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Abstract 

We measure the ability of human observers to predict the next datum 
in a sequence that is generated by a simple statistical process 
undergoing change at random points in time. Accurate performance 
in this task requires the identification of changepoints. We assess 
individual differences between observers both empirically, and 
using two kinds of models: a Bayesian approach for change detection 
and a family of cognitively plausible fast and frugal models. Some 
individuals detect too many changes and hence perform 
sub-optimally due to excess variability. Other individuals do not 
detect enough changes, and perform sub-optimally because they fail 
to notice short-term temporal trends. 

1  Introduction 

Decision-making often requires a rapid response to change. For example, stock 
analysts need to quickly detect changes in the market in order to adjust investment 
strategies. Coaches need to track changes in a player’s performance in order to adjust 
strategy. When tracking changes, there are costs involved when either more or less 
changes are observed than actually occurred. For example, when using an overly 
conservative change detection criterion, a stock analyst might miss important 
short-term trends and interpret them as random fluctuations instead. On the other 
hand, a change may also be detected too readily. For example, in basketball, a player 
who makes a series of consecutive baskets is often identified as a “hot hand” player 
whose underlying ability is perceived to have suddenly increased [1,2]. This might 
lead to sub-optimal passing strategies, based on random fluctuations.  

We are interested in explaining individual differences in a sequential prediction task. 
Observers are shown stimuli generated from a simple statistical process with the task 
of predicting the next datum in the sequence. The latent parameters of the statistical 
process change discretely at random points in time. Performance in this task depends 
on the accurate detection of those changepoints, as well as inference about future 
outcomes based on the outcomes that followed the most recent inferred changepoint. 
There is much prior research in statistics on the problem of identifying changepoints 
[3,4,5]. In this paper, we adopt a Bayesian approach to the changepoint identification 
problem and develop a simple inference procedure to predict the next datum in a 
sequence. The Bayesian model serves as an ideal observer model and is useful to 
characterize the ways in which individuals deviate from optimality.  



 

The plan of the paper is as follows. We first introduce the sequential prediction task 
and discuss a Bayesian analysis of this prediction problem. We then discuss the results 
from a few individuals in this prediction task and show how the Bayesian approach 
can capture individual differences with a single “twitchiness” parameter that 
describes how readily changes are perceived in random sequences. We will show that 
some individuals are too twitchy: their performance is too variable because they base 
their predictions on too little of the recent data.  Other individuals are not twitchy 
enough, and they fail to capture fast changes in the data. We also show how behavior 
can be explained with a set of fast and frugal models [6]. These are cognitively 
realistic models that operate under plausible computational constraints. 

2  A predict ion task with mult iple  changepoints  

In the prediction task, stimuli are presented sequentially and the task is to predict the 
next stimulus in the sequence. After t trials, the observer has been presented with 
stimuli y1, y2, …, yt and the task is to make a prediction about yt+1. After the prediction 
is made, the actual outcome yt+1 is revealed and the next trial proceeds to the 
prediction of yt+2. This procedure starts with y1 and is repeated for T trials. 

The observations yt are D-dimensional vectors with elements sampled from binomial 
distributions.  The parameters of those distributions change discretely at random 
points in time such that the mean increases or decreases after a change point. This 
generates a sequence of observation vectors, y1, y2, …, yT, where each yt = {yt,1 … 

yt,D}. Each of the yt,d is sampled from a binomial distribution Bin(θt,d,K), so 0 ≤ yt,d ≤ 

K.  The parameter vector θt ={θt,1 … θt,D} changes depending on the locations of the 

changepoints. At each time step, 
t
x is a binary indicator for the occurrence of a 

changepoint occurring at time t+1. The parameter α determines the probability of a 
change occurring in the sequence. The generative model is specified by the following 
algorithm: 

 

1. For d=1..D sample θ1,d from a Uniform(0,1) distribution 

2. For t=2..T, 

(a) Sample xt-1 from a Bernoulli(α) distribution  

(b) If xt-1=0, then θt=θt-1, else 

for d=1..D sample θt,d from a Uniform(0,1) distribution 

(c) for d=1..D, sample yt from a Bin(θt,d,K) distribution  

 

Table 1 shows some data generated from the changepoint model with T=20, α=.1,and 

D=1. In the prediction task, y will be observed, but x and θ are not. 

