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Abstract

We consider regularized least-squares (RLS) with a Gaussian kernel. We
prove that if we let the Gaussian bandwidih— oo while letting the
regularization parameter — 0, the RLS solution tends to a polynomial
whose order is controlled by the rielative rates of decagl—zofand A if

A\ = o~ (k1) then, asr — oo, the RLS solution tends to tHeh order
polynomial with minimal empirical error. We illustrate the result with an
example.

1 Introduction

Given a data setz1,v1), (22, y2), - - -, (Zn, yn), the inductive learning task is to build a
function f(x) that, given a new: point, can predict the associatgd/alue. We study the

Regularized Least-Squares (RLS) algorithm for findjfyjga common and popular algo-
rithm [2, 5] that can be used for either regression or classification:
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Here,H is a Reproducing Kernel Hilbert Space (RKHS) [1] with associated kernel function
K, ||fl|% is the squared norm in the RKHS, aids a regularization constant controlling

the tradeoff between fitting the training set accurately and forcing smoothngss of

The Representer Theorem [7] proves that the RLS solution will have the fown =
Soi ¢ K(z;,x), and it is easy to show [5] that we can find the coefficientty solving
the linear system

(K4 Mnl)c=y, 1)

wherekK is then by n matrix satisfying;; = K (x;, z;). We focus on the Gaussian kernel
K (wi,2;5) = exp(—||l2; — 2] [*/20?).

Our work was originally motivated by the empirical observation that on a range of bench-
mark classification tasks, we achieved surprisingly accurate classification using a Gaussian
kernel with a very larger and a very smalk (Figure 1; additional examples in [6]). This
prompted us to study the largeasymptotics of RLS. A% — oo, K (z;,z;) — 1 for
arbitraryz; andx;. Consider a single test poim. RLS will first find c using Equation 1,



RLSC Results for GALAXY Dataset
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Fig. 1. RLS classification accuracy results for the UCI Galaxy dataset over a rangéatdng the
z-axis) and\ (different lines) values. The vertical labelled lines shawthe smallest entry in the
kernel matrix for a giverr. We see that wheih = le — 11, we can classify quite accurately when
the smallest entry of the kernel matrix is .99999.

then computef (z) = 'k wherek is the kernel vectork; = K (z;, (). Combining the
training and testing steps, we see tiiat,) = y* (K + Anl) k.

Both K andk are close td for largeo, i.e. K;; = 1 + ¢;; andk; = 1 + ¢;. If we directly
computec = (K + AnI)~'y, we will tend to wash out the effects of the term aso
becomes large. If, instead, we compufte:,) by associating to the right, first computing
point affinities(K + AnI) 'k, then thee;; ande; interact meaningfully; this interaction is
crucial to our analysis.

Our approach is to Taylor expand the kernel elements (andAhaesdk) in 1/0, noting

that ass — oo, consecutive terms in the expansion differ enormously. In compfing
Anl)~tk, these scalings cancel each other out, and result in finite point affinities even as
o — oo. The asymptotic affinity formula can then be “transposed” to create an alternate
expression forf (). Our main result is that if we set? = s and\ = s~ (%1 then, as

s — 00, the RLS solution tends to thigh order polynomial with minimal empirical error.

The main theorem is proved in full. Due to space restrictions, the proofs of supporting
lemmas and corollaries are omitted; an expanded version containing all proofs is available

[4].

2 Notation and definitions

Definition 1. Letx; be a set ofv + 1 points (0< i < n) in a d dimensional space. The
scalarz;, denotes the value of thé" vector component of th&" point.



Then x d matrix, X is given byX;, = z;,.

We think of X as the matrix of training datay, . . . , x,, andz as anl x d matrix consisting
of the test point.

Let 1,,, 1;,, denote then dimensional vector andl x m matrix with components all,
similarly for 0,,, 0;,,,. We will dispense with such subscripts when the dimensions are clear
from context.

Definition 2 (Hadamard products and powers).For twol x m matrices,N, M, N ® M
denotes thé x m matrix given by N © M),; = N;;M,;. Analogously, we SQW@C) L=
N¢..

ij

Definition 3 (polynomials in the data).Let I € Z< <o (non-negative multi- |nd|ces) and
Y be ak x d matrix. Y'' is the k dimensional vector given by /), = [[_, Y,
h: RY — R thenh(Y) is thek dimensional vector given by (Y)), = h(Yi1, .. ., Yid).

Thed canonical vectorsg, € Z>0, are given by(e,)p = dap.
Any scalar function,f : R — R, applied to any matrix or vector, will be assumed to

denote the elementwise application fifWe will treaty — ¥ as a scalar function (we
have no need of matrix exponentials in this work, so the notation is unambiguous).

