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Abstract

We characterize the sample complexity of active learning problems in
terms of a parameter which takes into account the distribution over the
input space, the specific target hypothesis, and the desired accuracy.

1 Introduction

The goal of active learning is to learn a classifier in a setting where data comes unlabeled,
and any labels must be explicitly requested and paid for. The hope is that an accurate
classifier can be found by buying just a few labels.

So far the most encouraging theoretical results in this field are [7, 6], which show that
if the hypothesis class is that of homogeneous (i.e. through the origin) linear separators,
and the data is distributed uniformly over the unit sphere inR

d, and the labels correspond
perfectly to one of the hypotheses (i.e. the separable case) then at mostO(d log d/ǫ) labels
are needed to learn a classifier with error less thanǫ. This is exponentially smaller than the
usualΩ(d/ǫ) sample complexity of learning linear classifiers in a supervised setting.

However, generalizing this result is non-trivial. For instance, if the hypothesis class is
expanded to include non-homogeneous linear separators, then even in just two dimensions,
under the same benign input distribution, we will see that there are some target hypotheses
for which active learning does not help much, for whichΩ(1/ǫ) labels are needed. In
fact, in this example the label complexity of active learning depends heavily on the specific
target hypothesis, and ranges fromO(log 1/ǫ) to Ω(1/ǫ).

In this paper, we consider arbitrary hypothesis classesH of VC dimensiond < ∞, and
learning problems which are separable. We characterize the sample complexity of active
learning in terms of a parameter which takes into account: (1) the distributionP over the
input spaceX ; (2) the specific target hypothesish∗ ∈ H; and (3) the desired accuracyǫ.

Specifically, we notice that distributionP induces a natural topology onH, and we define
a splitting indexρ which captures the relevant local geometry ofH in the vicinity ofh∗, at
scaleǫ. We show that this quantity fairly tightly describes the sample complexity of active
learning: any active learning scheme requiresΩ(1/ρ) labels and there is a generic active
learner which always uses at mostÕ(d/ρ) labels1.

This ρ is always at leastǫ; if it is ǫ we just get the usual sample complexity of supervised

1TheÕ(·) notation hides factors polylogarithmic ind, 1/ǫ, 1/δ, and1/τ .



learning. But sometimesρ is a constant, and in such instances active learning gives an
exponential improvement in the number of labels needed.

We look at various hypothesis classes and derive splitting indices for target hypotheses
at different levels of accuracy. For homogeneous linear separators and the uniform input
distribution, we easily findρ to be a constant – perhaps the most direct proof yet of the
efficacy of active learning in this case. Most proofs have been omitted for want of space;
the full details, along with more examples, can be found at [5].

2 Sample complexity bounds

2.1 Motivating examples

Linear separators in R
1

Our first example is taken from [3, 4]. Suppose the data lie on the real line, and the classi-
fiers are simple thresholding functions,H = {hw : w ∈ R}:

hw(x) =

{

1 if x ≥ w
0 if x < w

+ + + +− − −−−−−
w

VC theory tells us that if the underlying distributionP is separable (can be classified per-
fectly by some hypothesis inH), then in order to achieve an error rate less thanǫ, it is
enough to drawm = O(1/ǫ) random labeled examples fromP, and to return any classifier
consistent with them. But suppose we instead drawm unlabeledsamples fromP. If we
lay these points down on the line, their hidden labels are a sequence of0’s followed by a
sequence of1’s, and the goal is to discover the pointw at which the transition occurs. This
can be done with a binary search which asks for justlog m = O(log 1/ǫ) labels. Thus, in
this case active learning gives anexponentialimprovement in the number of labels needed.

Can we always achieve a label complexity proportional tolog 1/ǫ rather than1/ǫ? A
natural next step is to consider linear separators intwo dimensions.

Linear separators in R
2

LetH be the hypothesis class of linear separators inR
2, and suppose the input distribution

P is some density supported on the perimeter of the unit circle. It turns out that the positive
results of the one-dimensional case do not generalize: there are some target hypotheses in
H for which Ω(1/ǫ) labels are needed to find a classifier with error rate less thanǫ, no
matter what active learning scheme is used.

To see this, consider the following possible target hypotheses (Figure 1, left):h0, for which
all points are positive; andhi (1 ≤ i ≤ 1/ǫ), for which all points are positive except for a
small sliceBi of probability massǫ.

