The Forgetron:
A Kernel-Based Perceptron on a Fixed Budget

Ofer Dekel Shai Shalev-Shwartz Yoram Singer
School of Computer Science & Engineering

The Hebrew University, Jerusalem 91904, Israel
{of erd, shai s, si nger }@s. huji.ac.il

Abstract

The Perceptron algorithm, despite its simplicity, often performs well on
online classification tasks. The Perceptron becomes especially effective
when it is used in conjunction with kernels. However, a common dif-
ficulty encountered when implementing kernel-based online algorithms
is the amount of memory required to store the online hypothesis, which
may grow unboundedly. In this paper we present and analyze the For-
getron algorithm for kernel-based online learning on a fixed memory
budget. To our knowledge, this is the first online learning algorithm
which, on one hand, maintainsstict limit on the number of examples

it stores while, on the other hand, entertains a relative mistake bound.
In addition to the formal results, we also present experiments with real
datasets which underscore the merits of our approach.

1 Introduction

The introduction of the Support Vector Machine (SVM) [8] sparked a widespread interest
in kernel methods as a means of solving (binary) classification problems. Although SVM
was initially stated as a batch-learning technique, it significantly influenced the develop-
ment of kernel methods in the online-learning setting. Online classification algorithms that
can incorporate kernels include the Perceptron [6], ROMMA [5], ALMA [3], NORMA [4],
Ballseptron [7], and the Passive-Aggressive family of algorithms [1]. Each of these algo-
rithms observes examples in a sequence of rounds, and constructs its classification function
incrementally, by storing a subset of the observed examples in its internal memory. The
classification function is then defined by a kernel-dependent combination of the stored ex-
amples. This set of stored examples is the online equivalent cfupport sebf SVMs,
however in contrast to the support, it continually changes as learning progresses. In this
paper, we call this set thective setas it includes those examples that actively define the
current classifier. Typically, an example is added to the active set every time the online al-
gorithm makes a prediction mistake, or when its confidence in a prediction is inadequately
low. A rapid growth of the active set can lead to significant computational difficulties. Nat-
urally, since computing devices have bounded memory resources, there is the danger that
an online algorithm would require more memory than is physically available. This problem
becomes especially eminent in cases where the online algorithm is implemented as part of
a specialized hardware system with a small memory, such as a mobile telephone or an au-

tonomous robot. Moreover, an excessively large active setezd to unacceptably long
running times, as the time-complexity of each online round scales linearly with the size of
the active set.

Crammer, Kandola, and Singer [2] first addressed this problem by describing an online
kernel-based modification of the Perceptron algorithm in which the active set does not ex-
ceed a predefindoudget Their algorithm removes redundant examples from the active set
so as to make the best use of the limited memory resource. Weston, Bordes and Bottou [9]
followed with their own online kernel machine on a budget. Both techniques work rela-
tively well in practice, however they both lack a theoretical guarantee on their prediction
accuracy. In this paper we present the Forgetron algorithm for online kernel-based classi-
fication. To the best of our knowledge, the Forgetron is the first online algorithm with a
fixed memory budget which also entertains a formal worst-case mistake bound. We name
our algorithm the Forgetron since its update builds on that of the Perceptron and since it
gradually forgets active examples as learning progresses.

This paper is organized as follows. In Sec. 2 we begin with a more formal presentation of
our problem and discuss some difficulties in proving mistake bounds for kernel-methods
on a budget. In Sec. 3 we present an algorithmic framework for online prediction with a
predefined budget of active examples. Then in Sec. 4 we derive a concrete algorithm within
this framework and analyze its performance. Formal proofs of our claims are omitted due
to the lack of space. Finally, we present an empirical evaluation of our algorithm in Sec. 5.

2 Problem Setting

Online learning is performed in a sequence of consecutive rounds. On tdheaanline
algorithm observes an instangg which is drawn from some predefined instance domain
X. The algorithm predicts the binary label associated with that instance and is then pro-
vided with the correct labe); € {—1,+1}. At this point, the algorithm may use the
instance-label paifx;, y;) to improve its prediction mechanism. The goal of the algorithm

is to correctly predict as many labels as possible.

