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Abstract 
Hybrid “CMOL” integrated circuits, combining CMOS subsystem 
with nanowire crossbars and simple two-terminal nanodevices, 
promise to extend the exponential Moore-Law development of 
microelectronics into the sub-10-nm range. We are developing 
neuromorphic network (“CrossNet”) architectures for this future 
technology, in which neural cell bodies are implemented in CMOS, 
nanowires are used as axons and dendrites, while nanodevices 
(bistable latching switches) are used as elementary synapses. We 
have shown how CrossNets may be trained to perform pattern 
recovery and classification despite the limitations imposed by the 
CMOL hardware.  Preliminary estimates have shown that CMOL 
CrossNets may be extremely dense (~107 cells per cm2) and operate 
approximately a million times faster than biological neural networks, 
at manageable power consumption. In Conclusion, we discuss in 
brief possible short-term and long-term applications of the emerging 
technology. 

1  Introduction:  CMOL Circuits  

Recent results [1, 2] indicate that the current VLSI paradigm based on CMOS 
technology can be hardly extended beyond the 10-nm frontier: in this range the 
sensitivity of parameters (most importantly, the gate voltage threshold) of silicon 
field-effect transistors to inevitable fabrication spreads grows exponentially. This 
sensitivity will probably send the fabrication facilities costs skyrocketing, and may 
lead to the end of Moore’s Law some time during the next decade.  

There is a growing consensus that the impending Moore’s Law crisis may be 
preempted by a radical paradigm shift from the purely CMOS technology to hybrid 
CMOS/nanodevice circuits, e.g., those of “CMOL” variety (Fig. 1). Such circuits (see, 
e.g., Ref. 3 for their recent review) would combine a level of advanced CMOS devices 
fabricated by the lithographic patterning, and two-layer nanowire crossbar formed, 
e.g., by nanoimprint, with nanowires connected by simple, similar, two-terminal 
nanodevices at each crosspoint. For such devices, molecular single-electron latching 
switches [4] are presently the leading candidates, in particular because they may be 
fabricated using the self-assembled monolayer (SAM) technique which already gave 
reproducible results for simpler molecular devices [5]. 
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In order to overcome the CMOS/nanodevice interface problems pertinent to earlier 
proposals of hybrid circuits [6], in CMOL the interface is provided by pins that are 
distributed all over the circuit area, on the top of the CMOS stack. This allows to use 
advanced techniques of nanowire patterning (like nanoimprint) which do not have 
nanoscale accuracy of layer alignment [3]. The vital feature of this interface is the tilt, 
by angle α = arcsin(Fnano/βFCMOS), of the nanowire crossbar relative to the square 
arrays of interface pins (Fig. 1b). Here Fnano is the nanowiring half-pitch, FCMOS is the 
half-pitch of the CMOS subsystem, and β is a dimensionless factor larger than 1 that 
depends on the CMOS cell complexity. Figure 1b shows that this tilt allows the CMOS 
subsystem to address each nanodevice even if Fnano << βFCMOS.  

By now, it has been shown that CMOL circuits can combine high performance with 
high defect tolerance (which is necessary for any circuit using nanodevices) for 
several digital applications. In particular, CMOL circuits with defect rates below a 
few percent would enable terabit-scale memories [7], while the performance of 
FPGA-like CMOL circuits may be several hundred times above that of overcome 
purely CMOL FPGA (implemented with the same FCMOS), at acceptable power 
dissipation and defect tolerance above 20% [8].  

In addition, the very structure of CMOL circuits makes them uniquely suitable for the 
implementation of more complex, mixed-signal information processing systems, 
including ultradense and ultrafast neuromorphic networks. The objective of this paper 
is to describe in brief the current status of our work on the development of so-called 
Distributed Crossbar Networks (“CrossNets”) that could provide high performance 
despite the limitations imposed by CMOL hardware. A more detailed description of 
our earlier results may be found in Ref. 9. 

2  Synapses 
The central device of CrossNet is a two-terminal latching switch [3, 4] (Fig. 2a) which is a 
combination of two single-electron devices, a transistor and a trap [3]. The device may be 
naturally implemented as a single organic molecule (Fig. 2b). Qualitatively, the device 
operates as follows: if voltage V = Vj – Vk applied between the external electrodes (in 
CMOL, nanowires) is low, the trap island has no net electric charge, and the single-electron 
transistor is closed. If voltage V approaches certain threshold value V+ > 0, an additional 
electron is inserted into the trap island, and its field lifts the Coulomb blockade of the 
single-electron transistor, thus connecting the nanowires. The switch state may be reset 
(e.g., wires disconnected) by applying a lower voltage V < V- < V+. 