The slicesBi are explicitly chosen to be disjoint, with the result thatΩ(1/ǫ) labels are
needed to distinguish between these hypotheses. For instance, suppose nature chooses a
target hypothesis at random from among thehi, 1 ≤ i ≤ 1/ǫ. Then, to identify this target
with probability at least1/2, it is necessary to query points in at least (about) half theBi’s.

Thus for these particular target hypotheses, active learning offers no improvement in sam-
ple complexity. What about other target hypotheses inH, for instance those in which the
positive and negative regions are most evenly balanced? Consider the following active
learning scheme:
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Figure 1:Left: The data lie on the circumference of a circle. EachBi is an arc of probability
massǫ. Right: The same distributionP, lifted to 3-d, and with trace amounts of another
distributionP

′ mixed in.

1. Draw a pool ofO(1/ǫ) unlabeled points.

2. From this pool, choose query points at random until at least one positive and one
negative point have been found. (If all points have been queried, then halt.)

3. Apply binary search to find the two boundaries between positive and negative on
the perimeter of the circle.

For anyh ∈ H, definei(h) = min{positive mass ofh, negative mass ofh}. It is not
hard to see that when the target hypothesis ish, step (2) asks forO(1/i(h)) labels (with
probability at least9/10, say) and step (3) asks forO(log 1/ǫ) labels.

Thus even within this simple hypothesis class, the label complexity of active learning can
run anywhere fromO(log 1/ǫ) to Ω(1/ǫ), depending on the specific target hypothesis.

Linear separators in R
3

In our two previous examples, the amount of unlabeled data needed wasO(1/ǫ), exactly
the usual sample complexity of supervised learning. We next turn to a case in which it is
helpful to have significantly more unlabeled data than this.

Consider the distribution of the previous 2-d example: for concreteness, fixP to be uniform
over the unit circle inR2. Now lift it into three dimensions by adding to each pointx =
(x1, x2) a third coordinatex3 = 1. LetH consist ofhomogeneouslinear separators inR3.
Clearly the bad cases of the previous example persist.

Suppose, now, that a trace amountτ of a second distributionP′ is mixed in withP (Figure 1,
right), whereP′ is uniform on the circle{x2

1+x2
2 = 1, x3 = 0}. The “bad” linear separators

inH cut off just a small portion ofP but nonetheless divideP′ perfectly in half. This permits
a three-stage algorithm: (1) using binary search on points fromP

′, approximately identify
the two places at which the target hypothesish∗ cutsP

′; (2) use this to identify a positive
and negative point ofP (look at the midpoints of the positive and negative intervals inP

′);
(3) do binary search on points fromP. Steps (1) and (3) each use justO(log 1/ǫ) labels.

ThisO(log 1/ǫ) label complexity is made possible by the presence ofP
′ and is only achiev-

able if the amount of unlabeled data isΩ(1/τ), which could potentially be enormous. With
less unlabeled data, the usualΩ(1/ǫ) label complexity applies.
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Figure 2: (a)x is a cut throughH; (b) splitting edges.

2.2 Basic definitions

The sample complexity of supervised learning is commonly expressed as a function of
the error rateǫ and the underlying distributionP. For active learning, the previous three
examples demonstrate that it is also important to take into account the target hypothesis
and the amount of unlabeled data. The main goal of this paper is to present one particular
formalism by which this can be accomplished.

Let X be an instance space with underlying distributionP. LetH be the hypothesis class,
a set of functions fromX to {0, 1} whose VC dimension isd < ∞.

We are operating in a non-Bayesian setting, so we are not given a measure (prior) on the
spaceH. In the absence of a measure, there is no natural notion of the “volume” of the
current version space. However, the distributionP does induce a natural distance function
onH, a pseudometric:

d(h, h′) = P{x : h(x) 6= h′(x)}.
We can likewise define the notion of neighborhood:B(h, r) = {h′ ∈ H : d(h, h′) ≤ r}.

We will be dealing with aseparablelearning scenario, in which all labels correspond per-
fectly to some concepth∗ ∈ H, and the goal is to findh ∈ H such thatd(h∗, h) ≤ ǫ. To
do this, it is sufficient to whittle down the version space to the point where it has diameter
at mostǫ, and to then return any of the remaining hypotheses. Likewise, if the diameter of
the current version space is more thanǫ then any hypothesis chosen from it will have error
more thanǫ/2 with respect to the worst-case target. Thus, in a non-Bayesian setting, active
learning is aboutreducing the diameterof the version space.

