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Abstract

Experimental data indicate that norepinephrine is critically involved in
aspects of vigilance and attention. Previously, we considered the func-
tion of this neuromodulatory system on a time scale of minutes and
longer, and suggested that it signals global uncertainty arising from
gross changes in environmental contingencies. However, norepinephrine
is also known to be activated phasically by familiar stimuli in well-
learned tasks. Here, we extend our uncertainty-based treatment of nore-
pinephrine to this phasic mode, proposing that it is involved in the de-
tection and reaction to state uncertaintywithin a task. This role of nore-
pinephrine can be understood through the metaphor of neural interrupts.

1 Introduction

Theoretical approaches to understanding neuromodulatory systems are plagued by the lat-
ter’s neural ubiquity, evolutionary longevity, and temporal promiscuity. Neuromodulators
act in potentially different ways over many different time-scales [14]. There are various
general notions about their roles, such as regulating sleeping and waking [13] and chang-
ing the signal to noise ratios of cortical neurons [11]. However, these are slowly giving
way to more specific computational ideas [20, 7, 10, 24, 25, 5], based on such notions as
optimal gain scheduling, prediction error and uncertainty.

In this paper, we focus on the short term activity of norepinephrine (NE) neurons in the
locus coeruleus [18, 1, 2, 3, 16, 4]. These neurons project NE to subcortical structures and
throughout the entire cortex, with individual neurons having massive axonal arborizations
[12]. Over medium and short time-scales, norepinephrine is implicated in various ways in
attention, vigilance, and learning. Given the widespread distribution and effects of NE in
key cognitive tasks, it is very important to understand what it is in a task that drives the
activity of NE neurons, and thus what computational effects it may be exerting.

Figure 1 illustrates some of the key data that has motivated theoretical treatments of NE.
Figure 1A;B;C show more tonic responses operating around a time-scale of minutes. Fig-
ures 1D;E;F show the short-term effects that are our main focus here.

Briefly, Figures 1A;B show that when the rules of a task are reversed, NE influences the
speed of adaptation to the changed contingency (Figure 1A) and the activity of noradrener-
gic cells is tonically elevated (Figure 1B). Based on these data, we suggested [24, 25] that
medium-term NE reportsunexpected uncertainty arising from unpredicted changes in an
environment or task. This signal is a key part of a strategy for inference in potentially labile
contexts. It operates in collaboration with a putatively cholinergic signal which reports on
expected uncertainty that arises, for instance, from known variability or noise.
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Figure 1: NE activity and effects. (A) Rats solve a sequential decision problem in a linear
maze. When the relevant cues are switched after a few days of learning (from spatial to
visual), rats with pharmacologically boosted NE (“idazoxan”) learn to use the new set of
cuesfaster than the controls. Adapted from [9]. (B) In a vigilance task, monkeys respond
to rare targets and ignore common distractor stimuli. The trace shows the activity of a
single NE neuron in the locus coeruleus (LC) around the time of a target-distractor rever-
sal (vertical line). Tonic activity is elevated for a considerable period. Adapted from [2].
(C) Correlation between the gross fluctuations in the tonic activity of a single NE neuron
(upper) and performance in the task (lower, measured by false alarm rate). Adapted from
[20]. (D) Single NE cells are activated on a phasic time-scale stimulus locked (vertical line)
to the target (upper plot) and not the distractor (lower plot). Adapted from [16]. (E) The
average responses of a large number of norepinephrine cells (over a total of 41,454 trials)
stimulus locked (vertical line) to targets or distractors, sorted by the nature and rectitude
of the response. The asterisk marks (similar) early activation of the neurons by the stimu-
lus. Adapted from [16]. (F) In a GO/NO-GO olfactory discrimination task for rats, single
units are activated by the target odor (and not by the distractor odor), but are temporally
much more tightly locked to the response (right) than the stimulus (left). Trials are ordered
according to the time between stimulus (blue) and response (red). Adapted from [4].