Due to the random character of single-electron tunneling [2], the quantitative description of 
the switch is by necessity probabilistic: actually, V determines only the rates Γ↑↓  of device 

Fig. 1. CMOL circuit: (a) schematic side view, and (b) top-view zoom-in on several 
adjacent interface pins. (For clarity, only two adjacent nanodevices are shown.)  



 

switching between its ON and OFF states. The rates, in turn, determine the dynamics of 
probability p to have the transistor opened (i.e. wires connected):   

dp/dt  = Γ↑(1 - p) - Γ↓p. (1) 

The theory of single-electron tunneling [2] shows that, in a good approximation, the rates 
may be presented as 

Γ↑↓ = Γ0 exp{±e(V - S)/kBT} , (2) 
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Fig. 2. (a) Schematics and (b) possible molecular implementation of the two-terminal 
single-electron latching switch 

 
where Γ0 and S are constants depending on physical parameters of the latching switches. 
Note that despite the random character of switching, the strong nonlinearity of Eq. (2) 
allows to limit the degree of the device “fuzziness”.  

3  CrossNets  

Figure 3a shows the generic structure of a CrossNet. CMOS-implemented somatic 
cells (within the Fire Rate model, just nonlinear differential amplifiers, see Fig. 3b,c) 
apply their output voltages to “axonic” nanowires. If the latching switch, working as 
an elementary synapse, on the crosspoint of an axonic wire with the perpendicular 
“dendritic” wire is open, some current flows into the latter wire, charging it. Since 
such currents are injected into each dendritic wire through several (many) open 
synapses, their addition provides a natural passive analog summation of signals from 
the corresponding somas, typical for all neural networks. Examining Fig. 3a, please 
note the open-circuit terminations of axonic and dendritic lines at the borders of the 
somatic cells; due to these terminations the somas do not communicate directly (but 
only via synapses).   

The network shown on Fig. 3 is evidently feedforward; recurrent networks are achieved in 
the evident way by doubling the number of synapses and nanowires per somatic cell (Fig. 
3c). Moreover, using dual-rail (bipolar) representation of the signal, and hence doubling 
the number of nanowires and elementary synapses once again, one gets a CrossNet with 
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somas coupled by compact 4-switch groups [9]. Using Eqs. (1) and (2), it is straightforward 
to show that that the average synaptic weight wjk of the group obeys the “quasi-Hebbian” 
rule: 
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Fig. 3. (a) Generic structure of the simplest, (feedforward, non-Hebbian) CrossNet. Red lines 
show “axonic”, and blue lines “dendritic” nanowires. Gray squares are interfaces between 
nanowires and CMOS-based somas (b, c). Signs show the dendrite input polarities. Green 
circles denote molecular latching switches forming elementary synapses. Bold red and blue 
points are open-circuit terminations of the nanowires, that do not allow somas to interact in 
bypass of synapses 

 

In the simplest cases (e.g., quasi-Hopfield networks with finite connectivity), the 
tri-level synaptic weights of the generic CrossNets are quite satisfactory, leading to 
just a very modest (~30%) network capacity loss. However, some applications (in 
particular, pattern classification) may require a larger number of weight quantization 
levels L (e.g., L ≈ 30 for a 1% fidelity [9]). This may be achieved by using compact 
square arrays (e.g., 4×4) of latching switches (Fig. 4). 

Various species of CrossNets [9] differ also by the way the somatic cells are 
distributed around the synaptic field. Figure 5 shows feedforward versions of two 
CrossNet types most explored so far: the so-called FlossBar and InBar. The former 
network is more natural for the implementation of multilayered perceptrons (MLP), 
while the latter system is preferable for recurrent network implementations and also 
allows a simpler CMOS design of somatic cells.  

The most important advantage of CrossNets over the hardware neural networks 
suggested earlier is that these networks allow to achieve enormous density combined 
with large cell connectivity M >> 1 in quasi-2D electronic circuits. 

