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4, place Jussieu, 75252 Paris Cedex, France
vayatis@ccr.jussieu.fr

Abstract

We consider the problem of constructing an aggregated estimator from
a finite class of base functions which approximately minimizes a con-
vex risk functional under theℓ1 constraint. For this purpose, we propose
a stochastic procedure, the mirror descent, which performs gradient de-
scent in the dual space. The generated estimates are additionally aver-
aged in a recursive fashion with specific weights. Mirror descent algo-
rithms have been developed in different contexts and they are known to
be particularly efficient in high dimensional problems. Moreover their
implementation is adapted to the online setting. The main result of the
paper is the upper bound on the convergence rate for the generalization
error.

1 Introduction

We consider the aggregation problem (cf. [16]) where we have at hand afinite class ofM
predictors which are to be combined linearly under anℓ1 constraint‖θ‖1 = λ on the vec-
tor θ ∈ R

M that determines the coefficients of the linear combination. In order to exhibit
such a combination, we focus on the strategy of penalized convex risk minimization which



is motivated by recent statistical studies of boosting and SVM algorithms [11, 14, 18].
Moreover, we take a stochastic approximation approach which is particularly relevant in
the online setting since it leads to recursive algorithms where the update uses a single data
observation per iteration step. In this paper, we consider a general setting for which we
propose a novel stochastic gradient algorithm and show tight upper bounds on its expected
accuracy. Our algorithm builds on the ideas of mirror descent methods, first introduced by
Nemirovski and Yudin [12], which consider updates of the gradient in the dual space. The
mirror descent algorithm has been successfully applied in high dimensional problems both
in deterministic and stochastic settings [2, 7]. In the present work, we describe a partic-
ular instance of the algorithm with an entropy-like proxy function. This method presents
similarities with the exponentiated gradient descent algorithm which was derived under dif-
ferent motivations in [10]. A crucial distinction between the two is the additional averaging
step in our version which guarantees statistical performance. The idea of averaging recur-
sive procedures is well-known (see e.g. [13] and the references therein) and it has been
invoked recently by Zhang [19] for the standard stochastic gradient descent (taking place
in the initial parameter space). Also it is worth noticing that most of the existing online
methods are evaluated in terms of relative loss bounds which are related to the empirical
risk while we focus on generalization error bounds (see [4, 5, 10] for insights on connec-
tions between the two types of criteria). The rest of the paper is organized as follows.
We first introduce the setup (Section 2), then we describe the algorithm and state the main
convergence result (Section 3). Further we provide the intuition underlying the proposed
algorithm, and compare it to other methods (Section 4). We end up with a technical section
dedicated to the proof of our main result (Section 5).

2 Setup and notations

Let Z be a random variable with values in a measurable space(Z,A). We set a parameter
λ > 0, and an integerM ≥ 2. The unknown parameter is a vectorθ ∈ R

M which is
compelled to stay in the decision setΘ = ΘM,λ defined by:

ΘM,λ =

{
θ = (θ(1), . . . , θ(M))T ∈ R

M
+ :

∑M

i=1
θ(i) = λ

}
. (1)

Now we introduce the loss functionQ : Θ × Z → R+ such that the random function
Q(· , Z) : Θ → R+ is convex for almost allZ and define the convex risk functionA : Θ →
R+ to be minimized as follows:

A(θ) = E Q(θ, Z) . (2)

Assume a training sample is given in the form of a sequence(Z1, . . . , Zt−1), where each
Zi has the same distribution asZ. We assume for simplicity that the training sequence is
i.i.d. though this assumption can be weakened.

We propose to minimize the convex target functionA over the decision setΘ on the basis
of the stochastic sub-gradients ofQ:

ui(θ) = ∇θQ(θ, Zi) , i = 1, 2, . . . , (3)

Note that the expectationsE ui(·) belong to the sub-differential ofA(·).