The predictions of the online algorithm are determined byypothesisvhich is stored

in its internal memory and is updated from round to round. We denote the hypothesis
used on round by f;. Our focus in this paper is on margin based hypotheses, namely,
f+ is a function fromX’ to R where sigiif;(x;)) constitutes the actual binary prediction
and|f;(x;)| is the confidence in this prediction. The tegnfi(x) is called themargin

of the prediction and is positive whenevgland sigrif(x)) agree. We can evaluate the
performance of a hypothesis on a given exanjgley) in one of two ways. First, we can
check whether the hypothesis makes a prediction mistake, namely determine whether
sign(f(x)) or not. Throughout this paper, we usé to denote the number of prediction
mistakes made by an online algorithm on a sequence of exarfyles,), . . ., (x7, yr).

The second way we evaluate the predictions of a hypothesis is by usirgnpe-loss
function, defined as,

. B 0 if yf(x)>1
(f;(x,y) = { 1—yf(x) Iothyer\(/vif)se ' @)

The hinge-loss penalizes a hypothesis for any margin lessithakdditionally, if y #
sign(f(x)) then’(f, (x,y)) > 1 and therefore theumulative hinge-lossuffered over a
sequence of examples upper boundsThe algorithms discussed in this paper use kernel-
based hypotheses that are defined with respect to a kernel op&rattir< X — R which
adheres to Mercer’s positivity conditions [8]. A kernel-based hypothesis takes the form,

k
f(X) = Z OéiK(Xi, X) 9 (2)
i=1

wherex,...,x; are members ot andaq, ..., are real weights. To facilitate the
derivation of our algorithms and their analysis, we associate a reproducing kernel Hilbert
space (RKHS) withK in the standard way common to all kernel methods. Formally,
let Hx be the closure of the set of all hypotheses of the form given in Eq. (2). For

any two functions,f(x) = ZleaiK(xi,x) andg(x) = Z;ZlﬁjK(zj,x), define

the inner product between them to K¢, g) = Zle Zé’:l a;0; K (x;,2;). This inner-
product naturally induces a norm defined bg|| = (f, f)!/? and a metrid|f — g| =

(£, f) = 2(f,9) + (g,9))/%. These definitions play an important role in the analysis of
our algorithms. Online kernel methods typically restrict themselves to hypotheses that are
defined by some subset of the examples observed on previous rounds. That is, the hy-
pothesis used on rourtdakes the formf;(x) = >, aiK(x;,x), wherel, is a subset

of {1,...,(¢t-1)} andx; is the example observed by the algorithm on rounds stated
above,l; is called the active set, and we say that examplis activeon round: if i € I;.

Perhaps the most well known online algorithm for binary classification is the Percep-
tron [6]. Stated in the form of a kernel method, the hypotheses generated by the Perceptron
take the formf;(x) = > .., y:K(x;,x). Namely, the weight assigned to each active
example is eithes-1 or —1, depending on the label of that example. The Perceptron ini-
tializes I; to be the empty set, which implicitly sefs to be the zero function. It then
updates its hypothesis only on rounds where a prediction mistake is made. Concretely, on
roundt, if f:(x:) # y: then the index is inserted into the active set. As a consequence, the
size of the active set on roun@quals the number of prediction mistakes made on previous
rounds. A relative mistake bound can be proven for the Perceptron algorithm. The bound
holds for any sequence of instance-label pairs, and compares the number of mistakes made
by the Perceptron with the cumulative hinge-loss of any fixed hypotlgesisH i, even

one defined with prior knowledge of the sequence.

Theorem 1. Let K be a Mercer kernel and letxy, 1), . .., (xr, yr) be a sequence of
examples such thak (x,x;) < 1 for all t. Letg be an arbitrary function inHx and

definel, = é(g; (x¢, yt)). Then the number of prediction mistakes made by the Perceptron
on this sequence is bounded BY, < ||g[|2 +2 3"/, 4;.

