern computational lin-
guistics. By developing models that generically exhibit power-laws, it may be possible to
improve methods for unsupervised learning of linguistic structure.

In this paper, we introduce a framework for developing generative models for language
that produce power-law distributions. Our framework is based upon the idea of specifying
language models in terms of two components: agenerator, an underlying generative model
for words which need not (and usually does not) produce a power-law distribution, and an
adaptor, which transforms the stream of words produced by the generator into one whose
frequencies obey a power law distribution. This framework is extremely general: any gen-
erative model for language can be used as a generator, with the power-law distribution
being produced as the result of making an appropriate choice for the adaptor.

In our framework, estimation of the parameters of the generator will be affected by assump-
tions about the form of the adaptor. We show that use of a particular adaptor, the Pitman-
Yor process [4, 5, 6], sheds light on a tension exhibited by formal approaches to natural
language: whether explanations should be based upon thetypesof words that languages

∗This work was partially supported by NSF awards IGERT 9870676 and ITR 0085940 and NIMH
award 1R0-IMH60922-01A2

exhibit, or the frequencies with whichtokensof those words occur. One place where this
tension manifests is in accounts of morphology, where formal linguists develop accounts of
why particular words appear in the lexicon (e.g., [7]), while computational linguists focus
on statistical models of the frequencies of tokens of those words (e.g., [8]). The tension
between types and tokens also appears within computational linguistics. For example, one
of the most successful forms of smoothing used in statistical language models, Kneser-Ney
smoothing, explicitly interpolates between type and token frequencies [9, 10, 11].

The plan of the paper is as follows. Section 2 discusses stochastic processes that can pro-
duce power-law distributions, including the Pitman-Yor process. Section 3 specifies a two-
stage language model that uses the Pitman-Yor process as an adaptor, and examines some
properties of this model: Section 3.1 shows that estimation based on type and token fre-
quencies are special cases of this two-stage language model, and Section 3.2 uses these
results to provide a novel justification for the use of Kneser-Ney smoothing. Section 4
describes a model for unsupervised learning of the morphological structure of words that
uses our framework, and demonstrates that its performance improves as we move from
estimation based upon tokens to types. Section 5 concludes the paper.

2 Producing power-law distributions

Assume we want to generate a sequence ofN outcomes,z = {z1, . . . , zN} with each
outcomezi being drawn from a set of (possibly unbounded) sizeZ. Many of the stochastic
processes that produce power-laws are based upon the principle ofpreferential attachment,
where the probability that theith outcome,zi, takes on a particular valuek depends upon
the frequency ofk in z−i = {z1, . . . , zi−1} [2]. For example, one of the earliest and most
widely used preferential attachment schemes [3] chooseszi according to the distribution

P (zi = k | z−i) = a
1

Z
+ (1 − a)

n
(z

−i)
k

i − 1
(1)

wheren
(z

−i)
k is the number of timesk occurs inz−i. This “rich-get-richer” process means

that a few outcomes appear with very high frequency inz – the key attribute of a power-law
distribution. In this case, the power-law has parameterg = 1/(1 − a).

One problem with these classical models is that they assume a fixed ordering on the out-
comesz. While this may be appropriate for some settings, the assumption of a temporal
ordering restricts the contexts in which such models can be applied. In particular, it is
much more restrictive than the assumption of independent sampling that underlies most
statistical language models. Consequently, we will focus on a different preferential attach-
ment scheme, based upon the two-parameter species sampling model [4, 5] known as the
Pitman-Yor process [6]. Under this scheme outcomes follow a power-law distribution, but
remainexchangeable: the probability of a set of outcomes is not affected by their ordering.

