
Selecting Landmark Points for Sparse Manifold
Learning

J. G. Silva
ISEL/ISR

R. Conselheiro Emidio Navarro
1950.062 Lisbon, Portugal
jgs@isel.ipl.pt

J. S. Marques
IST/ISR

Av. Rovisco Pais
1949-001 Lisbon, Portugal
jsm@isr.ist.utl.pt

J. M. Lemos
INESC-ID/IST

R. Alves Redol, 9
1000-029 Lisbon, Portugal
jlml@inesc-id.pt

Abstract

There has been a surge of interest in learning non-linear manifold models
to approximate high-dimensional data. Both for computational complex-
ity reasons and for generalization capability, sparsity is a desired feature
in such models. This usually means dimensionality reduction, which
naturally implies estimating the intrinsic dimension, but it can also mean
selecting a subset of the data to use as landmarks, which is especially im-
portant because many existing algorithms have quadratic complexity in
the number of observations. This paper presents an algorithm for select-
ing landmarks, based on LASSO regression, which is well known to fa-
vor sparse approximations because it uses regularization with anl1 norm.
As an added benefit, a continuous manifold parameterization, based on
the landmarks, is also found. Experimental results with synthetic and
real data illustrate the algorithm.

1 Introduction

The recent interest in manifold learning algorithms is due, in part, to the multiplication of
very large datasets of high-dimensional data from numerous disciplines of science, from
signal processing to bioinformatics [6].

As an example, consider a video sequence such as the one in Figure 1. In the absence
of features like contour points or wavelet coefficients, each image of size71 × 71 pixels
is a point in a space of dimension equal to the number of pixels,71 × 71 = 5041. The
observation space is, therefore,R

5041. More generally, each observation is a vectory ∈
R

m wherem may be very large.

A reasonable assumption, when facing an observation space of possibly tens of thousands
of dimensions, is that the data are not dense in such a space, because several of the mea-



Figure 1: Example of a high-dimensional dataset: each image of size71 × 71 pixels is a
point inR

5041.

sured variables must be dependent. In fact, in many problems of interest, there are only a
few free parameters, which are embedded in the observed variables, frequently in a non-
linear way. Assuming that the number of free parameters remains the same throughout the
observations, and also assuming smooth variation of the parameters, one is in fact dealing
with geometric restrictions which can be well modelled as a manifold.

Therefore, the data must lie on, or near (accounting for noise) a manifold embedded in
observation, or ambient space. Learning this manifold is a natural approach to the problem
of modelling the data, since, besides computational issues, sparse models tend to have
better generalization capability. In order to achieve sparsity, considerable effort has been
devoted to reducing the dimensionality of the data by some form of non-linear projection.
Several algorithms ([10], [8], [3]) have emerged in recent years that follow this approach,
which is closely related to the problem of feature extraction. In contrast, the problem of
finding a relevant subset of the observations has received less attention.

It should be noted that the complexity of most existing algorithms is, in general, dependent
not only on the dimensionality but also on the number of observations. An important
example is the ISOMAP [10], where the computational cost is quadratic in the number
of points, which has motivated the L-ISOMAP variant [3] which uses a randomly chosen
subset of the points aslandmarks (L is for Landmark).

The proposed algorithm uses, instead, a principled approach to select the landmarks, based
on the solutions of a regression problem minimizing a regularized cost functional. When
the regularization term is based on thel1 norm, the solution tends to be sparse. This is the
motivation for using the Least Absolute value Subset Selection Operator (LASSO) [5].

Finding the LASSO solutions used to require solving a quadratic programming problem,
until the development of the Least Angle Regression (LARS1) procedure [4], which is much
faster (the cost is equivalent to that of ordinary least squares) and not only gives the LASSO
solutions but also provides an estimator of the risk as a function of the regularization tuning
parameter. This means that the correct amount of regularization can be automatically found.

In the specific context of selecting landmarks for manifold learning, with some care in the
LASSO problem formulation, one is able to avoid a difficult problem of sparse regression
with Multiple Measurement Vectors (MMV), which has received considerable interest in
its own right [2].