We can re-express the kernel matrix and kernel vector in this notation:

K — e307 Za—y 2X 0 (X ) =X a1 — (Xzea)t 2)
k= e7er il 2Xteage X7l ~1,a50 4)
= diag (6_ﬁ||X||2> ea%XTte 252 H%Hz (5)

3 Orthogonal polynomial bases

LetV, = span{X : |I| = ¢} andV<. = |J;_, V. Which can be thought of as the set of all
d variable polynomials of degree evaluated on the training data. Since the data are finite,
there exist$ such thati’<,. = V<, for all ¢ > b. Generically is the smallest such that

c+d
ghe

Let @ be an orthonormal matrix ifR"*"™ whose columns progressively span the,

spaces, i.eQ = (By B; --- By)whereQ'Q = I andcolspan{B, --- B.)} =
V<.. We might imagine building such@ via the Gramm-Schmidt process on the vectors
X0 xer ... Xed . XTI ... taken in order of non-decreasing.
Letting C; = (I ] Id> be multinomial coefficients, the following relations between
1

@, X, andx, are easily proved.

(Xzf)®e =" CrX'(xf)" hence (Xzf)*° eV,

|[Il=c
(XxHoe =" CrX'(X')" hence colspan{(X§®} =V,

[I]=c



and thus,B!(Xz§)®¢ = 0if i > ¢, B(XX")9“B; = 0if i > corj > ¢, and
BL(X X")®¢B, is non-singular.

Finally, we note that argminy__{[|ly — v[|} = >-, <. Ba(Bgy).

4 Taking the o0 — oo limit

We will begin with a few simple lemmas about the limiting solutions of linear systems.
At the end of this section we will arrive at the limiting form of suitably modified RLSC
equations.

Lemma 1. Leti; < --- < i, be positive integers. Led(s), y(s) be a block matrix and
block vector given by

Aoo(s) s Aoi(s) -+ s'1Agg(s) bo(s)
Ay = | #ol) ARG st )y - | )
s Ag(s) s'Agi(s) oo sTAg(s) 51D (s)

whereA;;(s) andb;(s) are continuous matrix-valued and vector-valued functionswith
A;;(0) non-singular for alli.

A 0 -0\ ' /bo(0)
tim A7 y(s) = | A0l A0 0 el
AqO(O) Aql(O) T Aqq(o) bq(o)

We are now ready to state and prove the main result of this section, characterizing the
limiting large-o solution of Gaussian RLS.

Theorem 1. Letq be an integer satisfying < b, and letp = 2¢ + 1. Let\ = Co~? for
some constant'. DefineAgj) = LBI(XX")®°B;, andp\” = LB (Xaxh)®”.

lim (K —|—nCo*7pI)_1 k=v

where
v=(By -+ Bg)w (6)
b\ A 0 0
oV | = | Al AR 0 |y, @
o) Af;o) Af;i) e Al

We first manipulate the equatidi&’ + nAI)y = k according to the factorizations in (3)
and (5).

K = diag (e~ =7 1X11") 32 XX diag (=== 1X17) = NPN

. R 2 1 t 1 2
k= dlag<e sz |1X1] )eazmoe ool _ N



Noting thatlim, _, eiﬁHIOHQdiag (eﬁl\XIIQ) =limy oo aN 1 =1,
we have
lim (K 4+ nCo~PI)" 'k

o—00

= lim (NPN + g8I) ' Nwa

v

= lim aN"Y (P +pBN?)"tw

o—00

-1
= lim (eo]*?XXt—l—nCU_pdiag(ec%?HXHQ)) e77 X0,

g—00

Changing bases witf,
1 t 1 2 -1 1 .
Qv = lim (QteﬁXX Q +nC’0_thdiag<eT2HX” ) Q) Qe Xwh,

g—00

Expanding via Taylor series and writing in block form (in the b block structure of)),

Qteg%XX"Q:Qt(XXt)QOQ_FleQt(XXt)@lQ_F2'174Qt(XXt)®2Q+...
e Hea

AR o0 0\ (A Ay 0
1 1
LN Ap AL 0 |4
0 0 - 0 0 0 - 0

ot 1 1
Qe = QX+ Q! (X + Q! (Xah)
by ) bﬁ;
_ 0 14 = by
o
0 0
nCo PQ'diag (ea%”XHz) Q=nCo ™ PI+---.

Since thed'd) are non-singular, Lemma 3 applies, giving our result. O

5 The classification function

When performing RLS, the actual prediction of the limiting classifier is given via
foolmo) = lim y'(K +nCo PI)" k.