The Pitman-Yor process can be viewed as a generalization of the Chinese restaurant process
[6]. Assume thatN customers enter a restaurant with infinitely many tables, each with
infinite seating capacity. Letzi denote the table chosen by theith customer. The first
customer sits at the first table,z1 = 1. Theith customer chooses tablek with probability

P (zi = k | z−i) =







n
(z

−i)

k
−a

i−1+b
k ≤ K(z−i)

K(z
−i)a+b

i−1+b
k = K(z−i) + 1

(2)

wherea andb are the two parameters of the process andK(z−i) is the number of tables
that are currently occupied.

The Pitman-Yor process satisfies our need for a process that produces power-laws while
retaining exchangeability. Equation 2 is clearly a preferential attachment scheme. When

(a) Generator Adaptor AdaptorGenerator(b)

t z

ℓ

θ

w

z

ℓ

c

f w

Figure 1: Graphical models showing dependencies among variables in (a) the simple two-
stage model, and (b) the morphology model. Shading of the node containingw reflects the
fact that this variable is observed. Dotted lines delimit the generator and adaptor.

a = 0 andb > 0, it reduces to the standard Chinese restaurant process [12, 4] used in
Dirichlet process mixture models [13]. When0 < a < 1, the number of people seated at
each table follows a power-law distribution withg = 1 + a [5]. It is straightforward to
show that the customers are exchangeable: the probability of a partition of customers into
sets seated at different tables is unaffected by the order in which the customers were seated.

3 A two-stage language model

We can use the Pitman-Yor process as the foundation for a language model that generi-
cally produces power-law distributions. We will define a two-stage model by extending the
restaurant metaphor introduced above. Imagine that each tablek is labelled with a wordℓk

from a vocabulary of (possibly unbounded) sizeW . The first stage is to generate these la-
bels, samplingℓk from a generative model for words that we will refer to as thegenerator.
For example, we could choose to draw the labels from a multinomial distributionθ. The
second stage is to generate the actual sequence of words itself. This is done by allowing a
sequence of customers to enter the restaurant. Each customer chooses a table, producing a
seating arrangement,z, and says the word used to label that the table, producing a sequence
of words,w. The process by which customers choose tables, which we will refer to as the
adaptor, defines a probability distribution over the sequence of wordsw produced by the
customers, determining the frequency with which tokens of the different types occur. The
statistical dependencies among the variables in one such model are shown in Figure 1 (a).

Given the discussion in the previous section, the Pitman-Yor process is a natural choice
for an adaptor. The result is technically a Pitman-Yor mixture model, withzi indicating
the “class” responsible for generating theith word, andℓk determining the multinomial
distribution over words associated with classk, with P (wi = w | zi = k, ℓk) = 1 if
ℓk = w, and0 otherwise. Under this model the probability that theith customer produces
wordw given previously produced wordsw−i and current seating arrangementz−i is

P (wi = w |w−i, z−i, θ) =
X

k

X

ℓk

P (wi = w | zi = k, ℓk)P (ℓk |w−i, z−i, θ)P (zi = k | z−i)

=

K(z
−i)

X

k=1

n
(z

−i)

k
− a

i − 1 + b
I(ℓk = w) +

K(z−i)a + b

i − 1 + b
θw (3)

whereI(·) is an indicator function, being1 when its argument is true and0 otherwise. If
θ is uniform over allW words, then the distribution overw reduces to the Pitman-Yor
process asW → ∞. Otherwise, multiple tables can receive the same label, increasing the
frequency of the corresponding word and producing a distribution withg < 1 + a. Again,
it is straightforward to show that words are exchangeable under this distribution.

3.1 Types and tokens

The use of the Pitman-Yor process as an adaptor provides a justification for the role of word
types in formal analyses of natural language. This can be seen by considering the question
of how to estimate the parameters of the multinomial distribution used as a generator,θ.1

In general, the parameters of generators can be estimated using Markov chain Monte Carlo
methods, as we demonstrate in Section 4. In this section, we will show that estimation
schemes based upon type and token frequencies are special cases of our language model,
corresponding to the extreme values of the parametera. Values ofa between these extremes
identify estimation methods that interpolate between types and tokens.