Although the Perceptron is guaranteed to be competitive with any fixed hypothesis

Hx, the fact that its active set can grow without a bound poses a serious computational
problem. In fact, this problem is common to most kernel-based online methods that do not
explicitly monitor the size of;.

As discussed above, our goal is to derive and analyze an online prediction algorithm which
resolves these problems by enforcinfix@dbound on the size of the active set. Formally,

let B be a positive integer, which we refer to as thelget parameterWe would like to
devise an algorithm which enforces the constriift< B on every round. Furthermore,

we would like to prove a relative mistake bound for this algorithm, analogous to the bound
stated in Thm. 1. Regretfully, this goal turns out to be impossible without making additional
assumptions. We show this inherent limitation by presenting a simple counterexample
which applies to any online algorithm which uses a prediction function of the form given
in Eq. (2), and for whichI;| < B for all ¢. In this example, we show a hypothegis H x

and an arbitrarily long sequence of examples such that the algorithm makes a prediction
mistake on every single round whergesuffers no loss at all. We choose the instance space
X to be the set of3 + 1 standard unit vectors iR+, thatisX’ = {e;} 2" wheree; is the
vector with1 in its 'th coordinate and zeros elsewhel€.is set to be the standard inner-
product inREZ+1, that isK (x,x’) = (x,x’). Now for everyt, f, is a linear combination

of at mostB vectors fromX. Since|X| = B + 1, there exists a vectar, € X which

is currently not in the active set. Furthermaxe,is orthogonal to all of the active vectors

and thereforef;(x;) = 0. Assume without loss of generality that the online algorithm we

are using predictg, to be —1 when f;(x) = 0. If on every round we were to present

the online algorithm with the example,, +1) then the online algorithm would make a

prediction mistake on every round. On the other hand, the hypot@esiif:;l e;isa

member ofH i and attains a zero hinge-loss on every round. We have found a sequence of

examples and a fixed hypothesis (which is indeed defined by mordtivantors fromx)

that attains a cumulative loss of zero on this sequence, while the number of mistakes made
by the online algorithm equals the number of rounds. Clearly, a theorem along the lines of

Thm. 1 cannot be proven.

One way to resolve this problem is to limit the set of hypotheses we compete with to a sub-
set of Hx, which would naturally excludg. In this paper, we limit the set of competitors

to hypotheses with small norms. Formally, we wish to devise an online algorithm which is
competitive with every hypothesisc Hx for which ||g|| < U, for some constarif. Our
counterexample indicates that we cannot prove a relative mistake bound’vgit to at
leasty/ B + 1, since that was the norm gfin our counterexample. In this paper we come
close to this upper bound by proving that our algorithms can compete with any hypothesis

with a norm bounded by /(B + 1)/ log(B + 1).

3 A Perceptron with “Shrinking” and “Removal” Steps

The Perceptron algorithm will serve as our starting point. Recall that whenever the Per-
ceptron makes a prediction mistake, it updates its hypothesis by adding the element

I;. Thus, on any given round, the size of its active set equals the number of prediction
mistakes it has made so far. This implies that the Perceptron may violate the budget con-
straint|I;| < B. We can solve this problem by removing an example from the active set
whenever its size exceeds One simple strategy is to remove the oldest example in the
active set whenever;| > B. Lett be a round on which the Perceptron makes a predic-
tion mistake. We apply the following two step update. First, we perform the Perceptron’s
update by adding to I;. LetI; = I; U {t} denote the resulting active set. || < B

we are done and we sét;; = I;. Otherwise, we apply emovalstep by finding the
oldest example in the active set,= min I], and setting/;;1 = I; \ {r:}. The resulting
algorithm is a simple modification of the kernel Perceptron, which conforms with a fixed
budget constraint. While we are unable to prove a mistake bound for this algorithm, it is
nonetheless an important milestone on the path to an algorithm with a fixed budget and a
formal mistake bound.