The idea is to use local information, found by local PCA as usual, and preserve the smooth
variation of the tangent subspace over a larger scale, taking advantage of any known embed-
ding. This is a natural extension of the Tangent Bundle Approximation (TBA) algorithm,
proposed in [9], since the principal angles, which TBA computes anyway, are readily avail-

1The S in LARS stands for Stagewise and LASSO, an allusion to the relationship between the
three algorithms.



able and appropriate for this purpose. Nevertheless, the method proposed here is indepen-
dent of TBA and could, for instance, be plugged into a global procedure like L-ISOMAP.

The algorithm avoids costly global computations, that is, it doesn’t attempt to preserve
geodesic distances between faraway points, and yet, unlike most local algorithms, it is
explicitly designed to be sparse while retaining generalization ability.

The remainder of this introduction formulates the problem and establishes the notation. The
selection procedure itself is covered in section 2, while also providing a quick overview of
the LASSO and LARS methods. Results are presented in section 3 and then discussed in
section 4.

1.1 Problem formulation

The problem can be formulated as following: givenN vectorsy ∈ R
m, suppose that they

can be approximated by a differentiablen-manifoldM embedded inRm. This means that
M can becharted through one or more invertible and differentiable mappings of the type

gi(y) = x (1)

to vectorsx ∈ R
n so that open setsPi ⊂ M, calledpatches, whose union coversM, are

diffeomorphically mapped onto other open setsUi ⊂ R
n, calledparametric domains. R

n

is the lower dimensional parameter space andn is the intrinsic dimension ofM. Thegi are
calledcharts, and manifolds with complex topology may require severalgi. Equivalently,
since the charts are invertible, inverse mappingshi : R

n → R
m, calledparameterizations

can be also be found.

Arranging the original data in a matrixY ∈ R
m×N , with they as column vectors and

assuming, for now, only one mappingg, the charting process produces a matrixX ∈
R

n×N :

Y =







y11 · · · y1N

...
. ..

...
ym1 . . . ymN






X =







x11 · · · x1N

...
. . .

...
xn1 . . . xnN






(2)

Then rows ofX are sometimes calledfeatures or latent variables. It is often intended in
manifold learning to estimate the correct intrinsic dimension,n, as well as the chartg or at
least a column-to-column mapping fromY to X. In the present case, this mapping will be
assumed known, and so willn.

What is intended is to select a subset of thecolumns of X (or of Y, since the mapping
between them is known) to use as landmarks, while retaining enough information aboutg,
resulting in a reducedn × N ′ matrix with N ′ < N . N ′ is the number of landmarks, and
should also be automatically determined.

Preservingg is equivalent to preserving its inverse mapping, the parameterizationh, which
is more practical because it allows the following generative model:

y = h(x) + η (3)

in which η is zero mean Gaussian observation noise. How to find the fewest possible
landmarks so thath can still be well approximated?



2 Landmark selection

2.1 Linear regression model

To solve the problem, it is proposed to start by converting the non-linear regression in (3) to
a linear regression by offloading the non-linearity onto a kernel, as described in numerous
works, such as [7]. Since there areN columns inX to start with, letK be a square,N ×N ,
symmetric semidefinite positive matrix such that

K = {kij}

kij = K(xi,xj)

K(x,xj) = exp(−
‖x − xj‖

2

2σ2

K

). (4)

The functionK can be readily recognized as a Gaussian kernel. This allows the reformu-
lation, in matrix form, of (3) as

YT = KB + E (5)

,

whereB,E ∈ R
N×m and each line ofE is a realization ofη above. Still, it is difficult to

proceed directly from (5), because neither the response,YT , nor the regression parameters,
B, are column vectors. This leads to a Multiple Measurement Vectors (MMV) problem,
and while there is nothing to prevent solving it separately for each column, this makes
it harder to impose sparsity in all columnssimultaneously. Two alternative approaches
present themselves at this point:

• Solve a sparse regression problem for each column ofYT (and the corresponding
column ofB), find a way to force severallines of B to zero.