Taking a multinomial distribution with parametersθ as a generator and the Pitman-Yor
process as an adaptor, the probability of a sequence of wordsw givenθ is

P (w | θ) =
∑

z,ℓ

P (w, z, ℓ | θ) =
∑

z,ℓ

Γ(b)

Γ(N + b)

K(z)
∏

k=1

(

θℓk
((k − 1)a + b)

Γ(n
(z)
k − a)

Γ(1 − a)

)

where in the last sumz andℓ are constrained such thatℓzi
= wi for all i. In the case where

b = 0, this simplifies to

P (w | θ) =
∑

z,ℓ





K(z)
∏

k=1

θℓk



 ·
Γ(K(z))

Γ(N)
· aK(z)−1 ·





K(z)
∏

k=1

Γ(n
(z)
k − a)

Γ(1 − a)



 (4)

The distributionP (w | θ) determines how the dataw influence estimates ofθ, so we will
consider howP (w | θ) changes under different limits ofa.

In the limit asa approaches1, estimation ofθ is based upon word tokens. Whena → 1,
Γ(nz

k
−a)

Γ(1−a) is 1 for n
(z)
k = 1 but approaches0 for n

(z)
k > 1. Consequently, all terms in the

sum over(z, ℓ) go to zero, except that in which every word token has its own table. In this
case,K(z) = N andℓk = wk. It follows thatlima→1 P (w | θ) =

∏N

k=1 θwk
. Any form of

estimation usingP (w | θ) will thus be based upon the frequencies of word tokens inw.

In the limit asa approaches0, estimation ofθ is based upon word types. The appearance
of aK(z)−1 in Equation 4 means that asa → 0, the sum overz is dominated by the seating
arrangement that minimizes the total number of tables. Under the constraint thatℓzi

= wi

for all i, this minimal configuration is the one in which every word type receives a single
table. Consequently,lima→0 P (w | θ) is dominated by a term in which there is a single
instance ofθw for each wordw that appears inw.2 Any form of estimation usingP (w | θ)
will thus be based upon a single instance of each word type inw.

3.2 Predictions and smoothing

In addition to providing a justification for the role of types in formal analyses of language
in general, use of the Pitman-Yor process as an adaptor can be used to explain the assump-
tions behind a specific scheme for combining token and type frequencies: Kneser-Ney
smoothing. Smoothing methods are schemes for regularizing empirical estimates of the
probabilities of words, with the goal of improving the predictive performance of language
models. The Kneser-Ney smoother estimates the probability of a word by combining type
and token frequencies, and has proven particularly effective forn-gram models [9, 10, 11].

1Under the interpretation of this model as a Pitman-Yor process mixture model, this is analogous
to estimating the base measureG0 in a Dirichlet process mixture model (e.g. [13]).

2Despite the fact thatP (w | θ) approaches0 in this limit, aK(z)−1 will be constant across all
choices ofθ. Consequently, estimation schemes that depend only on the non-constant terms in
P (w | θ), such as maximum-likelihood or Bayesian inference, will remain well defined.

To use ann-gram language model, we need to estimate the probability distribution over
words given theirhistory, i.e. then preceding words. Assume we are given a vector ofN
wordsw that all share a common history, and want to predict the next word,wN+1, that will
occur with that history. Assume that we also have vectors of words fromH other histories,
w

(1), . . . ,w(H). The interpolated Kneser-Ney smoother [11] makes the prediction

P (wN+1 = w |w) =
n

(w)
w − I(n

(w)
w > D)D

N
+

P

w
I(n

(w)
w > D)D

N

P

h
I(w ∈ w

(h))
P

w

P

h
I(w ∈ w

(h))
(5)

where we have suppressed the dependence onw
(1), . . . ,w(H), D is a “discount factor”

specified as a parameter of the model, and the sum overh includesw.

