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Abstract

We characterize the sample complexity of active learning problems in
terms of a parameter which takes into account the distribution over the
input space, the specific target hypothesis, and the desired accuracy.

1 Introduction

The goal of active learning is to learn a classifier in a setting where data comes unlabeled,
and any labels must be explicitly requested and paid for. The hope is that an accurate
classifier can be found by buying just a few labels.

So far the most encouraging theoretical results in this field are [7, 6], which show that
if the hypothesis class is that of homogeneous (i.e. through the origin) linear separators,
and the data is distributed uniformly over the unit spher@4nand the labels correspond
perfectly to one of the hypotheses (i.e. the separable case) then ab(ddsg d/¢) labels

are needed to learn a classifier with error less tharhis is exponentially smaller than the
usual2(d/e) sample complexity of learning linear classifiers in a supervised setting.

However, generalizing this result is non-trivial. For instance, if the hypothesis class is
expanded to include non-homogeneous linear separators, then even in just two dimensions,
under the same benign input distribution, we will see that there are some target hypotheses
for which active learning does not help much, for whiekil /¢) labels are needed. In

fact, in this example the label complexity of active learning depends heavily on the specific
target hypothesis, and ranges frailog 1/¢) to Q(1/e¢).

In this paper, we consider arbitrary hypothesis clag¢esf VC dimensiond < oo, and
learning problems which are separable. We characterize the sample complexity of active
learning in terms of a parameter which takes into account: (1) the distribBtaver the

input spaceX’; (2) the specific target hypothegis € H; and (3) the desired accuraey

Specifically, we notice that distributidh induces a natural topology dr, and we define
asplitting indexp which captures the relevant local geometryHin the vicinity of 1*, at
scalee. We show that this quantity fairly tightly describes the sample complexity of active
learning: any active learning scheme requitds/p) labels and there is a generic active

learner which always uses at mastd/p) labels.

This p is always at least; if it is ¢ we just get the usual sample complexity of supervised

1The O(-) notation hides factors polylogarithmic i 1/¢, 1/, and1/7.



learning. But sometimeg is a constant, and in such instances active learning gives an
exponential improvement in the number of labels needed.

We look at various hypothesis classes and derive splitting indices for target hypotheses
at different levels of accuracy. For homogeneous linear separators and the uniform input
distribution, we easily fing to be a constant — perhaps the most direct proof yet of the
efficacy of active learning in this case. Most proofs have been omitted for want of space;
the full details, along with more examples, can be found at [5].

2 Sample complexity bounds

2.1 Motivating examples
Linear separators in R!

Our first example is taken from [3, 4]. Suppose the data lie on the real line, and the classi-
fiers are simple thresholding functiort¢,= {h,, : w € R}:
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VC theory tells us that if the underlying distributi@fis separable (can be classified per-
fectly by some hypothesis i#(), then in order to achieve an error rate less thait is
enough to drawn = O(1/¢) random labeled examples frafp and to return any classifier
consistent with them. But suppose we instead drawnlabeledsamples fron®. If we

lay these points down on the line, their hidden labels are a sequen&efoflowed by a
sequence of's, and the goal is to discover the potntat which the transition occurs. This
can be done with a binary search which asks forjostn = O(log 1/¢) labels. Thus, in
this case active learning gives axponentialmprovement in the number of labels needed.

Can we always achieve a label complexity proportionalol /e rather thanl/e? A
natural next step is to consider linear separatot&/gdimensions.

Linear separators in R?

Let H be the hypothesis class of linear separatof@?nand suppose the input distribution

P is some density supported on the perimeter of the unit circle. It turns out that the positive
results of the one-dimensional case do not generalize: there are some target hypotheses in
H for which ©2(1/¢) labels are needed to find a classifier with error rate less ¢hao

matter what active learning scheme is used.

To see this, consider the following possible target hypotheses (Figure 1hlgftiir which
all points are positive; antl; (1 < i < 1/¢), for which all points are positive except for a
small sliceB; of probability mass.