Theorem 1 determines= lim,_, . (K +nCo~PI)~1k,showing thatf.. (o) is a polyno-
mial in the training dataX. In this section, we show thdt, (z¢) is, in fact, a polynomial
in the test pointzy. We continue to work with the orthonormal vectaBs as well as the

auxilliary quantitiesAZ(.Jc.) andbl(.‘:) from Theorem 1.

Theorem 1 shows that € V<,: the point affinity function is a polynomial of degreen
the training data, determined by (7).

S dBAY Bl = (XX hence Y clB.AYB! = B.BL(XX")®*
i,j<c j<c

3Bl = (Xa§)®¢  hence clBb{ = B.BL(Xxh)®

i<c



we can restate Equation 7 in an equivalent form:

B\ 01b” 04 0o .. 0 Bt
D | Aty Al oo elz0 @
K q!.b-éé) q!;‘ig%) q!.f.lg‘i) . q!.f.lr(.{é) K
ST adBbO -3 N eBAYBlw =0 (9)
c<q c<q j<c
> B.BL((Xaf)® — (XX')®v) =0. (10)
c<q

Up to this point, our results hold for arbitrary training data To proceed, we require a
mild condition on our training set.

Definition 4. X is calledgeneridf X1, ..., X' are linearly independent for any distinct
multi-indices{; }.

Lemma 2. For generic X, the solution to Equation 7 (or equivalently, Equation 10) is
determined by the conditiond : |I| < ¢, (X!)*v = z{, wherev € V,.

Theorem 2. For generic data, letv be the solution to Equation 10. For any € R,
f(zo) = y*v = h(xg), whereh(z) = Z\Iléq ayz’ is a multivariate polynomial of degree
g minimizing||ly — h(X)]||.

We see that as — oo, the RLS solution tends to the minimum empirical erktin order
polynomial.

6 Experimental Verification

In this section, we present a simple experiment that illustrates our results. We consider
a fith-degree polynomial function. Figure 2 plgtsalong with a 150 point dataset drawn

by choosingz; uniformly in [0, 1], and choosing; = f(z) + €;, wheree; is a Gaussian
random variable with mean 0 and standard deviation .05. Figure 2 also shows (in red) the
best polynomial approximations to the data (not to the ig@alf various orders. (We omit

third order because it is nearly indistinguishable from second order.)

According to Theorem 1, if we parametrize our system by a variglaad solve a Gaussian
regularized least-squares problem with = s> and A = Cs— (%1 for some integer
k, then, ass — oo, we expect the solution to the system to tend to Atteorder data-
based polynomial approximation & Asymptotically, the value of the consta6t does
not matter, so we (arbitrarily) set it to be 1. Figure 3 demonstrates this result.

We note that these experiments frequently require seftinguch smaller than machine-

e. As a consequence, we need more precision than IEEE double-precision floating-point,
and our results cannot be obtained via many standard tools (e.g., MATLAB(TM)) We per-

formed our experiments using CLISP, an implementation of Common Lisp that includes

arithmetic operations on arbitrary-precision floating point numbers.

7 Discussion

Our result provides insight into the asymptotic behavior of RLS, and (partially) explains
Figure 1: in conjunction with additional experiments not reported here, we believe that



f(x), Random Sample of f(x), and Polynomial Approximations
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Fig.2. f(z) = .5(1 — z) + 150z (z — .25)(z — .3) (z — .75)(xz — .95), a random dataset drawn from
f(x) with added Gaussian noise, and data-based polynomial approximatins to

we are recovering second-order polynomial behavior, with the drop-off in performance at
various\’s occurring at the transition to third-order behavior, which cannot be accurately
recovered in IEEE double-precision floating-point. Although we used the specific details
of RLS in deriving our solution, we expect that in practice, a similar result would hold for
Support Vector Machines, and perhaps for Tikhonov regularization with convex loss more
generally.

An interesting implication of our theorem is that for very lakgewe can obtain various
order polynomial classifications by sweepihgn [6], we present an algorithm for solving
for a wide range oA for essentially the same cost as using a singl€his algorithm is not
currently practical for large, due to the need for extended-precision floating point.

Our work also has implications for approximations to the Gaussian kernel. Yang et al. use
the Fast Gauss Transform (FGT) to speed up matrix-vector multiplications when perform-
ing RLS [8]. In [6], we studied this work; we found that while Yang et al. used moderate-to-
small values ot (and did not tune\), the FGT sacrificed substantial accuracy compared

to the best achievable results on their datasets. We showed empirically that the FGT be-
comes much more accurate at larger values;diowever, at large-git seems likely we

are merely recovering low-order polynomial behavior. We suggest that approximations to
the Gaussian kernel must be checked carefully, to show that they produce sufficiently good
results are moderate valuesagfthis is a topic for future work.
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