However, Figures 1D;E;F, along with other substantial neurophysiological data on the ac-
tivity of NE neurons [18, 4], show NE neurons have phasic response properties that lie
outside this model. The data in Figure 1D;E come from a vigilance task [1], in which
subjects can gain reward by reacting to a rare target (a rectangle oriented one way), while
ignoring distractors (a rectangle oriented in the orthogonal direction). Under these circum-
stances, NE is consistently activated by the target andnot the distractor (Figure 1D). There
are also clear correlations in the magnitude of the NE activity and the nature of a trial: hit,
miss, false alarm, correct reject (Figure 1E). It is known that the activity is weaker if the tar-
gets are more common [17] (though the lack of response to rare distractors shows that NE
is not driven by mere rarity), and disappears if no action need be taken in response to the
target [18]. In fact, the signal is more tightly related in time to the subsequent action than
the preceding stimulus (Figure 1F). The signal has been qualitatively described in terms of
influencing or controlling the allocation of behavioral or cognitive resources [20, 4].

Since it arises on every trial in an extremely well-learned task with stable stimulus contin-
gencies, this NE signal clearly cannot be indicating unpredicted task changes. Brownet



al [5] have recently made the seminal suggestion that it reports changes in the statistical
structure of the input (stimulus-present versus stimulus-absent) to decision-making circuits
that are involved in initiating differential responding to distinct target stimuli. A statisti-
cally necessary consequence of the change in the input structure is that afferent information
should be integrated differently: sensory responses should be ignored if no target is present,
but taken seriously otherwise. Their suggestion is that NE, by changing the gain of neurons
in the decision-making circuit, has exactly this optimizing effect.

In this paper, we argue for a related, but distinct, notion of phasic NE, suggesting that it
reports on unexpectedstate changes within a task. This is a significant, though natural,
extension of its role in reporting unexpectedtask changes [25]. We demonstrate that it ac-
counts well for the neurophysiological data. In agreement with the various accounts of the
effects of phasic NE, we consider its role as a form of internalinterrupt signal [6]. Com-
puters use interrupts to organize the correct handling of internal and external events such
as timers or peripheral input. Higher-level programs specify what interrupts are allowed
to gain control, and the consequences thereof. We argue that phasic NE is the medium for
a somewhat similar neural interrupt, allowing the correct handling of statisticallyatypical
events. This notion relates comfortably to many existing views of phasic NE, and provides
a computational correlate for quantitative models.

2 The Model

Figure 2A illustrates a simple hidden Markov generative model (HMM) of the vigilance
task in Figure 1B-E. The (start) state models the condition established when the mon-
key fixates the light and initiates a trial. Following a somewhat variable delay, either the
target (target) or the distractor (distractor) is presented, and the monkey must respond
appropriately (release a continuously depressed bar fortarget and continue pressing for
distractor) The transition out ofstart is uniformly distributed between timesteps6 and10,
implemented by a time-varying transition function for this node:

P (st|st−1 = start) =







1 − qt st = start
0.8qt st = distractor
0.2qt st = target

(1)

whereqt =1/(11−t) for (6 ≤ t ≤ 10) andqt =0 otherwise. Thestart andtarget states are
assumed to be absorbing states (self-transition probability= 1). This transition function
ensures that the stimulus onset has a uniform distribution between 6 and 10 timesteps (and
0 otherwise). Given that a transition out ofstart (into eithertarget or distractor) takes
place, the probability is.2 for enteringtarget and.8 for start, as in the actual task.

In addition, it is assumed that the nodestart does not emit observations, whiletarget emits
xt = t with probabilityη > 0.5 andd with probability1 − η, anddistractor emitsxt =
d with probabilityη andt with probability1 − η. The transition out ofstart is evident as
soon as the firstd or t is observed, while the magnitude ofη controls the “confusability” of
thetarget anddistractor states. Figure 2B shows a typical run from this generative model.
The transition intotarget happens on step 10 (top), and the outputs generated are a mixture
of t andd(middle), with an overall prevalence oft (bottom).