The slicesB; are explicitly chosen to be disjoint, with the result txtl /¢) labels are

needed to distinguish between these hypotheses. For instance, suppose nature chooses a
target hypothesis at random from among thel < ¢ < 1/e. Then, to identify this target

with probability at least /2, it is necessary to query points in at least (about) halBhs.

Thus for these particular target hypotheses, active learning offers no improvement in sam-
ple complexity. What about other target hypotheseXjrfor instance those in which the
positive and negative regions are most evenly balanced? Consider the following active
learning scheme:
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Figure 1:Left: The data lie on the circumference of a circle. E&%his an arc of probability
masse. Right: The same distributiof?, lifted to 3-d, and with trace amounts of another
distribution’ mixed in.

1. Draw a pool 0f0(1/¢) unlabeled points.

2. From this pool, choose query points at random until at least one positive and one
negative point have been found. (If all points have been queried, then halt.)

3. Apply binary search to find the two boundaries between positive and negative on
the perimeter of the circle.

For anyh € H, definei(h) = min{positive mass ok, negative mass di}. It is not
hard to see that when the target hypothesis, istep (2) asks fo©(1/i(h)) labels (with
probability at leas9 /10, say) and step (3) asks fo{{(log 1/¢) labels.

Thus even within this simple hypothesis class, the label complexity of active learning can
run anywhere fronO(log 1/¢) to ©(1/¢), depending on the specific target hypothesis.

Linear separators in R?

In our two previous examples, the amount of unlabeled data neede@{¥ds), exactly
the usual sample complexity of supervised learning. We next turn to a case in which it is
helpful to have significantly more unlabeled data than this.

Consider the distribution of the previous 2-d example: for concretene&stdike uniform
over the unit circle irR2. Now lift it into three dimensions by adding to each paint=
(71, x2) athird coordinaters = 1. Let’H consist ohomogeneouignear separators iR3.
Clearly the bad cases of the previous example persist.

Suppose, now, that a trace amouamtf a second distributioR’ is mixed in withlP (Figure 1,
right), whereP’ is uniform on the circl§z?+z3 = 1, x3 = 0}. The “bad” linear separators
in H cut off just a small portion dP but nonetheless divid® perfectly in half. This permits
a three-stage algorithm: (1) using binary search on points ffgrapproximately identify
the two places at which the target hypothésicutsP’; (2) use this to identify a positive
and negative point dP (look at the midpoints of the positive and negative intervalB’ip
(3) do binary search on points frofa Steps (1) and (3) each use jdiflog 1/¢) labels.

ThisO(log 1/¢) label complexity is made possible by the presend® aind is only achiev-
able if the amount of unlabeled dat&1$1 /), which could potentially be enormous. With
less unlabeled data, the ustHll /¢) label complexity applies.



Figure 2: (a)r is a cut throught; (b) splitting edges.

2.2 Basic definitions

The sample complexity of supervised learning is commonly expressed as a function of
the error rate and the underlying distributio®. For active learning, the previous three
examples demonstrate that it is also important to take into account the target hypothesis
and the amount of unlabeled data. The main goal of this paper is to present one particular
formalism by which this can be accomplished.

Let X be an instance space with underlying distribufioriet H be the hypothesis class,
a set of functions froni’ to {0, 1} whose VC dimension i§ < co.

We are operating in a non-Bayesian setting, so we are not given a measure (prior) on the
spaceH. In the absence of a measure, there is no natural notion of the “volume” of the
current version space. However, the distribuffodoes induce a natural distance function
onH, a pseudometric:

d(h, ') =P{x : h(x) # h'(2)}.
We can likewise define the notion of neighborho®dh, r) = {h' € H : d(h, /) < r}.