• Re-formulate (5) is a way that turns it to a single measurement value problem.

The second approach is better studied, and it will be the one followed here. Since the
parameterizationh is known and must be, at the very least, bijective and continuous, then
it must preserve the smoothness of quantities like the geodesic distance and the principal
angles. Therefore, it is proposed to re-formulate (5) as

θ = Kβ + ǫ (6)

where the new response,θ ∈ R
N , as well asβ ∈ R

N andǫ ∈ R
N are now column vectors,

allowing the use of known subset selection procedures.

The elements ofθ can be, for example, the geodesic distances to theyµ = h(xµ) obser-
vation corresponding to the mean,xµ of the columns ofX. This would be a possibility
if an algorithm like ISOMAP were used to find the chart fromY to X. However, since
the whole point of using landmarks is to know them beforehand, so as to avoid having to
computeN × N geodesic distances, this is not the most interesting alternative.

A better way is to use a computationally lighter quantity like the maximum principal angle
between the tangent subspace atyµ, Tyµ

(M), and the tangent subspaces at all othery.

Given a pointy0 and itsk nearest neighbors, finding the tangent subspace can be done by
local PCA. The sample covariance matrixS can be decomposed as



S =
1

k

k
∑

i=0

(yi − y0)(yi − y0)
T (7)

S = VDVT (8)

where the columns ofV are the eigenvectorsvi andD is a diagonal matrix containing the
eigenvaluesλi, in descending order. The eigenvectors form an orthonormal basis aligned
with the principal directions of the data. They can be divided in two groups: tangent and
normal vectors, spanning the tangent and normal subspaces, with dimensionsn andm−n,
respectively. Note thatm − n is thecodimension of the manifold. The tangent subspaces
are spanned from then most important eigenvectors. The principal angles between two
different tangent subspaces at different pointsy0 can be determined from the column spaces
of the corresponding matricesV.

An in-depth description of the principal angles, as well as efficient algorithms to compute
them, can be found, for instance, in [1]. Note that, should theTy(M) be already available
from the eigenvectors found during some local PCA analysis, e. g., during estimation of
the intrinsic dimension, there would be little extra computational burden. An example is
[9], where the principal angles already are an integral part of the procedure - namely for
partitioning the manifold into patches.

Thus, it is proposed to useθj equal to the maximum principal angle betweenTyµ
(M) and

Tyj
(M), whereyj is thej-th column ofY. It remains to be explained how to achieve a

sparse solution to (6).

2.2 Sparsity with LASSO and LARS

The idea is to find an estimatêβ that minimizes the functional

E = ‖θ − Kβ̂‖2 + γ‖β̂‖q
q. (9)

Here,‖β̂‖q denotes thelq norm of β̂, i. e. q

√

∑m

i=1
|β̂i|q, andγ is a tuning parameter that

controls the amount of regularization. For the most sparseness, the ideal value ofq would be
zero. However, minimizingE with the l0 norm is, in general, prohibitive in computational
terms. A sub-optimal strategy is to useq = 1 instead. This is the usual formulation of
a LASSO regression problem. While minimization of (9) can be done using quadratic
programming, the recent development of the LARS method has made this unnecessary.
For a detailed description of LARS and its relationship with the LASSO,vide [4].

Very briefly, LARS starts withβ̂ = 0 and adds covariates (the columns ofK) to the
model according to their correlation with the prediction error vector,θ − Kβ̂, setting the
correspondinĝβj to a value such that another covariate becomes equally correlated with
the error and is, itself, added to the model - it becomesactive. LARS then proceeds in a
direction equiangular to all the activêβj and the process is repeated until all covariates have
been added. There are a total ofm steps, each of which adds a neŵβj , making it non-zero.
With slight modifications, these steps correspond to a sampling of the tuning parameterγ
in (9) under LASSO. Moreover, [4] shows that the risk, as a function of the number,p, of
non-zeroβ̂j , can be estimated (under mild assumptions) as

R(β̂p) = ‖θ − Kβ̂p‖
2/σ̄2 − m + 2p (10)



whereσ̄2 can be found from the unconstrained least squares solution of (6). Computing
R(β̂p) requires no more than thêβp themselves, which are already provided by LARS
anyway.