The removal of the oldest active example frésrmay significantly change the hypothesis
and effect its accuracy. One way to overcome this obstacle is to reduce the weight of old
examples in the definition of the current hypothesis. By controlling the weight of the oldest
active example, we can guarantee that the removal step will not significantly effect the
accuracy of our predictions. More formally, we redefine our hypothesis to be,

fe = ZUz‘,t%K(Xh') ;

i€l

where eaclw; ; is a weight in(0, 1]. Clearly, the effect of removing from I; depends on
the magnitude of, ;.

Using the ideas discussed above, we are now ready to outline the Forgetron algorithm. The
Forgetron initialized; to be the empty set, which implicitly sefs to be the zero function.

On roundt, if a prediction mistake occurs, a three step update is performed. The first step
is the standard Perceptron update, namely, the ingekserted into the active set and the
weighto, , is set to bel. Let I; denote the active set which results from this update, and
let f/ denote the resulting hypothesfg(x) = f:(x) 4+ y: K (x¢,x). The second step of the
update is ashrinkingstep in which we scal¢’ by a coefficienty; € (0,1]. The value of

¢+ is intentionally left unspecified for now. L¢t’ denote the resulting hypothesis, that is,
/= ¢uf]. Settingo; 111 = ¢r0,, forall i € I}, we can write,

V(x) = Y oirnyiK(xi,x) .

el

The third and last step of the update is the removal step discussed above. That s, if the bud-
get constraint is violated ar|d;| > B thenI;;, is setto bel] \ {r,} wherer, = min I].
Otherwise [;11 simply equald;. The recursive definition of the weight , can be unrav-

eled to give the following explicit formg; ; =]'[jeIH A j>i @5 If the shrinking coeffi-
cients¢, are sufficiently small, then the example weighis decrease rapidly with, and
particularly the weight of the oldest active example can be made arbitrarily small. Thus, if
¢, is small enough, then the removal step is guaranteed not to cause any significant damage.
Alas, aggressively shrinking the online hypothesis with every update might itself degrade
the performance of the online hypothesis and therefphould not be set too small. The
delicate balance between safe removal of the oldest example and over-aggressive scaling is
our main challenge. To formalize this tradeoff, we begin with the mistake bound in Thm. 1
and investigate how it is effected by the shrinking and removal steps.

We focus first on the removal step. Létdenote the set of rounds on which the Forgetron
makes a prediction mistake and define the function,

(o, ¢, pu) = (0¢)>+20¢(1—gpu) .

Let¢ € J be a round on which/;| = B. On this round, example is removed from the
active set. Lej; = y., f{(x,,) be the signed margin attained lfon the active example
being removed. Finally, we abbreviate,

U, — \Ij(arhta(btaﬂt) ifteJ A |It|:B
ET0 otherwise

Lemma 1 below states that removing examplgom the active set on rourtdncreases the
mistake bound by;. As expectedy, decreases with the weight of the removed example,
or,++1. In addition, it is clear from the definition of, that i; also plays a key role in
determining whethex,, can be safely removed from the active set. We note in passing
that [2] used a heuristic criterion similar tg to dynamically choose which active example
to remove on each online round.

Turning to the shrinking step, for evetye J we define,

1 if || fesal| = U
O = ¢ Ot it |fill <U A finall <U
SAEL i | > U A | femal <U

Lemma 1 below also states that applying the shrinking step on ronnckases the mistake
bound byU? log(1/®;). Note that if|| ;1| > U then®; = 1 and the shrinking step on
roundt has no effect on our mistake bound. Intuitively, this is due to the fact that, in
this case, the shrinking step does not make the norifa,af smaller than the norm of our
competitorg.

Lemma 1. Let(x1,v1),.-., (xr,yr) be a sequence of examples such thgk;, x;) < 1
for all t and assume that this sequence is presented to the Forgetron with a budget constraint

B. Letg be a function it x for which||g|| < U, and define; = £(g; (x;, y:)). Then,

T
M < <||g|2+2 Z&) + (Z U, + U? Zlog(l/fbt)>
t=1

tedJ teJ

The first term in the bound of Lemma 1 is identical to the mista&tend of the standard
Perceptron, given in Thm. 1. The second term is the consequence of the removal and
shrinking steps. If we set the shrinking coefficients in such a way that the second term is at

most, then the bound in Lemma 1 reducesi < ||g[|? + 2, £¢ + 2. This can be

restated ad/ < 2||g[* + 4>, /,, which is twice the bound of the Perceptron algorithm.
The next lemma states sufficient conditionsigrunder which the second term in Lemma 1
is indeed upper bounded BY.