In the sequel, we will characterize the accuracy of an estimateθ̂t = θ̂t(Z1, . . . , Zt−1) ∈ Θ
of the minimizer ofA by the excess risk:

E A(θ̂t) − min
θ∈Θ

A(θ) (4)

where the expectation is taken over the sample(Z1, . . . , Zt−1).



We now introduce the notation that is necessary to present thealgorithm in the next section.

For a vectorz =
(
z(1), . . . , z(M)

)T ∈ R
M , define the norms

‖z‖1
def
=
∑M

j=1
|z(j)| , ‖z‖∞ def

= max
‖θ‖1=1

zT θ = max
j=1,...,M

|z(j)| .

The spaceRM equipped with the norm‖ · ‖1 is called the primal spaceE and the same
space equipped with the dual norm‖ · ‖∞ is called the dual spaceE∗.

Introduce a so-called entropic proxy function:

∀ θ ∈ Θ, V (θ) = λ ln (M/λ) +
∑M

j=1
θ(j) ln θ(j) , (5)

which has its minimum atθ0 = (λ/M, . . . , λ/M)T . It is easy to check that this function is
α-strongly convex with respect to the norm‖ · ‖1 with parameterα = 1/λ , i.e.,

V (sx + (1 − s)y) ≤ sV (x) + (1 − s)V (y) − α

2
s(1 − s)‖x − y‖2

1 (6)

for all x, y ∈ Θ and anys ∈ [0, 1].

Let β > 0 be a parameter. We callβ-conjugateof V the following convex transform:

∀ z ∈ R
M , Wβ(z)

def
= sup

θ∈Θ

{
−zT θ − βV (θ)

}
.

As it straightforwardly follows from (5), theβ-conjugate is given here by:

Wβ(z) = λβ ln

(
1

M

∑M

k=1
e−z(k)/β

)
, ∀ z ∈ R

M , (7)

which has a Lipschitz-continuous gradient w.r.t.‖ · ‖1 , namely,

‖∇Wβ(z) −∇Wβ( z̃ )‖1 ≤ λ

β
‖z − z̃‖∞ , ∀ z, z̃ ∈ R

M . (8)

Though we will focus on a particular algorithm based on the entropic proxy function, our
results apply for a generic algorithmic scheme which takes advantage of the general proper-
ties of convex transforms (see [8] for details). The key property in the proof is the inequality
(8).

3 Algorithm and main result

The mirror descent algorithm is a stochastic gradient algorithm in the dual space. At each
iterationi, a new data point(Xi, Yi) is observed and there are two updates: one is the value
ζi as the result of the stochastic gradient descent in the dual space, the other is the update of
the parameterθi which is the ”mirror image” ofζi. In order to tune the algorithm properly,
we need two fixed positive sequences(γi)i≥1 (stepsize) and(βi)i≥1 (temperature) such
thatβi ≥ βi−1. Themirror descent algorithm with averagingis as follows:

Algorithm.

• Fix the initial valuesθ0 ∈ Θ andζ0 = 0 ∈ R
M .

• For i = 1, . . . , t − 1, do

ζi = ζi−1 + γiui(θi−1) ,

θi = −∇Wβi
(ζi) .

(9)



• Output at iterationt the following convex combination:

θ̂t =
∑t

i=1
γiθi−1

/∑t

j=1
γj . (10)

At this point, we actually have described a class of algorithms. Given the observations of
the stochastic sub-gradient (3), particular choices of the proxy functionV , of the stepsize
and temperature parameters, will determine the algorithm completely. We discuss these
choices with more details in [8]. In this paper, we focus on the entropic proxy function and
consider a nearly optimal choice for the stepsize and temperature parameters which is the
following:

γi ≡ 1 , βi = β0

√
i + 1 , i = 1, 2, . . . , β0 > 0 . (11)

We can now state our rate of convergence result.