 

Table 1: Example data 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

x 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

θ .68 .68 .68 .68 .48 .48 .48 .74 .74 .74 .74 .74 .74 .19 .19 .87 .87 .87 .87 .87

y 9 7 8 7 4 4 4 9 8 3 6 7 8 2 1 8 9 9 8 8  

 



 

3  A Bayesian predict ion model  

In both our Bayesian and fast-and-frugal analyses, the prediction task is decomposed 
into two inference procedures. First, the changepoint locations are identified. This is 
followed by predictive inference for the next outcome based on the most recent 
changepoint locations. Several Bayesian approaches have been developed for 
changepoint problems involving single or multiple changepoints [3,5]. We apply a 
Markov Chain Monte Carlo (MCMC) analysis to approximate the joint posterior 

distribution over changepoint assignments x while integrating out θ. Gibbs sampling 
will be used to sample from this posterior marginal distribution. The samples can then 
be used to predict the next outcome in the sequence.  

3 .1  Inference for  changepo int  as s ignments .  

To apply Gibbs sampling, we evaluate the conditional probability of assigning a 
changepoint at time i, given all other changepoint assignments and the current α value. 

By integrating out θ, the conditional probability is 
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We initialize the Gibbs sampler by sampling each xt from a Bernoulli(α) distribution. 
All changepoint assignments are then updated sequentially by the Gibbs sampling 
equation above. The sampler is run for M iterations after which one set of changepoint 
assignments is saved. The Gibbs sampler is then restarted multiple times until S 
samples have been collected.    

Although we could have included an update equation for α, in this analysis we treat α 
as a known constant. This will be useful when characterizing the differences between 
human observers in terms of differences in α.  



 

3 .2  Predic tive  in ference  

The next latent parameter value θt+1 and outcome yt+1 can be predicted on the basis of 
observed outcomes that occurred after the last inferred changepoint: 
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where t* is the location of the most recent change point. By considering multiple 
Gibbs samples, we get a distribution over outcomes yt+1. We base the model 
predictions on the mean of this distribution.  

3 .3  I l lus tra t ion  o f  mode l  per formance  

Figure 1 illustrates the performance of the model on a one dimensional sequence 

(D=1) generated from the changepoint model with T=160, α=0.05, and K=10. The 
Gibbs sampler was run for M=30 iterations and S=200 samples were collected. The 
top panel shows the actual changepoints (triangles) and the distribution of 
changepoint assignments averaged over samples. The bottom panel shows the 

observed data y (thin lines) as well as the θ values in the generative model (rescaled 
between 0 and 10).  

At locations with large changes between observations, the marginal changepoint 
probability is quite high. At other locations, the true change in the mean is very small, 
and the model is less likely to put in a changepoint. The lower right panel shows the 

distribution over predicted θt+1 values.  
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Figure 1. Results of model simulation.  

 

4  Predict ion experiment 

We tested performance of 9 human observers in the prediction task. The observers 
included the authors, a visitor, and one student who were aware of the statistical 
nature of the task as well as naïve students. The observers were seated in front of an 
LCD touch screen displaying a two-dimensional grid of 11 x 11 buttons. The 
changepoint model was used to generate a sequence of T=1500 stimuli for two 
binomial variables y1 and y2 (D=2, K=10). The change probability α was set to 0.1. 
The two variables y1 and y2 specified the two-dimensional button location. The same 
sequence was used for all observers. 