We will be dealing with asseparabldearning scenario, in which all labels correspond per-
fectly to some concept* € H, and the goal is to find € H such thatl(h*, h) < e. To

do this, it is sufficient to whittle down the version space to the point where it has diameter
at moste, and to then return any of the remaining hypotheses. Likewise, if the diameter of
the current version space is more tlgthen any hypothesis chosen from it will have error
more thare/2 with respect to the worst-case target. Thus, in a non-Bayesian setting, active
learning is abouteducing the diametesf the version space.

If our current version space & C H, how can we quantify the amount by which a point

x € X reduces its diameter? Let; denote the classifiers that assigra value ofl,

HE = {h € H: h(z) = 1}, and letH, be the remainder, which assign it a value)of

We can think ofr as a cut through hypothesis space; see Figure 2(a). In this exaniple,
clearly helpful, but it doesn’t reduce the diameteSofAnd we cannot say that it reduces

the averagedistance between hypotheses, since again there is no meashfeWhat
seems to be doing is to reduce the diameter in a certain “direction”. Is there some notion in
arbitrary metric spaces which captures this intuition?

Consider any finite) C H x H. We will think of an elementh, ') € @Q as anedge
betweenverticesh and h’. For us, each such edge will represent a pair of hypotheses
which need to be distinguished from one another: that is, they are relatively far apart, so
there is no way to achieve our target accuracy if both of them remain in the version space.
We would hope that for any finite set of edg@s there are queries that will remove a
substantial fraction of them.

To this end, a point € X is said top-split @ if its label is guaranteed to reduce the number



of edges by a fractiop > 0, that is, if:
max{|Q N (K x H)l, [QN (H; x H)} < (1-p)Ql-
For instance, in Figure 2(b), the edges 2y8-split by .
If our target accuracy is, we only really care about edges of length more tha®o define
Qc={(h1) € Q: d(h, 1) > ¢}

Finally, we say that a subset of hypotheses- H is (p, €, 7)-splittableif for all finite
edge-set§) C S x S,

P{x: x p-splitsQ.} > 7.
Paraphrasing, at leastrafraction of the distributiori? is useful for splittingS.? This 7
gives a sense of how many unlabeled samples are needet fhiniscule, then there are
good points to query, but these will emerge only in an enormous pool of unlabeled data. It
will soon transpire that the parameters play roughly the following roles:

# labels needed 1/p, # of unlabeled points neededl/r
A first step towards understanding them is to establish a trivial lower boupd on
Lemma 1 Pick any0 < a, e < 1, and any seS. ThenS is ((1 — a)e, ¢, ae)-splittable.

Proof. Pick any finite edge-s&) C S x S. Let Z denote the number of edges@f cut
by a pointx chosen at random frofii. Since the edges have length at leashis = has at
least are chance of cutting any of them, whereBy, > ¢|Q.|. Now,

Q] < BEZ < P(Z = (1 - )elQc]) - Q| + (1 = a)elQe,
which after rearrangement beconfs? > (1 — a)e|Q.|) > ae, as claimedl

Thus,p is always(2(¢); but of course, we hope for a much larger value. We will now see
that the splitting index roughly characterizes the sample complexity of active learning.

2.3 Lower bound

We start by showing that if some region of the hypothesis space has a low splitting index,
then it must contain hypotheses which are not conducive to active learning.

Theorem 2 Fix a hypothesis spack and distributionP. Suppose that for somee < 1
andt < 1/2, S C H is not(p, ¢, 7)-splittable. Then any active learner which achieves
an accuracy ot on all target hypotheses i, with confidence> 3/4 (over the random
sampling of data), either needs1/7 unlabeled samples o¥ 1/p labels.

Proof. Let Q. be the set of edges of length ¢ which defies splittability, with vertices
V={h:(h,}1) € Q. forsomeh’ € H}. We'll show that in order to distinguish between
hypotheses iV, eitherl/r unlabeled samples ar/p queries are needed.