Theorem. Assume that the loss functionQ satisfies the following boundedness condition:

sup
θ∈Θ

E ‖∇θQ(θ, Z)‖2
∞ ≤ L2 < ∞ . (12)

Fix alsoβ0 = L/
√

lnM .

Then, for any integert ≥ 1, the excess risk of the estimateθ̂t described above satisfies the
following bound:

E A(θ̂t) − min
θ∈Θ

A(θ) ≤ 2Lλ ( lnM)
1/2

√
t + 1

t
. (13)

Example. Consider the setting of supervised learning where the data are modelled by a
pair (X,Y ) with X ∈ X being an observation vector andY a label, either integer (clas-
sification) or real-valued (regression). Boosting and SVM algorithms are related to the
minimization of a functional

R(f) = Eϕ(Y f(X))

whereϕ is a convex non-negative cost function (typically exponential, logit or hinge loss)
andf belongs to a given class of combined predictors. The aggregation problem consists in
finding the best linear combination of elements from a finite set of predictors{h1, . . . , hM}
with hj : X → [−K,K]. Taking compact notations, it means that we search forf of the
form f = θT H with H denoting the vector-valued function whose components are these
base predictors:

H(x) = (h1(x), . . . , hM (x))
T

,

andθ belonging in a decision setΘ = ΘM,λ. Take for instanceϕ to be non-increasing.
It is easy to see that this problem can be interpreted in terms of our general setting with
Z = (X,Y ), Q(Z, θ) = ϕ(Y θT H(X)) andL = Kϕ′(Kλ).

4 Discussion

In this section, we provide some insights on the method and the result of the previous
section.

4.1 Heuristics

Suppose that we want to minimize a convex functionθ 7→ A(θ) over a convex setΘ. If
θ0, . . . , θt−1 are the available search points at iterationt, we can provide the affine approx-
imationsφi of the functionA defined, forθ ∈ Θ, by

φi(θ) = A(θi−1) + (θ − θi−1)
T∇A(θi−1), i = 1, . . . , t .



Hereθ 7→ ∇A(θ) is a vector function belonging to the sub-gradient ofA(·). Taking a
convex combination of theφi’s, we obtain an averaged approximation ofA(θ):

φ̄t(θ) =

∑t
i=1 γi

(
A(θi−1) + (θ − θi−1)

T∇A(θi−1)
)

∑t
i=1 γi

.

At first glance, it would seem reasonable to choose as the next search point a vectorθ ∈ Θ
minimizing the approximation̄φt, i.e.,

θt = arg min
θ∈Θ

φ̄t(θ) = arg min
θ∈Θ

θT

(
t∑

i=1

γi∇A(θi−1)

)
. (14)

However, this does not make any progress, because our approximation is “good” only in
the vicinity of search pointsθ0, . . . , θt−1. Therefore, it is necessary to modify the criterion,
for instance, by adding a special penaltyBt(θ, θt−1) to the target function in order to keep
the next search pointθt in the desired region. Thus, one chooses the point:

θt = arg min
θ∈Θ

[
θT

(
t∑

i=1

γi∇A(θi−1)

)
+ Bt(θ, θt−1)

]
. (15)

Our algorithm corresponds to a specific type of penaltyBt(θ, θt−1) = βtV (θ), where
V is the proxy function. Also note that in our problem the vector-function∇A(·) is not
available. Therefore, we replace in (15) the unknown gradients∇A(θi−1) by the observed
stochastic sub-gradientsui(θi−1). This yields a new definition of thet-th search point:

θt = arg min
θ∈Θ

[
θT

(
t∑

i=1

γiui(θi−1)

)
+ βtV (θ)

]
= arg max

θ∈Θ

[
−ζT

t θ − βtV (θ)
]
, (16)

whereζt =
∑t

i=1 γiui(θi−1). By a standard result of convex analysis (see e.g. [3]), the
solution to this problem reads as−∇Wβt

(ζt) and it is now easy to deduce the iterative
scheme (9) of the mirror descent algorithm.