On each trial, the observer touched a button on the grid displayed on the touch screen. 
Following each button press, the button corresponding to the next {y1,y2} outcome in 
the sequence was highlighted. Observers were instructed to press the button that best 
predicted the next location of the highlighted button. The 1500 trials were divided into 



 

three blocks of 500 trials. Breaks were allowed between blocks. The whole 
experiment lasted between 15 and 30 minutes. Figure 2 shows the first 50 trials from 
the third block of the experiment. The top and bottom panels show the actual 
outcomes for the y1 and y2 button grid coordinates as well as the predictions for two 
observers (SB and MY). The figure shows that at trial 15, the y1 and y2 coordinates 
show a large shift followed by an immediate shift in observer’s MY predictions (on 
trial 16). Observer SB waits until trial 17 to make a shift. 
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Figure 2. Trial by trial predictions from two observers.  

 

4 .1  Task error   

We assessed prediction performance by comparing the prediction with the actual 
outcome in the sequence. Task error was measured by normalized city-block distance  
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where yO
 represents the observer’s prediction. Note that the very first trial is excluded 

from this calculation. Even though more suitable probabilistic measures for prediction 
error could have been adopted, we wanted to allow comparison of observer’s 
performance with both probabilistic and non-probabilistic models.  Task error ranged 
from 2.8 (for participant MY) to 3.3 (for ML).  We also assessed the performance of 
five models – their task errors ranged from 2.78 to 3.20.  The Bayesian models 
(Section 3) had the lowest task errors, just below 2.8. This fits with our definition of 
the Bayesian models as “ideal observer” models – their task error is lower than any 
other model’s and any human observer’s task error.  The fast and frugal models 
(Section 5) had task errors ranging from 2.85 to 3.20. 

5  Modeling Results  

We will refer to the models with the following letter codes: B=Bayesian Model, 
LB=limited Bayesian model, FF1..3=fast and frugal models 1..3. We assessed model 
fit by comparing the model’s prediction against the human observers’ predictions, 
again using a normalized city-block distance  
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where yM
 represents the model’s prediction. The model error for each individual 

observer is shown in Figure 3. It is important to note that because each model is 
associated with a set of free parameters, the parameters optimized for task error and 
model error are different. For Figure 3, the parameters were optimized to minimize 
Equation (5) for each individual observer, showing the extent to which these models 
can capture the performance of individual observers, not necessarily providing the 
best task performance. 
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Figure 3. Model error for each individual observer.
1
  

 

5 .1  Bayes ian pred ict ion  mode l s  

At each trial t, the model was provided with the sequence of all previous outcomes. 
The Gibbs sampling and inference procedures from Eq. (2) and (3) were applied with 
M=30 iterations and S=200 samples. The change probability α was a free parameter. In 
the full Bayesian model, the whole sequence of observations up to the current trial is 
available for prediction, leading to a memory requirement of up to T=1500 trials – a 
psychologically unreasonable assumption. We therefore also simulated a limited 
Bayesian model (LB) where the observed sequence was truncated to the last 10 
outcomes.  The LB model showed almost no decrement in task performance compared 
to the full Bayesian model.  Figure 3 also shows that it fit human data quite well.  

5 .2  Ind iv idua l  Di f ferences  

The right-hand panel of Figure 4 plots each observer’s task error as a function of the 
mean city-block distance between their subsequent button presses.  This shows a clear 
U-shaped function.  Observers with very variable predictions (e.g., ML and DN) had 
large average changes between successive button pushes, and also had large task 
error: These observers were too “twitchy”.  Observers with very small average button 
changes (e.g., SB and NP) were not twitchy enough, and also had large task error.  
Observers in the middle had the lowest task error (e.g., MS and MY).  The left-hand 
panel of Figure 4 shows the same data, but with the x-axis based on the Bayesian 
model fits.  Instead of using mean button change distance to index twitchiness (as in 

                                                        
1 Error bars indicate bootstrapped 95% confidence intervals. 



 

the right-hand panel), the left-hand panel uses the estimated α parameters from the 
Bayesian model.  A similar U-shaped pattern is observed: individuals with too large or 
too small α estimates have large task errors. 
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Figure 4. Task error vs. “twitchiness”. Left-hand panel indexes twitchiness using 
estimated α parameters from Bayesian model fits. Right-hand panel uses mean 
distance between successive predictions. 