Exact inference on this model can be performed in a manner similar to the forward pass in
a standard HMM:

P (st|x1, . . . , xt) ∝ p(xt|st)
∑

st−1

P (st|st−1)P (st−1|x1, . . . , xt−1) . (2)

Becausestart does not produce outputs, as soon as the firstt is observed, the probability of
start plummets to0. There then ensues an inferential battle betweentarget anddistractor,
with the latter having the initial advantage, since its prior probability is 80%.
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Figure 2: The model. (A) Task is modeled as a hidden Markov model (HMM), with transi-
tions fromstart to eitherdistractor (probability .8) or target (probability .2). The transi-
tions happen between timesteps6 and10 with uniform probability;distractor andtarget
are absorbing states. The only outputs are from the absorbing states, and the two have over-
lapping output distributions overt andd with probabilitiesη > .5 for their “own” output (t
for target, andd for distractor), and1−η for the other output. (B) Sample run with a transi-
tion fromstart to target at timestep10 (upper). The outputs favortarget once the state has
changed (middle), more clearly shown in the cumulative plot (bottom). (C) Correct prob-
abilistic inference in the task leads to the probabilities for the three states as shown. The
distractor’s initial advantage arises from a base rate effect, as it is the more likely default
transition. (D) Model NE signal for four trials including one for hit (top; same trials as in
B;C), a false alarm (fa), a miss (miss) and a correct rejection (cr). The second vertical line
represents the point at which the decision was taken (target vs. distractor).

Because of the preponderance of transitions todistractor over target, thedistractor state
can be thought of as thereference or default state. Evidence against that default state is
a form of unexpected uncertainty within a task, and we propose that phasic NE reports
this uncertainty. More specifically, NE signalsP (target|x1, . . . , xt)/P (target), where
P (target) = .2 is the prior probability of observing atarget trial. We assume that a
target-response is initiated whenP (st|x1, . . . , xt) exceeds0.95, or equivalently, when
the NE signal exceeds0.95/P (target). This implies the following intuitive relationship:
the smaller the probability of the non-default statetarget the greater the NE-mediated
“surprise” signal has to be in order to convince the inferential system that an anomalous
stimulus has been observed. We also assume that if the posterior probability oftarget
reaches0.01, then the trial ends with no action (either acr or amiss). The asymmetry in
the thresholds arises from the asymmetry in the response contingencies of the task. Further,
to model non-inferential errors, we assume that there is probability of0.0005 per timestep
of releasing the bar after the transition out ofstart. Once a decision is reached, the NE
signal is set back to baseline (1, for equal prior and posterior) after a delay of5 timesteps.

Note that the precise form of the mapping from unexpected uncertainty to NE spikes is
rather arbitrary. In particular, there may be a strong non-linearity, such as a thresholded
response profile. For simplicity, we assume a linear mapping between the two.

The NE activity during thestart state is also rather arbitrary. Activity is at baseline before
the stimulus comes on, since prior and posterior match when there is no explicit information
from the world. When the stimulus comes on, the divisive normalization makes the activity
go above baseline because although the transition was expected, its occurrence was not
predicted with perfect precision. The magnitude of this activity depends on the precision
of the model of the time of the transition; and the uncertainty in the interval timer. We set
it to a small super-baseline level to match the data.
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Figure 3: NE activity. (A) NE activity locked to the stimulus onset (iethe transition out of
start). (B) NE activity response-locked to the decision to act, just forhit andfa trials. Note
the difference in scale between the two figures.

3 Results

Figure 2C illustrates the inferential performance of the model for the sample run in Fig-
ure 2B;C. When the firstt is observed on timestep 10, the probability ofstart drops to0 and
the probability ofdistractor, which has an initial advantage overtarget due to its higher
probability, eventually loses out totarget as the evidence overwhelms the prior. Figure 2D
shows the model’s NE signal for one example each ofhit, fa, miss, andcr trials.