4  CrossNet training 

CrossNet training faces several hardware-imposed challenges: 
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          (i) The synaptic weight contribution provided by the elementary latching switch is 
binary, so that for most applications the multi-switch synapses (Fig. 4) are necessary. 
          (ii) The only way to adjust any particular synaptic weight is to turn ON or OFF the 
corresponding latching switch(es). This is only possible to do by applying certain voltage V 
= Vj – Vk between the two corresponding nanowires. At this procedure, other nanodevices 
attached to the same wires should not be disturbed. 
          (iii) As stated above, synapse state switching is a statistical progress, so that the 
degree of its “fuzziness” should be carefully controlled.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Composite synapse for providing L = 2n2+1 discrete levels of the weight in (a) operation 
and (b) weight adjustment modes. The dark-gray rectangles are resistive metallic strips at 
soma/nanowire interfaces 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Two main CrossNet species: (a) FlossBar and (b) InBar, in the generic (feedforward, 
non-Hebbian, ternary-weight) case for the connectivity parameter M = 9. Only the nanowires and 
nanodevices coupling one cell (indicated with red dashed lines) to M post-synaptic cells (blue dashed 
lines) are shown; actually all the cells are similarly coupled 

We have shown that these challenges may be met using (at least) the following 
training methods [9]: 
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 (i) Synaptic weight import. This procedure is started with training of a 
homomorphic “precursor” artificial neural network with continuous synaptic weighs 
wjk, implemented in software, using one of established methods (e.g., error 
backpropagation). Then the synaptic weights wjk are transferred to the CrossNet, with 
some “clipping” (rounding) due to the binary nature of elementary synaptic weights. 
To accomplish the transfer, pairs of somatic cells are sequentially selected via 
CMOS-level wiring. Using the flexibility of CMOS circuitry, these cells are 
reconfigured to apply external voltages ±VW to the axonic and dendritic nanowires 
leading to a particular synapse, while all other nanowires are grounded. The voltage 
level VW is selected so that it does not switch the synapses attached to only one of the 
selected nanowires, while voltage 2VW applied to the synapse at the crosspoint of the 
selected wires is sufficient for its reliable switching. (In the composite synapses with 
quasi-continuous weights (Fig. 4), only a part of the corresponding switches is turned 
ON or OFF.) 

 (ii) Error backpropagation. The synaptic weight import procedure is 
straightforward when wjk may be simply calculated, e.g., for the Hopfield-type networks. 
However, for very large CrossNets used, e.g., as pattern classifiers the precursor network 
training may take an impracticably long time. In this case the direct training of a CrossNet 
may become necessary. We have developed two methods of such training, both based on 
“Hebbian” synapses consisting of 4 elementary synapses (latching switches) whose 
average weight dynamics obeys Eq. (3). This quasi-Hebbian rule may be used to 
implement the backpropagation algorithm either using a periodic time-multiplexing [9] or 
in a continuous fashion, using the simultaneous propagation of signals and errors along the 
same dual-rail channels.  

As a result, presently we may state that CrossNets may be taught to perform virtually 
all major functions demonstrated earlier with the usual neural networks, including the 
corrupted pattern restoration in the recurrent quasi-Hopfield mode and pattern 
classification in the feedforward MLP mode [11]. 

5  CrossNet performance est imates  

The significance of this result may be only appreciated in the context of unparalleled 
physical parameters of CMOL CrossNets. The only fundamental limitation on the 
half-pitch Fnano (Fig. 1) comes from quantum-mechanical tunneling between nanowires. If 
the wires are separated by vacuum, the corresponding specific leakage conductance 
becomes uncomfortably large (~10-12 Ω-1m-1) only at Fnano = 1.5 nm; however, since 
realistic insulation materials (SiO2, etc.) provide somewhat lower tunnel barriers, let us use 
a more conservative value Fnano= 3 nm. Note that this value corresponds to 1012 elementary 
synapses per cm2, so that for 4M = 104 and n = 4 the areal density of neural cells is close to 
2×107 cm-2. Both numbers are higher than those for the human cerebral cortex, despite the 
fact that the quasi-2D CMOL circuits have to compete with quasi-3D cerebral cortex. 

With the typical specific capacitance of 3×10-10 F/m = 0.3 aF/nm, this gives nanowire 
capacitance C0 ≈ 1 aF per working elementary synapse, because the corresponding 
segment has length 4Fnano. The CrossNet operation speed is determined mostly by the time 
constant τ0 of dendrite nanowire capacitance recharging through resistances of open 
nanodevices. Since both the relevant conductance and capacitance increase similarly with 
M and n, τ0 ≈ R0C0.  