 

5 .3  Fast -and-Fruga l  (FF)  pred ic t ion  mode l s   

These models perform the prediction task using simple heuristics that are cognitively 
plausible. The FF models keep a short memory of previous stimulus values and make 
predictions using the same two-step process as the Bayesian model. First, a decision is 

made as to whether the latent parameter θ has changed. Second, remembered stimulus 
values that occurred after the most recently detected changepoint are used to generate 
the next prediction. 

A simple heuristic is used to detect changepoints: If the distance between the most 
recent observation and prediction is greater than some threshold amount, a change is 
inferred. We defined the distance between a prediction (p) and an observation (y) as 

the difference between the log-likelihoods of y assuming θ=p and θ=y.  Thus, if fB(.|θ, 
K) is the binomial density with parameters θ and K, the distance between observation 
y and prediction p is defined as d(y,p)=log(fB(y|y,K))-log(fB(y|p,K)). A changepoint on 
time step t+1 is inferred whenever d(yt,pt)>C. The parameter C governs the 
twitchiness of the model predictions.  If C is large, only very dramatic changepoints 
will be detected, and the model will be too conservative.  If C is small, the model will 
be too twitchy, and will detect changepoints on the basis of small random fluctuations. 

Predictions are based on the most recent M observations, which are kept in memory, 
unless a changepoint has been detected in which case only those observations 
occurring after the changepoint are used for prediction.  The prediction for time step 
t+1 is simply the mean of these observations, say p.  Human observers were reticent to 
make predictions very close to the boundaries.  This was modeled by allowing the FF 
model to change its prediction for the next time step, yt+1, towards the mean prediction 
(0.5).  This change reflects a two-way bet.  If the probability of a change occurring is 

α, the best guess will be 0.5 if that change occurs, or the mean p if the change does not 

occur.  Thus, the prediction made is actually yt+1=1/2 α+(1-α)p.  Note that we do not 

allow perfect knowledge of the probability of a changepoint, α.  Instead, an estimated 

value of α is used based on the number of changepoints detected in the data series up 
to time t. 



 

The FF model nests two simpler FF models that are psychologically interesting.  If the 
twitchiness threshold parameter C becomes arbitrarily large, the model never detects a 
change and instead becomes a continuous running average model.  Predictions from 
this model are simply a boxcar smooth of the data. Alternatively, if we assume no 
memory the model must based each prediction on only the previous stimulus (i.e., 
M=1).  Above, in Figure 3, we labeled the complete FF model as FF1, the boxcar 
model as FF2 and the memoryless model FF3. 

Figure 3 showed that the complete FF model (FF1) fit the data from all observers 
significantly better than either the boxcar model (FF2) or the memoryless model 
(FF3).  Exceptions were observers PH, DN and ML, for whom all three FF model fit 
equally well.  This result suggests that our observers were (mostly) doing more than 
just keeping a running average of the data, or using only the most recent observation.  
The FF1 model fit the data about as well as the Bayesian models for all observers 
except MY and MS.  Note that, in general, the FF1 and Bayesian model fits are very 
good: the average city block distance between the human data and the model 
prediction is around 0.75 (out of 10) buttons on both the x- and y-axes. 

6  Conclusion 

We used an online prediction task to study changepoint detection.  Human observers 
had to predict the next observation in stochastic sequences containing random 
changepoints.  We showed that some observers are too “twitchy”: They perform 
poorly on the prediction task because they see changes where only random fluctuation 
exists.  Other observers are not twitchy enough, and they perform poorly because they 
fail to see small changes.  We developed a Bayesian changepoint detection model that 
performed the task optimally, and also provided a good fit to human data when 
sub-optimal parameter settings were used.  Finally, we developed a fast-and-frugal 
model that showed how participants may be able to perform well at the task using 
minimal information and simple decision heuristics. 
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