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Abstract

We determine the asymptotic limit of the function computed by support
vector machines (SVM) and related algorithms that minimize a regu-
larized empirical convex loss function in the reproducing kernel Hilbert
space of the Gaussian RBF kernel, in the situation where the number of
examples tends to infinity, the bandwidth of the Gaussian kernel tends
to 0, and the regularization parameter is held fixed. Non-asymptotic con-
vergence bounds to this limit in theL2 sense are provided, together with
upper bounds on the classification error that is shown to converge to the
Bayes risk, therefore proving the Bayes-consistency of a variety of meth-
ods although the regularization term does not vanish. These results are
particularly relevant to the one-class SVM, for which the regularization
can not vanish by construction, and which is shown for the first time to
be a consistent density level set estimator.

1 Introduction

Givenn i.i.d. copies(X1, Y1), . . . , (Xn, Yn) of a random variable(X,Y ) ∈ R
d×{−1, 1},

we study in this paper the limit and consistency of learning algorithms that solve the fol-
lowing problem:

arg min
f∈Hσ

{
1

n

n∑

i=1

φ (Yif(Xi)) + λ‖ f ‖2
Hσ

}
, (1)

whereφ : R → R is a convex loss function andHσ is the reproducing kernel Hilbert space
(RKHS) of the normalized Gaussian radial basis function kernel (denoted simply Gaussian
kernel below):

kσ(x, x′) =
1

(√
2πσ

)d exp

(−‖x − x′ ‖2

2σ2

)
, σ > 0 . (2)

This framework encompasses in particular the classical support vector machine (SVM) [1]
whenφ(u) = max(1 − u, 0). Recent years have witnessed important theoretical advances



aimed at understanding the behavior of such regularized algorithms whenn tends to infinity
andλ decreases to0. In particular the consistency and convergence rates of the two-class
SVM (see, e.g., [2, 3, 4] and references therein) have been studied in detail, as well as the
shape of the asymptotic decision function [5, 6]. All results published so far study the case
whereλ decreases as the number of points tends to infinity (or, equivalently, whereλσ−d

converges to0 if one uses the classical non-normalized version of the Gaussian kernel in-
stead of (2)). Although it seems natural to reduce regularization as more and more training
data are available –even more than natural, it is the spirit of regularization [7, 8]–, there
is at least one important situation whereλ is typically held fixed: the one-class SVM [9].
In that case, the goal is to estimate anα-quantile, that is, a subset of the input spaceX of
given probabilityα with minimum volume. The estimation is performed by thresholding
the function output by the one-class SVM, that is, the SVM (1) with only positive exam-
ples; in that caseλ is supposed to determine the quantile level1. Although it is known that
the fraction of examples in the selected region converges to the desired quantile levelα [9],
it is still an open question whether the region converges towards a quantile, that is, a region
of minimum volume. Besides, most theoretical results about the consistency and conver-
gence rates of two-class SVM with vanishing regularization constant do not translate to the
one-class case, as we are precisely in the seldom situation where the SVM is used with a
regularization term that does not vanish as the sample size increases.

The main contribution of this paper is to show that Bayes consistency can be obtained for
algorithms that solve (1) without decreasingλ, if instead the bandwidthσ of the Gaussian
kernel decreases at a suitable rate. We prove upper bounds on the convergence rate of the
classification error towards the Bayes risk for a variety of functionsφ and of distributionsP ,
in particular for SVM (Theorem 6). Moreover, we provide an explicit description of the
function asymptotically output by the algorithms, and establish converge rates towards this
limit for the L2 norm (Theorem 7). In particular, we show that the decision function out-
put by the one-class SVM converges towards the density to be estimated, truncated at the
level 2λ (Theorem 8); we finally show that this implies the consistency of one-class SVM
as a density level estimator for the excess-mass functional [10] (Theorem 9).

Due to lack of space we limit ourselves in this extended abstract to the statement of the main
results (Section 2) and sketch the proof of the main theorem (Theorem 3) that underlies all
other results in Section 3. All detailed proofs are available in the companion paper [11].