Figure 3 presents our main results. Figure 3A shows the average NE signal for the four
classes of responses (hit, false alarm, miss, and correct rejection), time-locked to the start
of the stimulus. These traces should be compared with those in Figure 1E. The basic
form of the rise of the signal in the model is broadly similar to that in the data; as we
have argued, the fall is rather arbitrary. Figure 3B shows the average signal locked to
the time of reaction (for hit and false alarm trials) rather than stimulus onset. As in the
data (Figure 1F), response-locked activities are much more tightly clustered, although this
flatters the model somewhat, since we do not allow for any variability in the response time
as a function of when the probability of statetarget reaches the threshold. Since the decay
of the signal following a response is unconstrained, the trace terminates when the response
is determined, usually when the probability oftarget reaches threshold, but also sometimes
when there is an accidental erroneous response.

Figure 4 shows some additional features of the NE signal in this case. Figure 4A compares
the effect of making the discrimination betweentarget anddistractor more or less difficult
in the model (upper) and in the data (lower; [16]). As in the data, the stimulus-locked NE
signal is somewhat broader for the more difficult case, since information has to build up
over a longer period. Also as in the data, correct rejections are much less affected than hits.
Figure 4B shows response locked NE. Although it is correctly slightly broader for the more
difficult discrimination, the timing is not quite the same. This is largely due to the lack of
a realistic model tying the defeat of the default state assumption to a behavioral response.
For the easy task (η= 0.675), there were19% hits,1.5% false alarms,1% misses and77%
correct rejections. For the difficult task (η= 0.65) the main difference was an increase in
the number of misses to1.5%, largely at the expense of hits. Note that since the NE signal
is calculated relative to the prior likelihood, makingtarget more likely would reduce the
NE signal exactly proportionally. The data certainly hint at such a reduction [17] although
the precise proportionality is not clear.

4 Discussion

The present model of the phasic activity of NE cells is a direct and major extension of
our previous model of tonic aspects of this neuromodulator. The key difference is that
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Figure 4: NE activities and task difficulty. (A) Stimulus-locked LC responses are slower
and broader for a more difficult discrimination; where difficulty is controlled by the simi-
larity of target and distractor stimuli. (B) When aligned to response, LC activities for easy
and difficult discriminations are more similar, although their response in the more difficult
condition is still somewhat attenuated compared to the easy one. Data in A;B adapted from
[16]. (C) Discrimination difficulty in the model is controlled by the parameterη. Whenη
is reduced from0.675 (easy; solid) to0.65 (hard; dashed), simulated NE activity also be-
comes slower and broader when aligned to stimulus. (D) Same traces aligned to response
indicate NE activity in the difficult condition is attenuated in the model.

unexpected uncertainty is now about the statewithin a current characterization of the task
rather than about the characterization as a whole. These aspects of NE functionality are
likely quite widespread, and allow us to account for a much wider range of data on this
neuromodulator.

In the model, NE activity is explicitly normalized by prior probabilities arising from the
default state transitions in tasks. This is necessary to measure specificallyunexpected un-
certainty, and explains the decrement in NE phasic response as a function of thetarget
probability [17]. It is also associated with the small activation to the stimulus onset, al-
though the precise form of this deserves closer scrutiny. For instance, if subjects were to
build a richer model of the statistics of the time of the transition out of thestart state, then
we should see this reflected directly in the NE signal even before the stimulus comes on,
for instance related to the inverse of the survival function for the transition. We would also
expect this transition to effect a different NE signature if stimuli were expected duringstart
that could also be confused with those expected duringtarget anddistractor.

If NE indeed reports on the failure of the current state within the model of the task to
account successfully for the observations, then what effect should it have? One useful
way to think about the signal is in terms of aninterrupt signal in computers. In these,
a control program establishes a set of conditions (egkeyboard input) under which nor-
mal processing should be interrupted, in order that the consequence of the interrupt (ega
keystroke) can be appropriately handled. Computers have highly centralized processing
architecture, and therefore the interrupt signal only needs a very limited spatial extent to
exert a widespread effect on the course of computation. By contrast, processing in the
brain is highly distributed, and therefore it is necessary for the interrupt signal to have a
widespread distribution, so that the full ramifications of the failure of the current state can
be felt. Neuromodulatory systems are ideal vehicles for the signal.