Lemma 2. Assume that the conditions of Lemma 1 hold and that 83. If the shrinking
coefficientsp; are chosen such that,

log(B + 1)
2(B+1) ’

A

15
Z‘I/t < ﬁM and ZIOg(l/(I)t) <

teJ tedJ
then the following holds,>", ., ¥, + U? 3", ;log (1/®;) < & .

In the next section, we define the specific mechanism used by the Forgetron algorithm to
choose the shrinking coefficients. Then, we conclude our analysis by arguing that this
choice satisfies the sufficient conditions stated in Lemma 2, and obtain a mistake bound as
described above.

4 The Forgetron Algorithm

We are now ready to define the specific choiceppfused by the Forgetron algorithm.

On each round, the Forgetron choogggo be the maximal value if0, 1] for which the
damage caused by the removal step is still manageable. To clarify our construction, define
Jy={ieJ : i<t}handM; = |J;|. In words,J; is the set of rounds on which the
algorithm made a mistake up until roundand M, is the size of this set. We can now
rewrite the first condition in Lemma 2 as,

15
v, < — .
DV < oo My)
teJr

Instead of the above condition, the Forgetron enforces the following stronger condition,

15
) 1,...,T v, < —M,; . 4
Vi € {)) }7 2;; t = 39 ()

This is done as follows. Defin€); = >_,.;, V.. Letidenote a round on which the
algorithm makes a prediction mistake and on which an example must be removed from
the active set. Thé&th constraint in Eq. (4) can be rewritten 85 + Q; < },}—‘2) M;. The
Forgetron sets); to be the maximal value if0, 1] for which this constraint holds, namely,

¢; = max {¢ € (0,1] : U(oy,, ¢, i) + Q; < 22M;}. Note thatQ; does not depend

on ¢ and that¥ (o, ;, ¢, 1;) is & quadratic expression i Therefore, the value af; can

be found analytically. The pseudo-code of the Forgetron algorithm is given in Fig. 1.

Having described our algorithm, we now turn to its analysis. To prove a mistake bound
it suffices to show that the two conditions stated in Lemma 2 hold. The first condition of
the lemma follows immediately from the definition ¢f. Using strong induction on the
size of J, we can show that the second condition holds as well. Using these two facts, the
following theorem follows as a direct corollary of Lemma 1 and Lemma 2.

INPUT: Mercer kernelK (-, -) ; budget parametdB > 0
INTIALIZE: 1 =0 ; f1i=0;Q1=0; My=0
For t=1,2,...
receive instance; ; predictlabel: sighf;(x:))
receive correct labe};

If v fi(x¢) >0
setlyy1 =1, Quy1 = Q, My = My—q, andVie I, seto; 111 =0y
Else
setMy = M; 1+ 1
(1) setl; =L U{t}
If |I]] < B
setly1 =1, Quy1 = Quoer =1, and Vi € Iy Seto; 141 = 04y
Else
(2) definer; = min I,
choosep; = max{¢ € (0,1]: V(o ¢, ¢, i) + Q¢ < 53 My}
set oy, =1andVi € I] seto; 41 = g0y
setQiy1 = Q¢ + ¥y
(3) setliy1 =1\ {r:}

definele = Zi€lt+1 U'L,H»lyiK(xia)

Figure 1: The Forgetron algorithm.