2 Notations and main results

Let (X,Y ) be a pair of random variables taking values inR
d × {−1, 1}, with distribu-

tion P . We assume throughout this paper that the marginal distribution ofX is absolutely
continuous with respect to Lebesgue measure with densityρ : R

d → R, and that is has
a support included in a compact setX ⊂ R

d. We denoteη : R
d → [0, 1] a measurable

version of the conditional distribution ofY = 1 givenX.

The normalized Gaussian radial basis function (RBF) kernelkσ with bandwidth parame-
terσ > 0 is defined for any(x, x′) ∈ R

d × R
d by:

kσ(x, x′) =
1

(√
2πσ

)d exp

(−‖x − x′ ‖2

2σ2

)
,

and the corresponding reproducing kernel Hilbert space (RKHS) is denoted byHσ. We

noteκσ =
(√

2πσ
)−d

the normalizing constant that ensures that the kernel integrates to1.

1While the original formulation of the one-class SVM involves a parameterν, there is asymptoti-
cally a one-to-one correspondance betweenλ andν



Denoting byM the set of measurable real-valued functions onR
d, we define several risks

for functionsf ∈ M:

• The classification error rate, usually refered to as(true) risk of f , whenY is
predicted by the sign off(X), is denoted by

R (f) = P (sign(f(X)) 6= Y ) .

• For a scalarλ > 0 fixed throughout this paper and a convex functionφ : R → R,
theφ-risk regularized by the RKHS norm is defined, for anyσ > 0 andf ∈ Hσ,
by

Rφ,σ (f) = EP [φ (Y f (X))] + λ‖ f ‖2
Hσ

Furthermore, for any realr ≥ 0, we denote byL (r) the Lipschitz constant of the
restriction ofφ to the interval[−r, r]. For example, for the hinge lossφ(u) =
max(0, 1 − u) one can takeL(r) = 1, and for the squared hinge lossφ(u) =
max(0, 1 − u)2 one can takeL(r) = 2(r + 1).

• Finally, theL2-norm regularizedφ-risk is, for anyf ∈ M:

Rφ,0 (f) = EP [φ (Y f (X))] + λ‖ f ‖2
L2

where,

‖ f ‖2
L2

=

∫

Rd

f(x)2dx ∈ [0,+∞].

The minima of the three risk functionals defined above over their respective domains are
denoted byR∗, R∗

φ,σ andR∗
φ,0 respectively. Each of these risks has an empirical counter-

part where the expectation with respect toP is replaced by an average over an i.i.d. sam-
pleT = {(X1, Y1) , . . . , (Xn, Yn)}. In particular, the following empirical version ofRφ,σ

will be used

∀σ > 0, f ∈ Hσ, R̂φ,σ (f) =
1

n

n∑

i=1

φ (Yif (Xi)) + λ‖ f ‖2
Hσ

.

The main focus of this paper is the analysis of learning algorithms that minimize the em-
pirical φ-risk regularized by the RKHS norm̂Rφ,σ, and their limit as the number of points
tends to infinity and the kernel widthσ decreases to0 at a suitable rate whenn tends
to ∞, λ being kept fixed. Roughly speaking, our main result shows that in this situation,
if φ is a convex loss function, the minimization ofR̂φ,σ asymptotically amounts to minimiz-
ing Rφ,0. This stems from the fact that the empirical average term in the definition ofR̂φ,σ

converges to its corresponding expectation, while the norm inHσ of a functionf decreases
to itsL2 norm whenσ decreases to zero. To turn this intuition into a rigorous statement, we
need a few more assumptions about the minimizer ofRφ,0 and aboutP . First, we observe
that the minimizer ofRφ,0 is indeed well-defined and can often be explicitly computed:

Lemma 1 For anyx ∈ R
d, let

fφ,0(x) = arg min
α∈R

{
ρ(x) [η(x)φ(α) + (1 − η)φ(−α)] + λα2

}
.

Thenfφ,0 is measurable and satisfies:

Rφ,0 (fφ,0) = inf
f∈M

Rφ,0 (f)

Second, we provide below a general result that shows how to control the excessRφ,0-risk of
the empirical minimizer of theRφ,σ-risk, for which we need to recall the notion of modulus
of continuity [12].