2.3 Landmarks and parameterization of the manifold

The landmarks are the columnsxj of X (or of Y) with the same indexesj as the non-zero
elements ofβp, where

p = arg min
p

R(βp). (11)

There areN ′ = p landmarks, because there arep non-zero elements inβp. This criterion
ensures that the landmarks are the kernel centers that minimize the risk of the regression in
(6).

As an interesting byproduct, regardless of whetherh was a continuous or point-to-point
mapping to begin with, it is now also possible to obtain a new, continuous parameterization
hB,X′ by solving a reduced version of (5):

YT = BK′ + E (12)

whereK′ only hasN ′ columns, with the same indexes asX′. In fact,K′ ∈ R
N×N ′

is no
longer square. Also, nowB ∈ R

N ′
×m. The new, smaller regression (12) can be solved

separately for each column ofYT andB by unconstrained least squares. For a new feature
vector,x, in the parametric domain, a new vectory ∈ M in observation space can be
synthesized by

y = hB,X′(x) = [y1(x) . . . ym(x)]
T (13)

yj(x) =
∑

xi∈X′

bijK(xi,x)

where the{bij} are the elements ofB.

3 Results

The algorithm has been tested in two synthetic datasets: the traditional synthetic “swiss
roll” and a sphere, both with 1000 points embedded inR

10, with a small amount of isotropic
Gaussian noise (σy = 0.01) added in all dimensions, as shown in Figure 2. These man-
ifolds have intrinsic dimensionn = 2. A global embedding for the swiss roll was found
by ISOMAP, usingk = 8. On the other hand, TBA was used for the sphere, resulting in
multiple patches and charts - a necessity, because otherwise the sphere’s topology would
make ISOMAP fail. Therefore, in the sphere, each patch has its own landmark points, and
the manifold require the union of all such points. All are shown in Figure 2, as selected by
our procedure.

Additionally, a real dataset was used: images from the video sequence shown above in
Figure 1. This example is known [9] to be reasonably well modelled by as few as2 free
parameters.

The sequence containsN = 194 frames withm = 5041 pixels. A first step was to perform
global PCA in order to discard irrelevant dimensions. Since it obviously isn’t possible
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Figure 2: Above: landmarks;Middle: interpolated points usinghB,X′ ; Below: risk esti-
mates. For the sphere, the risk plot is for the largest patch. Total landmarks,N ′ = 27 for
the swiss roll,42 for the sphere.

to compute a covariance matrix of size5000 × 5000 from 194 samples, the problem was
transposed, leading to the computation of the eigenvectors of aN × N covariance, from
which the firstN − 1 eigenvectors of the non-transposed problem can easily be found [11].
This resulted in an estimated 15 globally significant principal directions, on which the data
were projected.

After this pre-processing, the effective values ofm andN were, respectively,15 and194.
An embedding was found using TBA with 2 features (ISOMAP would have worked as
well). The results obtained for this case are shown in Figure 3. Only 4 landmarks were
needed, and they correspond to very distinct face expressions.

4 Discussion

A new approach for selecting landmarks in manifold learning, based on LASSO and LARS
regression, has been presented. The proposed algorithm finds geometrically meaningful
landmarks and successfully circumvents a difficult MMV problem, by using the intuition
that, since the variation of the maximum principal angle is a measure of curvature, the
points that are important in preserving it should also be important in preserving the overall
manifold geometry. Also, a continuous manifold parameterization is given with very little
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Figure 3: Landmarks for the video sequence:N ′ = 4, marked over a scatter plot of the
first 3 eigen-coordinates. The corresponding pictures are also shown.

additional computational cost.

The entire procedure avoids expensive, quadratic programming computations - its com-
plexity is dominated by the LARS step, which has the same cost as a least squares fit [4].
The proposed approach has been validated with experiments on synthetic and real datasets.
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