So pick less thari /7 unlabeled samples. With probability at legst— 7)'/7 > 1/4,
none of these points-splits Q; put differently, each of these potential queries has a bad
outcome ¢ or —) in which at mosp|Q.| edges are eliminated. In this case there must be
a target hypothesis it for which at leasti /p labels are required.

In our examples, we will apply this lower bound through thddi@ing simple corollary.

2Whenever an edge of length> ¢ can be constructed ifi, then by takingR to consist solely of
this edge, we see that< [. Thus we typically expect to be at most about, although of course it
might be a good deal smaller than this.



Let Sy be aney-cover of H function spli(S, A)

fort=1,2,...,T=l1g2/e LetQo = {(h,h') € Sx S :d(h,h) > A}
Sy = split(S;_1,1/2%) Repeatfort = 0,1,2,...
return anyh € St Drawm unlabeled points1, . . ., T4,

Query ther;; which maximally splitQ,
Let Q:y1 be the remaining edges
until Q41 =0
return remaining hypotheses

Figure 3: A generic active learner.

Corollary 3 Suppose that in some neighborhodgih,,A), there are hypotheses
hi,...,hy suchthat: (1)d(ho, h;) > € for all 7; and (2) the “disagree sets{x : ho(z) #
h;(z)} are disjoint for different.

Then for anyr and anyp > 1/N, the setB(hg, A) is not(p, €, 7)-splittable . Any active
learning scheme which achieves an accuracy ofi all of B(hg, A) must use at leasy
labels for some of the target hypotheses, no matter how much unlabeled data is available.

In this case, the distance metricbf h1, . .., hy can accurately be depicted astarwith
ho at the center and with spokes leading to eachEach query only cuts off one spoke, so
N queries are needed.

2.4 Upper bound

We now show a loosely matching upper bound on sample complexity, via an algorithm
(Figure 3) which repeatedly halves the diameter of the remaining version space. For some
€o less than half the target error rateit starts with an:,-cover of H: a set of hypotheses

So C H such that any, € H is within distance of Sy. Itis well-known that it is possible

to find such anS,, of size< 2(2¢/egIn2e/ep)? [9](Theorem 5). They-cover serves as a
surrogate for the hypothesis class — for instance, the final hypothesis is chosen from it.

The algorithm is hopelessly intractable and is meant only to demonstrate the following
upper bound.

Theorem 4 Let the target hypothesis be sorie € H. Pick any target accuracy > 0
and confidence levél > 0. SupposaB(h*,4A) is (p, A, 7)-splittable for all A > ¢/2.
Then there is an appropriate choice@fandm for which, with probability at least — ¢,
the algorithm will drawO((1/¢) + (d/p7)) unlabeled points, mak@(d/p) queries, and
return a hypothesis with error at most

This theorem makes it possible to derive label complexity bounds which are fine-tuned to

the specific target hypothesis. At the same time, it is extremely loose in that no attempt has
been made to optimize logarithmic factors.

3 Examples

3.1 Simple boundaries on the line

Returning to our first example, lI&f = R andH = {h,, : w € R}, where eacth,, is a
threshold functiorh,, () = 1(z > w). Supposé is the underlying distribution of’; for
simplicity we’ll assume it’s a density, although the discussion can easily be generalized.



The distance measukeinduces or{ is
A(hw, hy) = Pl hy(2) # hy ()} = Plorw <z <w'} = Plw,w)

(assumingw’ > w). Pick any accuracy > 0 and consider any finite set of edg@s=
{(hw,s hur) i =1,...,n}, where without loss of generality the; are in nondecreasing
order, and where each edge has length greater ¢hd@jw;,w;) > e. Pickw so that

Plw, /2, w) = €. Itis easy to see that any € [w,, /o, w) must eliminate at least half the
edges iny. ThereforeH is (p = 1/2, €, €)-splittable for anye > 0.

This echoes the simple fact that active-learrithés just a binary search.