Definition 2 (Modulus of continuity) Let f be a Lebesgue measurable function fromR
d

to R. Then its modulus of continuity in theL1-norm is defined for anyδ ≥ 0 as follows

ω(f, δ) = sup
0≤‖ t ‖≤δ

‖ f(. + t) − f(.) ‖L1
, (3)

where‖ t ‖ is the Euclidian norm oft ∈ R
d.

Our main result can now be stated as follows:

Theorem 3 (Main Result) Let σ1 > σ > 0, 0 < p < 2, δ > 0, and let f̂φ,σ denote a
minimizer of theR̂φ,σ risk overHσ. Assume that the marginal densityρ is bounded, and
letM = supx∈Rd ρ(x). Then there exist constants(Ki)i=1...4 (depending only onp, δ, λ, d,
andM ) such that, for anyx > 0, the following holds with probability greater than1− e−x

over the draw of the training data:

Rφ,0(f̂φ,σ) − R∗
φ,0 ≤ K1L

(√
κσφ (0)

λ

) 4
2+p (

1

σ

) [2+(2−p)(1+δ)]d
2+p

(
1

n

) 2
2+p

+ K2L

(√
κσφ (0)

λ

)2(
1

σ

)d
x

n

+ K3
σ2

σ2
1

+ K4ω(fφ,0, σ1) .

(4)

The first two terms in the r.h.s. of (4) bound the estimation error associated with the
gaussian RKHS, which naturally tends to be small when the number of training data
increases and when the RKHS is ’small’, i.e., whenσ is large. As is usually the case in
such variance/bias splitings, the variance term here depends on the dimensiond of the
input space. Note that it is also parametrized by bothp andδ. The third term measures
the error due to penalizing theL2-norm of a fixed function inHσ1

by its ‖ . ‖Hσ
-norm,

with 0 < σ < σ1. This is a price to pay to get a small estimation error. As for the fourth
term, it is a bound on the approximation error of the Gaussian RKHS. Note that, onceλ
andσ have been fixed,σ1 remains a free variable parameterizing the bound itself.

In order to highlight the type of convergence rates one can obtain from Theorem 3, let us
assume that theφ loss function is Lipschitz onR (e.g., take the hinge loss), and suppose
that for some0 ≤ β ≤ 1, c1 > 0, and for anyh ≥ 0, the functionfφ,0 satisfies the
following inequality

ω(fφ,0, h) ≤ c1h
β . (5)

Then we can optimize the right hand side of (4) w.r.t.σ1, σ, p andδ by balancing the four
terms. This eventually leads to:

Rφ,0

(
f̂φ,σ

)
− R∗

φ,0 = OP

((
1

n

) 2β
4β+(2+β)d

−ǫ
)

, (6)

for anyǫ > 0. This rate is achieved by choosing

σ1 =

(
1

n

) 2
4β+(2+β)d

− ǫ
β

, (7)

σ = σ
2+β
2

1 =

(
1

n

) 2+β
4β+(2+β)d

− ǫ(2+β)
2β

, (8)



p = 2 andδ as small as possible (that is why an arbitray small quantityǫ appears in the
rate).

Theorem 3 shows that minimizing thêRφ,σ risk for well-chosen widthσ is a an algorithm
consistant for theRφ,0-risk. In order to relate this consistency with more traditional mea-
sures of performance of learning algorithms, the next theorem shows that under a simple
additionnal condition onφ, Rφ,0-risk-consistency implies Bayes consistency:

Theorem 4 If φ is convex, differentiable at0, with φ′(0) < 0, then for every sequence of
functions(fi)i≥1 ∈ M,

lim
i→+∞

Rφ,0 (fi) = R∗
φ,0 =⇒ lim

i→+∞
R (fi) = R∗

This theorem results from a more general quantitative analysis of the relationship between
the excessRφ,0-risk and the excessR-risk, in the spirit of [13]. In order to state a refined
version in the particular case of the support vector machine algorithm, we first need the
following definition:

Definition 5 We say that a distributionP with ρ as marginal density ofX w.r.t. Lebesgue
measure has a low density exponentγ ≥ 0 if there exists(c2, ǫ0) ∈ (0,+∞)

2 such that

∀ǫ ∈ [0, ǫ0], P
({

x ∈ R
d : ρ(x) ≤ ǫ

})
≤ c2ǫ

γ .