We can define a two-stage model appropriate for this setting by assuming that the sets of
words for all histories are produced by the same adaptor and generator. Under this model,
the probability of wordwN+1 givenw andθ is

P (wN+1 = w |w, θ) =
∑

z

P (wN+1 = w|w, z, θ)P (z|w, θ)

whereP (wN+1 = w|w, z, θ) is given by Equation 3. Assumingb = 0, this becomes

P (wN+1 = w |w, θ) =
nw

w − Ez[Kw(z)] a

N
+

∑

w Ez[Kw(z)] a

N
θw (6)

whereEz[Kw(z)] =
∑

z
Kw(z)P (z|w, θ), andKw(z) is the number of tables with label

w under the seating assignmentz. The other histories enter into this expression viaθ.
Since the words associated with each history is assumed to be produced from a single set
of parametersθ, the maximum-likelihood estimate ofθw will approach

θw =

∑

h I(w ∈ w
(h))

∑

w

∑

h I(w ∈ w(h))

as a approaches0, since only a single instance of each word type in each context will
contribute to the estimate ofθ. Substituting this value ofθw into Equation 6 reveals the
correspondence to the Kneser-Ney smoother (Equation 5). The only difference is that the
constant discount factorD is replaced byaEz[Kw(z)], which will increase slowly asnw

increases. This difference might actually lead to an improved smoother: the Kneser-Ney
smoother seems to produce better performance whenD increases as a function ofnw [11].

4 Types and tokens in modeling morphology

Our attempt to develop statistical models of language that generically produce power-law
distributions was motivated by the possibility that models that account for this statistical
regularity might be able to learn linguistic information better than those that do not. Our
two-stage language modeling framework allows us to create exactly these sorts of mod-
els, with the generator producing individual lexical items, and the adaptor producing the
power-law distribution over words. In this section, we show that taking a generative model
for morphology as the generator and varying the parameters of the adaptor results in an
improvement in unsupervised learning of the morphological structure of English.

4.1 A generative model for morphology

Many languages contain words built up of smaller units of meaning, ormorphemes. These
units can contain lexical information (as stems) or grammatical information (as affixes).
For example, the English wordwalkedcan be parsed into the stemwalk and the past-tense
suffix ed. Knowledge of morphological structure enables language learners to understand
and produce novel wordforms, and facilitates tasks such as stemming (e.g., [14]).

As a basic model of morphology, we assume that each word consists of a single stem
and suffix, and belongs to some inflectional class. Each class is associated with a stem
distribution and a suffix distribution. We assume that stems and suffixes are independent
given the class, so we have

P (ℓk = w) =
∑

c,t,f

I(w = t.f)P (ck = c)P (tk = t | ck = c)P (fk = f | ck = c) (7)

whereck, tk, andfk are the class, stem, and suffix associated withℓk, andt.f indicates
the concatenation oft andf . In other words, we generate a label by first drawing a class,
then drawing a stem and a suffix conditioned on the class. Each of these draws is from a
multinomial distribution, and we will assume that these multinomials are in turn generated
from symmetric Dirichlet priors, with parametersκ, τ , andφ respectively. The resulting
generative model can be used as the generator in a two-stage language model, providing a
more structured replacement for the multinomial distribution,θ. As before, we will use the
Pitman-Yor process as an adaptor, settingb = 0. Figure 1 (b) illustrates the dependencies
between the variables in this model.

Our morphology model is similar to that used by Goldsmith in his unsupervised morpho-
logical learning system [8], with two important differences. First, Goldsmith’s model is
recursive, i.e. a word stem can be further split into a smaller stem plus suffix. Second,
Goldsmith’s model assumes that all occurrences of each word type have the same analysis,
whereas our model allows different tokens of the same type to have different analyses.