The interrupt signal should engage mechanisms for establishing the new state, which then
allows a new set of conditions to be established as to which interrupts will be allowed to
occur, and also to take any appropriate action (as in the task we modeled). The interrupt
signal can be expected to be beneficial, for instance, when there is competition between
tasks for the use of neural resources such as receptive fields [8].

Apart from interrupts such as these under sophisticated top-down control, there are also
more basic contingencies from things such as critical potential threats and stressors that



should exert a rapid and dramatic effect on neural processing(these also have computa-
tional analogues in signals such as that power is about to fail). The NE system is duly
subject to what might be considered as bottom-up as well as top-down influences [21].

The interrupt-based account is a close relative of existing notions of phasic NE. For in-
stance, NE has been implicated in the process of alerting [23]. The difference from our
account is perhaps the stronger tie in the latter to actual behavioral output. A task with
second-order contingencies may help to differentiate the two accounts. There are also
close relations with theories [20, 5] that suggest how NE may be an integral part of an op-
timal decisional strategy. These propose that NE controls the gain in competitive decision-
making networks that implement sequential decision-making [22], essentially by reporting
on the changes in the statistical structure of the inputs induced by stimulus onset. It is also
suggested that a more extreme change in the gain, destabilizing the competitive networks
through explosive symmetry breaking, can be used to freeze or lock-in any small difference
in the competing activities.

The idea that NE can signal the change in the input statistics occasioned by the (temporally-
unpredictable) occurrence of the target is highly appealing. However, the statistics of the
input change when either the targetor the distractor appears, and so the preference for
responding to the target at the expense of the distractor is strange. The effect of forcing the
decision making network to become unstable, and therefore enforcing a speeded decision
is much closer to an interrupt; but then it is not clear why this signal should decrease as
the target becomes more common. Further, since in the unstable regime, the statistical
optimality of integration is effectively abandoned, the computational appeal of the signal
is somewhat weakened. However, this alternative theory does make an important link to
sequential statistical analysis [22], raising issues about things like thresholds for deciding
target anddistractor that should be important foci of future work here too.

Figure 1C shows an additional phenomenon that has arisen in a task when subjects were not
even occasionally taxed with difficult discrimination problems. The overall performance
fluctuates dramatically (shown by the changing false alarm rate), in a manner that is tightly
correlated with fluctuations in tonic NE activity. Periods of high tonic activity are corre-
lated with low phasic activation to the targets (data not shown). Aston-Jones, Cohen and
their colleagues [20, 3] have suggested that NE regulates the balance between exploration
and exploitation. The high tonic phase is associated with the former, with subjects failing
to concentrate on the contingencies that lead to their current rewards in order to search
for stimuli or actions that might be associated with better rewards. Increasing the ease
of interruptability to either external cues or internal state changes, could certainly lead to
apparently exploratory behavior. However, there is little evidence as to how this sort of
exploration is being actively determined, since, for instance, the macroscopic fluctuations
evident in Figure 1C do not arise in response to any experimental contingency. Given the
relationship between phasic and tonic firing, further investigation of these periodic fluctua-
tions and their implications would be desirable.

Finally, in our previous model [24, 25], tonic NE was closely coupled with tonic acetyl-
choline (ACh), with the latter reporting expected rather than unexpected uncertainty. The
account of ACh should transfer somewhat directly into the short-term contingencies within
a task – we might expect it to be involved in reporting on aspects of the known variability
associated with each state, including each distinct stimulus state as well as the no-stimulus
state. As such, this ACh signal might be expected to be relatively more tonic than NE (an
effect that is also apparent in our previous work on more tonic interactions between ACh
and NE (egFigure 2 of [24]). One attractive target for an account along these lines is the
sustained attention task studied by Sarter and colleagues, which involves temporal uncer-
tainty. Performance in this task is exquisitely sensitive to cholinergic manipulation [19],
but unaffected by gross noradrenergic manipulation [15]. We may again expect there to be
interesting part-opponent and part-synergistic interactions between the neuromodulators.
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