We are now in position to state a quantitative relationship between the excessRφ,0-risk and
the excessR-risk in the case of support vector machines:

Theorem 6 Let φ1(α) = max (1 − α, 0) be the hinge loss function, andφ2(α) =

max (1 − α, 0)
2, be the squared hinge loss function. Then for any distributionP with

low density exponentγ, there exist constant(K1,K2, r1, r2) ∈ (0,+∞)4 such that for
anyf ∈ M with an excessRφ1,0-risk upper bounded byr1 the following holds:

R(f) − R∗ ≤ K1

(
Rφ1,0(f) − R∗

φ1,0

) γ
2γ+1 ,

and if the excess regularizedRφ2,0-risk upper bounded byr2 the following holds:

R(f) − R∗ ≤ K2

(
Rφ2,0(f) − R∗

φ2,0

) γ
2γ+1 ,

This result can be extended to any loss function through the introduction of variational
arguments, in the spirit of [13]; we do not further explore this direction, but the reader is
invited to consult [11] for more details. Hence we have proved the consistency of SVM,
together with upper bounds on the convergence rates, in a situation where the effect of
regularization does not vanish asymptotically.

Another consequence of theRφ,0-consistency of an algorithm is theL2-convergence of the
function output by the algorithm to the minimizer of theRφ,0-risk:

Lemma 7 For anyf ∈ M, the following holds:

‖ f − fφ,0 ‖2
L2

≤ 1

λ

(
Rφ,0(f) − R∗

φ,0

)
.

This result is particularly relevant to study algorithms whose objective are not binary clas-
sification. Consider for example the one-class SVM algorithm, which served as the initial
motivation for this paper. Then we claim the following:



Theorem 8 Letρλ denote the density truncated as follows:

ρλ(x) =

{
ρ(x)
2λ

if ρ(x) ≤ 2λ,

1 otherwise.
(9)

Let f̂σ denote the function output by the one-class SVM, that is the function that solves (1)
in the caseφ is the hinge-loss function andYi = 1 for all i ∈ {1, . . . , n}. Then, under the
general conditions of Theorem 3, forσ choosen as in Equation (8),

lim
n→+∞

‖ f̂σ − ρλ ‖L2
= 0 .

An interesting by-product of this theorem is the consistency of the one-class SVM algo-
rithm for density level set estimation:

Theorem 9 Let 0 < µ < 2λ < M , let Cµ be the level set of the density functionρ at
levelµ, andĈµ be the level set of2λf̂σ at levelµ, wheref̂σ is still the function outptut by
the one-class SVM. For any distributionQ, for any subsetC of R

d, define the excess-mass
of C with respect toQ as follows:

HQ (C) = Q (C) − µLeb(C) , (10)

where Leb is the Lebesgue measure. Then, under the general assumptions of Theorem 3,
we have

lim
n→+∞

HP (Cµ) − HP

(
Ĉµ

)
= 0 , (11)

for σ choosen as in Equation (8).

The excess-mass functional was first introduced in [10] to assess the quality of density
level set estimators. It is maximized by the true density level setCµ and acts as a risk
functional in the one-class framework. The proof ef Theorem 9 is based on the following
result: if ρ̂ is a density estimator converging to the true densityρ in the L2 sense, then
for any fixed0 < µ < sup {ρ}, the excess mass of the level set ofρ̂ at levelµ converges
to the excess mass ofCµ. In other words, as is the case in the classification framework,
plug-in estimators built onL2-consistent density estimators are consistent with respect to
the excess mass.