If our current version space isS ⊂ H, how can we quantify the amount by which a point
x ∈ X reduces its diameter? LetH+

x denote the classifiers that assignx a value of1,
H+

x = {h ∈ H : h(x) = 1}, and letH−

x be the remainder, which assign it a value of0.
We can think ofx as a cut through hypothesis space; see Figure 2(a). In this example,x is
clearly helpful, but it doesn’t reduce the diameter ofS. And we cannot say that it reduces
theaveragedistance between hypotheses, since again there is no measure onH. Whatx
seems to be doing is to reduce the diameter in a certain “direction”. Is there some notion in
arbitrary metric spaces which captures this intuition?

Consider any finiteQ ⊂ H × H. We will think of an element(h, h′) ∈ Q as anedge
betweenverticesh andh′. For us, each such edge will represent a pair of hypotheses
which need to be distinguished from one another: that is, they are relatively far apart, so
there is no way to achieve our target accuracy if both of them remain in the version space.
We would hope that for any finite set of edgesQ, there are queries that will remove a
substantial fraction of them.

To this end, a pointx ∈ X is said toρ-split Q if its label is guaranteed to reduce the number



of edges by a fractionρ > 0, that is, if:

max{|Q ∩ (H+
x ×H+

x )|, |Q ∩ (H−

x ×H−

x )|} ≤ (1 − ρ)|Q|.
For instance, in Figure 2(b), the edges are3/5-split byx.

If our target accuracy isǫ, we only really care about edges of length more thanǫ. So define

Qǫ = {(h, h′) ∈ Q : d(h, h′) > ǫ}.
Finally, we say that a subset of hypothesesS ⊂ H is (ρ, ǫ, τ)-splittable if for all finite
edge-setsQ ⊂ S × S,

P{x : x ρ-splitsQǫ} ≥ τ.

Paraphrasing, at least aτ fraction of the distributionP is useful for splittingS.2 This τ
gives a sense of how many unlabeled samples are needed. Ifτ is miniscule, then there are
good points to query, but these will emerge only in an enormous pool of unlabeled data. It
will soon transpire that the parametersρ, τ play roughly the following roles:

# labels needed∝ 1/ρ, # of unlabeled points needed∝ 1/τ

A first step towards understanding them is to establish a trivial lower bound onρ.

Lemma 1 Pick any0 < α, ǫ < 1, and any setS. ThenS is ((1 − α)ǫ, ǫ, αǫ)-splittable.

Proof. Pick any finite edge-setQ ⊂ S × S. Let Z denote the number of edges ofQǫ cut
by a pointx chosen at random fromP. Since the edges have length at leastǫ, thisx has at
least anǫ chance of cutting any of them, wherebyEZ ≥ ǫ|Qǫ|. Now,

ǫ|Qǫ| ≤ EZ ≤ P(Z ≥ (1 − α)ǫ|Qǫ|) · |Qǫ| + (1 − α)ǫ|Qǫ|,
which after rearrangement becomesP(Z ≥ (1 − α)ǫ|Qǫ|) ≥ αǫ, as claimed.

Thus,ρ is alwaysΩ(ǫ); but of course, we hope for a much larger value. We will now see
that the splitting index roughly characterizes the sample complexity of active learning.

2.3 Lower bound

We start by showing that if some region of the hypothesis space has a low splitting index,
then it must contain hypotheses which are not conducive to active learning.

Theorem 2 Fix a hypothesis spaceH and distributionP. Suppose that for someρ, ǫ < 1
and τ < 1/2, S ⊂ H is not (ρ, ǫ, τ)-splittable. Then any active learner which achieves
an accuracy ofǫ on all target hypotheses inS, with confidence> 3/4 (over the random
sampling of data), either needs≥ 1/τ unlabeled samples or≥ 1/ρ labels.

Proof. Let Qǫ be the set of edges of length> ǫ which defies splittability, with vertices
V = {h : (h, h′) ∈ Qǫ for someh′ ∈ H}. We’ll show that in order to distinguish between
hypotheses inV , either1/τ unlabeled samples or1/ρ queries are needed.

So pick less than1/τ unlabeled samples. With probability at least(1 − τ)1/τ ≥ 1/4,
none of these pointsρ-splitsQǫ; put differently, each of these potential queries has a bad
outcome (+ or −) in which at mostρ|Qǫ| edges are eliminated. In this case there must be
a target hypothesis inV for which at least1/ρ labels are required.