The possibilities of reduction of R0, and hence τ0, are limited mostly by acceptable power 
dissipation per unit area, that is close to Vs

2/(2Fnano)2R0. For room-temperature operation, 
the voltage scale V0 ≈ Vt should be of the order of at least 30 kBT/e ≈ 1 V to avoid 
thermally-induced errors [9]. With our number for Fnano, and a relatively high but 
acceptable power consumption of 100 W/cm2, we get R0 ≈ 1010Ω (which is a very realistic 



 

value for single-molecule single-electron devices like one shown in Fig. 3). With this 
number, τ0 is as small as ~10 ns. This means that the CrossNet speed may be approximately 
six orders of magnitude (!) higher than that of the biological neural networks. Even scaling 
R0 up by a factor of 100 to bring power consumption to a more comfortable level of 1 
W/cm2, would still leave us at least a four-orders-of-magnitude speed advantage.  

6  Discussion:  Possible  applicat ions 

These estimates make us believe that that CMOL CrossNet chips may revolutionize 
the neuromorphic network applications. Let us start with the example of relatively 
small (1-cm2-scale) chips used for recognition of a face in a crowd [11].  The most 
difficult feature of such recognition is the search for face location, i.e. optimal 
placement of a face on the image relative to the panel providing input for the 
processing network. The enormous density and speed of CMOL hardware gives a 
possibility to time-and-space multiplex this task (Fig. 6). In this approach, the full 
image (say, formed by CMOS photodetectors on the same chip) is divided into P 
rectangular panels of h×w pixels, corresponding to the expected size and approximate 
shape of a single face. A CMOS-implemented communication channel passes input 
data from each panel to the corresponding CMOL neural network, providing its shift 
in time, say using the TV scanning pattern (red line in Fig. 6). The standard methods 
of image classification require the network to have just a few hidden layers, so that the 
time interval Δt necessary for each mapping position may be so short that the total 
pattern recognition time T = hwΔt may be acceptable even for online face recognition. 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Scan mapping of the input image on CMOL CrossNet inputs. Red lines show the possible time 
sequence of image pixels sent to a certain input of the network processing image from the upper-left 
panel of the pattern 

Indeed, let us consider a 4-Megapixel image partitioned into 4K 32×32-pixel panels (h 
= w = 32). This panel will require an MLP net with several (say, four) layers with 1K 
cells each in order to compare the panel image with ~103 stored faces. With the 
feasible 4-nm nanowire half-pitch, and 65-level synapses (sufficient for better than 
99% fidelity [9]), each interlayer crossbar would require chip area about (4K×64 nm)2 
= 64×64 μm2, fitting 4×4K of them on a ~0.6 cm2 chip. (The CMOS somatic-layer and 
communication-system overheads are negligible.) With the acceptable power 
consumption of the order of 10 W/cm2, the input-to-output signal propagation in such 
a network will take only about 50 ns, so that Δt may be of the order of 100 ns and the 
total time T = hwΔt of processing one frame of the order of 100 microseconds, much 
shorter than the typical TV frame time of ~10 milliseconds. The remaining 
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two-orders-of-magnitude time gap may be used, for example, for double-checking the 
results via stopping the scan mapping (Fig. 6) at the most promising position. (For this, 
a simple feedback from the recognition output to the mapping communication system 
is necessary.) 

It is instructive to compare the estimated CMOL chip speed with that of the 
implementation of a similar parallel network ensemble on a CMOS signal processor (say, 
also combined on the same chip with an array of CMOS photodetectors). Even assuming 
an extremely high performance of 30 billion additions/multiplications per second, we 
would need ~4×4K×1K×(4K)2/(30×109) ≈ 104 seconds ~ 3 hours per frame,  evidently 
incompatible with the online image stream processing. 

Let us finish with a brief (and much more speculative) discussion of possible long-term 
prospects of CMOL CrossNets. Eventually, large-scale (~30×30 cm2) CMOL circuits may 
become available. According to the estimates given in the previous section, the integration 
scale of such a system (in terms of both neural cells and synapses) will be comparable with 
that of the human cerebral cortex. Equipped with a set of broadband sensor/actuator 
interfaces, such (necessarily, hierarchical) system may be capable, after a period of initial 
supervised training, of further self-training in the process of interaction with environment, 
with the speed several orders of magnitude higher than that of its biological prototypes. 
Needless to say, the successful development of such self-developing systems would have a 
major impact not only on all information technologies, but also on the society as a whole. 
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