3 Proof of Theorem 3 (sketch)

In this section we sketch the proof of the main learning theorem of this contribution, which
underlies most other results stated in Section 2 The proof of Theorem 3 is based on the
following decomposition of the excessRφ,0-risk for the minimizerf̂φ,σ of R̂φ,σ, valid for
any0 < σ <

√
2σ1 and any sample(xi, yi)i=1,...,n:

Rφ,0(f̂φ,σ) − R∗
φ,0 =

[
Rφ,0

(
f̂φ,σ

)
− Rφ,σ

(
f̂φ,σ

)]

+
[
Rφ,σ(f̂φ,σ) − R∗

φ,σ

]

+
[
R∗

φ,σ − Rφ,σ(kσ1
∗ fφ,0)

]
(12)

+ [Rφ,σ(kσ1
∗ fφ,0) − Rφ,0(kσ1

∗ fφ,0)]

+
[
Rφ,0(kσ1

∗ fφ,0) − R∗
φ,0

]
.

It can be shown thatkσ1
∗ fφ,0 ∈ H√

2σ1
⊂ Hσ ⊂ L2(Rd) which justifies the introduction

of Rφ,σ(kσ1
∗fφ,0) andRφ,0(kσ1

∗fφ,0). By studying the relationship between the Gaussian
RKHS norm and theL2 norm, it can be shown that

Rφ,0

(
f̂φ,σ

)
− Rφ,σ

(
f̂φ,σ

)
= λ

(
‖ f̂φ,σ ‖2

L2
− ‖ f̂φ,σ ‖2

Hσ

)
≤ 0,



while the following stems from the definition ofR∗
φ,σ:

R∗
φ,σ − Rφ,σ(kσ1

∗ fφ,0) ≤ 0.

Hence, controllingRφ,0(f̂φ,σ)−R∗
φ,0 boils down to controlling each of the remaining three

terms in (12).

• The second term in (12) is usually referred to as the sample error or estimation
error. The control of such quantities has been the topic of much research recently,
including for example [14, 15, 16, 17, 18, 4]. Using estimates of local Rademacher
complexities through covering numbers for the Gaussian RKHS due to [4], the
following result can be shown:

Lemma 10 For anyσ > 0 small enough, let̂fφ,σ be the minimizer of thêRφ,σ-
risk on a sample of sizen, whereφ is a convex loss function. For any0 < p <
2, δ > 0, andx ≥ 1, the following holds with probability at least1 − ex over the
draw of the sample:

Rφ,σ(f̂φ,σ) − Rφ,σ(fφ,σ) ≤ K1L

(√
κσφ (0)

λ

) 4
2+p (

1

σ

) [2+(2−p)(1+δ)]d
2+p

(
1

n

) 2
2+p

+ K2L

(√
κσφ (0)

λ

)2(
1

σ

)d
x

n
,

whereK1 andK2 are positive constants depending neither onσ, nor onn.

• In order to upper bound the fourth term in (12), the analysis of the convergence of
the Gaussian RKHS norm towards theL2 norm when the bandwidth of the kernel
tends to0 leads to:

Rφ,σ(kσ1
∗ fφ,0) − Rφ,0(kσ1

∗ fφ,0) = ‖ kσ1
∗ fφ,0 ‖2

Hσ
− ‖ kσ1

∗ fφ,0 ‖2
L2

≤ σ2

2σ2
1

‖ fφ,0 ‖2
L2

≤ φ (0)σ2

2λσ2
1

.

• The fifth term in (12) corresponds to the approximation error. It can be shown that
for any bounded function inL1(R

d) and allσ > 0, the following holds:

‖ kσ ∗ f − f ‖L1
≤ (1 +

√
d)ω(f, σ) , (13)

whereω(f, .) denotes the modulus of continuity off in theL1 norm. From this
the following inequality can be derived:

Rφ,0(kσ1
∗ fφ,0) − Rφ,0(fφ,0)

≤ (2λ‖ fφ,0 ‖L∞
+ L (‖ fφ,0 ‖L∞

) M)
(
1 +

√
d
)

ω (fφ,0, σ1) .

4 Conclusion

We have shown that consistency of learning algorithms that minimize a regularized empir-
ical risk can be obtained even when the so-called regularization term does not asymptoti-
cally vanish, and derived the consistency of one-class SVM as a density level set estimator.
Our method of proof is based on an unusual decomposition of the excess risk due to the
presence of the regularization term, which plays an important role in the determination of
the asymptotic limit of the function that minimizes the empirical risk. Although the upper
bounds on the convergence rates we obtain are not optimal, they provide a first step toward
the analysis of learning algorithms in this context.
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