In our examples, we will apply this lower bound through the following simple corollary.

2Whenever an edge of lengthl ≥ ǫ can be constructed inS, then by takingQ to consist solely of
this edge, we see thatτ ≤ l. Thus we typically expectτ to be at most aboutǫ, although of course it
might be a good deal smaller than this.



Let S0 be anǫ0-cover ofH
for t = 1, 2, . . . , T = lg 2/ǫ:

St = split(St−1, 1/2t)
return anyh ∈ ST

function split(S, ∆)
Let Q0 = {(h, h′) ∈ S × S : d(h, h′) > ∆}
Repeat fort = 0, 1, 2, . . .:

Drawm unlabeled pointsxt1, . . . , xtm

Query thexti which maximally splitsQt

Let Qt+1 be the remaining edges
until Qt+1 = ∅
return remaining hypotheses inS

Figure 3: A generic active learner.

Corollary 3 Suppose that in some neighborhoodB(h0, ∆), there are hypotheses
h1, . . . , hN such that: (1)d(h0, hi) > ǫ for all i; and (2) the “disagree sets”{x : h0(x) 6=
hi(x)} are disjoint for differenti.

Then for anyτ and anyρ > 1/N , the setB(h0, ∆) is not(ρ, ǫ, τ)-splittable . Any active
learning scheme which achieves an accuracy ofǫ on all of B(h0, ∆) must use at leastN
labels for some of the target hypotheses, no matter how much unlabeled data is available.

In this case, the distance metric onh0, h1, . . . , hN can accurately be depicted as astarwith
h0 at the center and with spokes leading to eachhi. Each query only cuts off one spoke, so
N queries are needed.

2.4 Upper bound

We now show a loosely matching upper bound on sample complexity, via an algorithm
(Figure 3) which repeatedly halves the diameter of the remaining version space. For some
ǫ0 less than half the target error rateǫ, it starts with anǫ0-cover ofH: a set of hypotheses
S0 ⊂ H such that anyh ∈ H is within distanceǫ0 of S0. It is well-known that it is possible
to find such anS0 of size≤ 2(2e/ǫ0 ln 2e/ǫ0)

d [9](Theorem 5). Theǫ0-cover serves as a
surrogate for the hypothesis class – for instance, the final hypothesis is chosen from it.

The algorithm is hopelessly intractable and is meant only to demonstrate the following
upper bound.

Theorem 4 Let the target hypothesis be someh∗ ∈ H. Pick any target accuracyǫ > 0
and confidence levelδ > 0. SupposeB(h∗, 4∆) is (ρ, ∆, τ)-splittable for all∆ ≥ ǫ/2.
Then there is an appropriate choice ofǫ0 andm for which, with probability at least1 − δ,
the algorithm will drawÕ((1/ǫ) + (d/ρτ)) unlabeled points, makẽO(d/ρ) queries, and
return a hypothesis with error at mostǫ.

This theorem makes it possible to derive label complexity bounds which are fine-tuned to
the specific target hypothesis. At the same time, it is extremely loose in that no attempt has
been made to optimize logarithmic factors.

3 Examples

3.1 Simple boundaries on the line

Returning to our first example, letX = R andH = {hw : w ∈ R}, where eachhw is a
threshold functionhw(x) = 1(x ≥ w). SupposeP is the underlying distribution onX ; for
simplicity we’ll assume it’s a density, although the discussion can easily be generalized.



The distance measureP induces onH is

d(hw , hw′) = P{x : hw(x) 6= hw′(x)} = P{x : w ≤ x < w′} = P[w, w′)

(assumingw′ ≥ w). Pick any accuracyǫ > 0 and consider any finite set of edgesQ =
{(hwi

, hw′

i
) : i = 1, . . . , n}, where without loss of generality thewi are in nondecreasing

order, and where each edge has length greater thanǫ: P[wi, w
′

i) > ǫ. Pick w so that
P[wn/2, w) = ǫ. It is easy to see that anyx ∈ [wn/2, w) must eliminate at least half the
edges inQ. Therefore,H is (ρ = 1/2, ǫ, ǫ)-splittable for anyǫ > 0.

This echoes the simple fact that active-learningH is just a binary search.