4.2 Inference by Gibbs sampling

Our goal in defining this morphology model is to be able to automatically infer the morpho-
logical structure of a language. This can be done using Gibbs sampling, a standard Markov
chain Monte Carlo (MCMC) method [15]. In MCMC, variables in the model are repeatedly
sampled, with each sample conditioned on the current values of all other variables in the
model. This process defines a Markov chain whose stationary distribution is the posterior
distribution over model variables given the input data.

Rather than sampling all the variables in our two-stage model simultaneously, our Gibbs
sampler alternates between sampling the variables in the generator and those in the adaptor.
Fixing the assignment of words to tables, we sampleck, tk, andfk for each table from

P (ck = c, tk = t, fk = f | c−k, t−k, f−k, ℓ)

∝ I(ℓk = tk.fk) P (ck = c | c−k) P (tk = t | t−k, c) P (fk = f | f−k, c)

= I(ℓk = tk.fk) ·
nc + κ

K(z) − 1 + κC
·

nc,t + τ

nc + τT
·

nc,f + φ

nc + φF
(8)

wherenc is the number of other labels assigned to classc, nc,t andnc,f are the number of
other labels in classc with stemt and suffixf , respectively, andC, T , andF , are the total
number of possible classes, stems, and suffixes, which are fixed. We use the notationc−k

here to indicate all members ofc except forck. Equation 8 is obtained by integrating over
the multinomial distributions specified in Equation 7, exploiting the conjugacy between
multinomial and Dirichlet distributions.

Fixing the morphological analysis (c, t, f), we sample the tablezi for each word token from

P (zi = k | z−i,w, c, t, f) ∝

{

I(ℓk = wi)(n
(z

−i)
k − a) n

(z
−i)

k > 0

P (ℓk = wi)(K(z−i)a + b) n
(z

−i)
k = 0

(9)

whereP (ℓk = wi) is found using Equation 7, withP (c), P (t), andP (f) replaced with
the corresponding conditional distributions from Equation 8.

0 0.2 0.4 0.6 0.8 1

(true dist)
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Proportion of types with each suffix

V
al

ue
 o

f a

NULL

e

ed

d

ing

s

es

n

en

other

0 0.2 0.4 0.6 0.8 1

(true dist)
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Proportion of tokens with each suffix

V
al

ue
 o

f a

(a)

NU.e ed d ing s es n enoth.

oth.
en

n
es
s

ing
d

ed
e

NU.

Found Types

T
ru

e
T

yp
es

NU.e ed d ing s es n enoth.

oth.
en

n
es
s

ing
d

ed
e

NU.

Found Tokens

T
ru

e
T

ok
en

s

(b)

Figure 2: (a) Results for the morphology model, varyinga. (b) Confusion matrices for the
morphology model witha = 0. The area of a square at location(i, j) is proportional to the
number of word types (top) or tokens (bottom) with true suffixi and found suffixj.

4.3 Experiments

We applied our model to a data set consisting of all the verbs in the training section of
the Penn Wall Street Journal treebank (137,997 tokens belonging to 7,761 types). This
simple test case using only a single part of speech makes our results easy to analyze. We
determined the true suffix of each word using simple heuristics based on the part-of-speech
tag and spelling of the word.3 We then ran a Gibbs sampler using 6 classes, and compared
the results of our learning algorithm to the true suffixes found in the corpus.

As noted above, the Gibbs sampler does not converge to a single analysis of the data, but
rather to a distribution over analyses. For evaluation, we used a single sample taken after
1000 iterations. Figure 2 (a) shows the distribution of suffixes found by the model for
various values ofa, as well as the true distribution. We analyzed the results in two ways:
by counting each suffix once for each word type it was associated with, and by counting
once for each word token (thus giving more weight to the results for frequent words).

The most salient aspect of our results is that, regardless of whether we evaluate on types or
tokens, it is clear that low values ofa are far more effective for learning morphology than
higher values. With higher values ofa, the system has too strong a preference for empty
suffixes. This observation seems to support the linguists’ view of type-based generalization.