Theorem 2. Let(x1,41), - .., (xr,yr) be a sequence of examples such figk;, x;) < 1

for all t. Assume that this sequence is presented to the Forgetron algorithm from Fig. 1 with
a budget parameteB > 83. Letg be a function inHx for which||g|| < U, whereU =

1V (B +1)/log(B + 1), and define; = £(g; (x:,y:)). Then, the number of prediction
mistakes made by the Forgetron on this sequence is at most,

T
M < 2|gll* + 4> 4

t=1
5 Experiments and Discussion

In this section we present preliminary experimental results which demonstrate the mer-
its of the Forgetron algorithm. We compared the performance of the Forgetron with the
method described in [2], which we abbreviate by CKS. When the CKS algorithm exceeds
its budget, it removes the active example whose margin would be the largest after the re-
moval. Our experiment was performed with two standard datasets: the MNIST dataset,
which consists of 60,000 training examples, and the census-income (adult) dataset, with
200,000 examples. The labels of the MNIST dataset are the 10 digit classes, while the set-
ting we consider in this paper is that of binary classification. We therefore generated binary
problems by splitting theé0 labels into two sets of equal size in all possible ways, totaling
(10)/2 = 126 classification problems. For each budget value, we ran the two algorithms on

all 126 binary problems and averaged the results. The labels in the census-income dataset
are already binary, so we ran the two algorithms on 10 different permutations of the ex-
amples and averaged the results. Both algorithms used a fifth degree non-homogeneous
polynomial kernel. The results of these experiments are summarized in Fig. 2. The ac-
curacy of the standard Perceptron (which does not deperfd)ds marked in each plot

o

o
N
a

= FOrgetron = FOrgetron
=usCKS 0.3 =usCKS
.

.

. L
L
L
",
",
N,
.
v,

average error
=)
i o
o N
average error

o
o

o
o
o

1000 2000 3000 4000 5000 6000 200 400 600 800 1000 1200 1400 1600 1800
budget size - B budget size - B

Figure 2:The error of different budget algorithms as a function of the budgetBiaa the census-
income (adult) dataset (left) and on the MNIST dataset (right). The Perceptron’s active set reaches
a size of 14,626 for census-income and 1,886 for MNIST. The Perceptron’s error is marked with a
horizontal dashed black line.

using a horizontal dashed black line. Note that the Forgetron outperforms CKS on both
datasets, especially when the valugis small. In fact, on the census-income dataset, the
Forgetron achieves almost the same performance as the Perceptron with only a fifth of the
active examples. In contrast to the Forgetron, which performs well on both datasets, the
CKS algorithm performs rather poorly on the census-income dataset. This can be partly
attributed to the different level of difficulty of the two classification tasks. It turns out that
the performance of CKS deteriorates as the classification task becomes more difficult. In
contrast, the Forgetron seems to perform well on both easy and difficult classification tasks.

In this paper we described the Forgetron algorithm which is a kernel-based online learning
algorithm with a fixed memory budget. We proved that the Forgetron is competitive with
any hypothesis whose norm is upper boundedby= 1,/(B+1)/log(B +1). We
further argued that no algorithm with a budget®factive examples can be competitive
with every hypothesis whose norm {¢B + 1, on every input sequence. Bridging the
small gap betweety and+/ B + 1 remains an open problem. The analysis presented in
this paper can be used to derive a family of online algorithms of which the Forgetron is
only one special case. This family of algorithms, as well as complete proofs of our formal
claims and extensive experiments, will be presented in a long version of this paper.

References

[1] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive
aggressive algorithms. Technical report, The Hebrew University, 2005.

[2] K. Crammer, J. Kandola, and Y. Singer. Online classification on a butiges 2003.

[3] C. Gentile. A new approximate maximal margin classification algorithvilR, 2001.

[4] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernd<EE
Transactions on Signal Processirg2(8):2165-2176, 2002.

[5] Y. Liand P. M. Long. The relaxed online maximum margin algoritiPS 1999.

[6] F. Rosenblatt. The Perceptron: A probabilistic model for information storage and
organization in the brairPsychological Reviev$5:386—407, 1958.

[7]1 S. Shalev-Shwartz and Y. Singer. A new perspective on an old perceptron algorithm.
COLT, 2005.

[8] V. N. Vapnik. Statistical Learning TheoryWiley, 1998.

[9] J. Weston, A. Bordes, and L. Bottou. Online (and offline) on an even tighter budget.
AISTATS2005.