3.2 Intervals on the line

The next case we consider is almost identical to our earlier example of 2-d linear separators
(and the results carry over to that example, within constant factors). The hypotheses corre-
spond to intervals on the real line:X = R andH = {ha,b : a, b ∈ R}, whereha,b(x) =
1(a ≤ x ≤ b). Once again assumeP is a density. The distance measure it induces is
d(ha,b, ha′,b′) = P{x : x ∈ [a, b] ∪ [a′, b′], x 6∈ [a, b] ∩ [a′, b′]} = P([a, b]∆[a′, b′]),
whereS∆T denotes symmetric difference(S ∪ T ) \ (S ∩ T ).

Even in this very simple class, some hypotheses are much easier to active-learn than others.

Hypotheses not amenable to active-learning.Divide the real line into1/ǫ disjoint intervals,
each with probability massǫ, and let{hi : i = 1, ..., 1/ǫ} denote the hypotheses taking
value 1 on the corresponding intervals. Leth0 be the everywhere-zero concept. Then these
hi satisfy the conditions of Corollary 3; their star-shaped configuration forces aρ-value of
ǫ, and active learning doesn’t help at all in choosing amongst them.

Hypotheses amenable to active learning.The bad hypotheses are the ones whose intervals
have small probability mass. We’ll now see that larger concepts are not so bad; in particular,
for anyh whose interval has mass> 4ǫ, B(h, 4ǫ) is (ρ = Ω(1), ǫ, Ω(ǫ))-splittable.

Pick anyǫ > 0 and anyha,b such thatP[a, b] = r > 4ǫ. Consider a set of edgesQ whose
endpoints are inB(ha,b, 4ǫ) and which all have length> ǫ. In the figure below, all lengths
denote probability masses. Any concept inB(ha,b, 4ǫ) (more precisely, its interval) must
lie within the outer box and must contain the inner box (this inner box might be empty).

r

a b

4ǫ 4ǫ 4ǫ 4ǫ

Any edge(ha′,b′ , ha′′,b′′) ∈ Q has length> ǫ, so [a′, b′]∆[a′′, b′′] (either a single interval
or a union of two intervals) has total length> ǫ and lies between the inner and outer boxes.

Now pick x at random from the distributionP restricted to the space between the two
boxes. This space has mass at most16ǫ and at least4ǫ, of which at leastǫ is occupied by
[a′, b′]∆[a′′, b′′]. Thereforex separatesha′,b′ from ha′′,b′′ with probability≥ 1/16.

Now let’s look at all ofQ. The expected number of edges split by ourx is at least|Q|/16,
and therefore the probability that more than|Q|/32 edges are split is at least1/32. So
P{x : x (1/32)-splitsQ} ≥ 4ǫ/32 = ǫ/8.

To summarize, for any hypothesisha,b, let i(ha,b) = P[a, b] denote the probability mass of
its interval. Then for anyh ∈ H and anyǫ < i(h)/4, the setB(h, 4ǫ) is (1/32, ǫ, ǫ/8)-
splittable. In short, once the version space is whittled down toB(h, i(h)/4), efficient active



learning is possible. And the initial phase of getting toB(h, i(h)/4) can be managed by
random sampling, using̃O(1/i(h)) labels: not too bad wheni(h) is large.

3.3 Linear separators under the uniform distribution

The most encouraging positive result for active learning to date has been for learning homo-
geneous (through the origin) linear separators with data drawn uniformly from the surface
of the unit sphere inRd. The splitting indices for this case [5] bring this out immediately:

Theorem 5 For anyh ∈ H, anyǫ ≤ 1/(32π2
√

d), B(h, 4ǫ) is (1

8
, ǫ, Ω(ǫ/

√
d))-splittable.

4 Related work and open problems

There has been a lot of work on a related model in which the points to be queried are
synthetically constructed, rather than chosen from unlabeled data [1]. The expanded role
of P in our model makes it substantially different, although a few intuitions do carry over
– for instance, Corollary 3 generalizes the notion ofteaching dimension[8].

We have already discussed [7, 4, 6]. One other technique which seems useful for active
learning is to look at the unlabeled data and then place bets on certain target hypotheses,
for instance the ones with large margin. This insight – nicely formulated in [2, 10] – is not
specific to active learning and is orthogonal to the search issues considered in this paper.

In all the positive examples in this paper, a random data point which intersects the version
space has a good chance ofΩ(1)-splitting it. This permits a naive active learning strategy,
also suggested in [3]: just pick a random point whose label you are not yet sure of.
On what kinds of problems will this work, and what are prototypical cases where more
intelligent querying is needed?
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