It is also worth explaining why our morphological learner finds so manye andessuffixes.
This problem is common to other morphological learning systems with similar models (e.g.
[8]) and is due to the spelling rule in English that deletes stem-finalebefore certain suffixes.
Since the system has no knowledge of spelling rules, it tends to hypothesize analyses such
as{stat.e, stat.ing, stat.ed, stat.es}, where thee andessuffixes take the place ofNULL
ands. This effect can be seen clearly in the confusion matrices shown in Figure 2 (b). The
remaining errors seen in the confusion matrices are those where the system hypothesized an
empty suffix when in fact a non-empty suffix was present. Analysis of our results showed
that these cases were mostly words where no other form with the same stem was present in

3The part-of-speech tags distinguish between past tense, past participle, progressive, 3rd person
present singular, and infinitive/unmarked verbs, and therefore roughly correlate with actual suffixes.

the corpus. There was therefore no reason for the system to prefer a non-empty suffix.

5 Conclusion

We have shown that statistical language models that exhibit one of the most striking prop-
erties of natural languages – power-law distributions – can be defined by breaking the pro-
cess of generating words into two stages, with a generator producing a set of words, and an
adaptor determining their frequencies. Our morphology model and the Pitman-Yor process
are particular choices for a generator and an adaptor. These choices produce empirical and
theoretical results that justify the role of word types in formal analyses of natural language.
However, the greatest strength of this framework lies in its generality: we anticipate that
other choices of generators and adaptors will yield similarly interesting results.

References
[1] G. Zipf. Selective Studies and the Principle of Relative Frequency in Language.Harvard

University Press, Cambridge, MA, 1932.

[2] M. Mitzenmacher. A brief history of generative models for power law and lognormal distribu-
tions. Internet Mathematics, 1(2):226–251, 2003.

[3] H.A. Simon. On a class of skew distribution functions.Biometrika, 42(3/4):425–440, 1955.

[4] J. Pitman. Exchangeable and partially exchangeable random partitions.Probability Theory and
Related Fields, 102:145–158, 1995.

[5] J. Pitman and M. Yor. The two-parameter Poisson-Dirichlet distribution derived from a stable
subordinator.Annals of Probability, 25:855–900, 1997.

[6] H. Ishwaran and L. F. James. Generalized weighted Chinese restaurant processes for species
sampling mixture models.Statistica Sinica, 13:1211–1235, 2003.

[7] J. B. Pierrehumbert. Probabilistic phonology: discrimination and robustness. In R. Bod, J. Hay,
and S. Jannedy, editors,Probabilistic linguistics. MIT Press, Cambridge, MA, 2003.

[8] J. Goldsmith. Unsupervised learning of the morphology of a natural language.Computational
Linguistics, 27:153–198, 2001.

[9] H. Ney, U. Essen, and R. Kneser. On structuring probabilistic dependences in stochastic lan-
guage modeling.Computer, Speech, and Language, 8:1–38, 1994.

[10] R. Kneser and H. Ney. Improved backing-off forn-gram language modeling. InProceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1995.

[11] S. F. Chen and J. Goodman. An empirical study of smoothing techniques for language mod-
eling. Technical Report TR-10-98, Center for Research in Computing Technology, Harvard
University, 1998.

[12] D. Aldous. Exchangeability and related topics. InÉcole d’été de probabilités de Saint-Flour,
XIII—1983, pages 1–198. Springer, Berlin, 1985.

[13] R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models.Journal of
Computational and Graphical Statistics, 9:249–265, 2000.

[14] L. Larkey, L. Ballesteros, and M. Connell. Improving stemming for arabic information re-
trieval: Light stemming and co-occurrence analysis. InProceedings of the 25th International
Conference on Research and Development in Information Retrieval (SIGIR), 2002.

[15] W.R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors.Markov Chain Monte Carlo in
Practice. Chapman and Hall, Suffolk, 1996.