4.2 Comparison with previous work

The versions of mirror descent method proposed in [12] are somewhat different from our
iterative scheme (9). One of them, closest to ours, is studied in detail in [3]. It is based on
the recursive relation

θi = −∇W1

(
−∇V (θi−1) + γiui(θi−1)

)
, i = 1, 2, . . . , (17)

where the functionV is strongly convex with respect to the norm of initial spaceE (which
is not necessarily the spaceℓM

1 ) andW1 is the 1-conjugate function toV .

If Θ = R
M andV (θ) = 1

2‖θ‖2
2, the scheme of (17) coincides with the ordinary gradient

method.

For the unit simplexΘ = ΘM,1 and the entropy type proxy functionV from (5) with

λ = 1, the coordinatesθ(j)
i of vectorθi from (17) are:

∀j = 1, . . . ,M, θ
(j)
i =

θ
(j)
0 exp

(
−

i∑

m=1

γmum, j(θm−1)

)

M∑

k=1

θ
(k)
0 exp

(
−

i∑

m=1

γmum, k(θm−1)

) . (18)

The algorithm is also known as the exponentiated gradient (EG) method [10]. The differ-
ences between the algorithm (17) and ours are the following:



• the initial iterative scheme of the Algorithm is different than that of (17), partic-
ularly, it includes the second tuning parameterβi ; moreover, the algorithm (18)
uses initial valueθ0 in a different manner;

• our algorithm contains the additional averaging step of the updates (10).

The convergence properties of the EG method (18) have been studied in a determinis-
tic setting [6]. Namely, it has been shown that, under some assumptions, the difference
At(θt) − minθ∈ΘM,1

At(θ), whereAt is the empirical risk, is bounded by a constant de-
pending onM andt. If this constant is small enough, these results show that the EG method
provides good numerical minimizers of the empirical riskAt. The averaging step allows
the use of the results provided in [5] to derive generalization error bounds from relative loss
bounds. This technique leads to rates of convergence of the order

√
(lnM)/t as well but

with suboptimal multiplicative factor inλ.

Finally, we point out that the algorithm (17) may be deduced from the ideas mentioned in
Subsection 4.1 and which are studied in the literature on proximal methods within the field
of convex optimization (see, e.g., [9, 1] and the references therein). Namely, under rather
general conditions, the variableθi from (17) solves the the minimization problem

θi = arg min
θ∈Θ

(
θT γiui(θi−1) + B(θ, θi−1)

)
, (19)

where the penaltyB(θ, θi−1) = V (θ) − V (θi−1) − (θ − θi−1)
T∇V (θi−1) represents the

Bregman divergence betweenθ andθi−1 related to the functionV .

4.3 General comments

Performance and efficiency.The rate of convergence of order
√

lnM/
√

t is typical with-
out low noise assumptions (as they are introduced in [17]). Batch procedures based on
minimization of the empirical convex risk functional present a similar rate. From the statis-
tical point of view, there is no remarkable difference between batch and our mirror-descent
procedure. On the other hand, from the computational point of view, our procedure is quite
comparable with the direct stochastic gradient descent. However, the mirror-descent algo-
rithm presents two major advantages as compared both to batch and to direct stochastic gra-
dient: (i) its behavior with respect to the cardinality of the base class is better than for direct
stochastic gradient descent (of the order of

√
lnM in the Theorem, instead ofM or

√
M

for direct stochastic gradient); (ii) mirror-descent presents a higher efficiency especially in
high-dimensional problems as its algorithmic complexity and memory requirements are of
strictly smaller order than for corresponding batch procedures (see [7] for a comparison).

Optimality of the rate of convergence.Using the techniques of [7] and [16] it is not hard
to prove minimax lower bound on the excess riskE A(θ̂t) − minθ∈ΘM,λ

A(θ) having the
order(lnM)1/2/

√
t for M ≥ t1/2+δ with someδ > 0. This indicates that the upper bound

of the Theorem is rate optimal for such values ofM .