3.2 Intervals on the line

The next case we consider is almost identical to our earlier example of 2-d linear separators
(and the results carry over to that example, within constant factors). The hypotheses corre-
spond to intervals on the real lin& = R andH = {hq : a,b € R}, whereh, () =

1(a < a < b). Once again assunie is a density. The distance measure it induces is
d(ha-,baha’,b/) = P{SE RS [aab] U [alvb/]vx ¢ [avb] N [a/vb/]} = P([avb]A[a/ab/])v
whereSAT denotes symmetric differen¢® UT) \ (SN T).

Even in this very simple class, some hypotheses are much easier to active-learn than others.

Hypotheses not amenable to active-learniDizide the real line intd /e disjoint intervals,
each with probability mass and let{h; : i = 1,...,1/e} denote the hypotheses taking
value 1 on the corresponding intervals. bhgtbe the everywhere-zero concept. Then these
h; satisfy the conditions of Corollary 3; their star-shaped configuration forpegatue of

¢, and active learning doesn't help at all in choosing amongst them.

Hypotheses amenable to active learniiie bad hypotheses are the ones whose intervals
have small probability mass. We'll now see that larger concepts are not so bad; in particular,
for anyh whose interval has mass 4e, B(h, 4¢) is (p = (1), €, Q(¢))-splittable.

Pick anye > 0 and anyh, ; such that[a, b] = r > 4e. Consider a set of edgéswhose
endpoints are itB(h,;, 4¢) and which all have lengtls ¢. In the figure below, all lengths
denote probability masses. Any concepifh, », 4¢) (more precisely, its interval) must
lie within the outer box and must contain the inner box (this inner box might be empty).

Any edge(hy v, o p) € Q has length> €, so[a’, b']Ala”, b"] (either a single interval
or a union of two intervals) has total lengthe and lies between the inner and outer boxes.

Now pick = at random from the distributiof? restricted to the space between the two
boxes. This space has mass at nigstand at leastie, of which at least is occupied by
[a',V']Ala”,b"]. Thereforer separated, ,» from h, p» with probability> 1/16.

Now let’s look at all of@). The expected number of edges split by ous at leas{|/16,
and therefore the probability that more thigp|/32 edges are split is at lea$f32. So
P{x : x (1/32)-splitsQ} > 4e/32 = ¢/8.

To summarize, for any hypothesis ;, leti(h,,) = Pla, b] denote the probability mass of
its interval. Then for any» € H and anye < i(h)/4, the setB(h, 4¢) is (1/32,¢,¢/8)-
splittable. In short, once the version space is whittled dowRBi(fo, i(h)/4), efficient active



learning is possible. Aqd the initial phase of gettingBoh, i(h)/4) can be managed by
random sampling, usin@(1/i(h)) labels: not too bad wheith) is large.

3.3 Linear separators under the uniform distribution

The most encouraging positive result for active learning to date has been for learning homo-
geneous (through the origin) linear separators with data drawn uniformly from the surface
of the unit sphere iiR?. The splitting indices for this case [5] bring this out immediately:

Theorem 5 For anyh € H, anye < 1/(322V/d), B(h, 4e) is (%, ¢, Q(e/Vd))-splittable.

4 Related work and open problems

There has been a lot of work on a related model in which the points to be queried are
synthetically constructed, rather than chosen from unlabeled data [1]. The expanded role
of I in our model makes it substantially different, although a few intuitions do carry over

— for instance, Corollary 3 generalizes the notioezfching dimensids].

We have already discussed [7, 4, 6]. One other technique which seems useful for active
learning is to look at the unlabeled data and then place bets on certain target hypotheses,
for instance the ones with large margin. This insight — nicely formulated in [2, 10] — is not
specific to active learning and is orthogonal to the search issues considered in this paper.

In all the positive examples in this paper, a random data point which intersects the version
space has a good chance¥(fl )-splitting it. This permits a naive active learning strategy,
also suggested in [3]: just pick a random point whose label you are not yet sure of.
On what kinds of problems will this work, and what are prototypical cases where more
intelligent querying is needed?
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