Choice of the base class.We point out that the good behaviour of this method crucially re-
lies on the choice of the base class of functions{hj}1≤j≤M . As far as theory is concerned,
in order to provide a complete statistical analysis, one should establish approximation error
bounds on the quantityinff∈FM,λ

A(f) − inff A(f) showing that the richness of the base
class is reflected both by diversity (orthogonality or independence) of thehj ’s and by its
cardinalityM . For example, one can takehj ’s as the eigenfunctions associated to some
positive definite kernel. We refer to [14], [15], for related results. The choice ofλ can be
motivated by similar considerations. In fact, to minimize the approximation error it might
be useful to takeλ depending on the sample sizet and tending to infinity with some slow
rate as in [11]. A balance between the stochastic error as given in the Theorem and the
approximation error would then determine the optimal choice ofλ.



5 Proof of the Theorem

Introduce the notation∇A(θ) = Eui(θ) andξi(θ) = ui(θ) − ∇A(θ). Putvi = ui(θi−1)
which givesζi−ζi−1 = γivi. By continuous differentiability ofWβt−1

and by (8) we have:

Wβi−1
(ζi) = Wβi−1

(ζi−1) + γiv
T
i ∇Wβi−1

(ζi−1)

+γi

∫ 1

0

vT
i

[
∇Wβi−1

(τζi + (1 − τ)ζi−1) −∇Wβi−1
(ζi−1)

]
dτ

≤ Wβi−1
(ζi−1) + γiv

T
i ∇Wβi−1

(ζi−1) +
λγ2

i ‖vi‖2
∞

2βi−1
.

Then, using the fact that(βi)i≥1 is a non-decreasing sequence and that, forz fixed, β 7→
Wβ(z) is a non-increasing function, we get

Wβi
(ζi) ≤ Wβi−1

(ζi) ≤ Wβi−1
(ζi−1) − γiθ

T
i−1vi +

λγ2
i ‖vi‖2

∞

2βi−1
.

Summing up over thei’s and using the representationζt =
∑t

i=1 γivi, we get:

∀θ ∈ Θ,
∑t

i=1
γi(θi−1 − θ)T vi ≤ −Wβt

(ζt) − ζT
t θ +

∑t

i=1

λγ2
i ‖vi‖2

∞

2βi−1

sinceWβ0
(ζ0) = 0. From definition ofWβ , we have,∀ ζ ∈ R

M and∀ θ ∈ Θ, −Wβt
(ζ) −

ζT θ ≤ βtV (θ). Finally, sincevi = ∇A(θi−1) + ξi(θi−1), we get

t∑

i=1

γi(θi−1 − θ)T∇A(θi−1) ≤ βtV (θ) −
t∑

i=1

γi(θi−1 − θ)T ξi(θi−1) +

t∑

i=1

λγ2
i ‖vi‖2

∞

2βi−1
.

As we are to take expectations, we note that, conditioning onθi−1 and using the indepen-
dence betweenθi−1 and(Xi, Yi), we have:E

(
(θi−1 − θ)T ξi(θi−1)

)
= 0. Now, convexity

of A and the previous display lead to:

∀ θ ∈ Θ , E A(θ̂t) − A(θ) ≤
∑t

i=1 γiE [(θi−1 − θ)T∇A(θi−1)]∑t
i=1 γi

=
1

t

t∑

i=1

E [(θi−1 − θ)T∇A(θi−1)]

≤
√

t + 1

t

(
β0V

∗ +
λL2

β0

)
,

where we have setV ∗ = maxθ∈Θ V (θ) and made use of the boundedness assumption
E ‖ui(θ)‖2

∞ ≤ L2 and of the particular choice for the stepsize and temperature parameters.
Noticing thatV ∗ = λ lnM and optimizing this bound inβ0 > 0, we obtain the result.
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