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Abstract

We present a method for nonparametric regression that performs band-
width selection and variable selection simultaneously. The approach is
based on the technique of incrementally decreasing the bandwidth in di-
rections where the gradient of the estimator with respect to bandwidth
is large. When the unknown function satisfies a sparsity condition, our
approach avoids the curse of dimensionality, achieving the optimal mini-
max rate of convergence, up to logarithmic factors, as if the relevant vari-
ables were known in advance. The method—calledrodeo(regularization
of derivative expectation operator)—conducts a sequence of hypothesis
tests, and is easy to implement. A modified version that replaces hard
with soft thresholding effectively solves a sequence of lasso problems.

1 Introduction

Estimating a high dimensional regression function is notoriously difficult due to the
“curse of dimensionality.” Minimax theory precisely characterizes the curse. LetYi =
m(Xi) + ǫi, i = 1, . . . , n whereXi = (Xi(1), . . . , Xi(d)) ∈ R

d is ad-dimensional
covariate,m : R

d → R is the unknown function to estimate, andǫi ∼ N(0, σ2). Then if
m is in W2(c), thed-dimensional Sobolev ball of order two and radiusc, it is well known
that

lim inf
n→∞

n4/(4+d) inf
bmn

sup
m∈W2(c)

R(m̂n,m) > 0 , (1)

whereR(m̂n,m) = Em

∫
(m̂n(x)−m(x))2 dx is the risk of the estimatêmn constructed

on a sample of sizen (Györfi et al. 2002). Thus, the best rate of convergence isn−4/(4+d),
which is impractically slow ifd is large.

However, for some applications it is reasonable to expect that the true function only depends
on a small number of the total covariates. Suppose thatm satisfies such a sparseness
condition, so thatm(x) = m(xR) wherexR = (xj : j ∈ R), R ⊂ {1, . . . , d} is a subset
of thed covariates, of sizer = |R| ≪ d. We call{xj}j∈R the relevant variables. Under
this sparseness assumption we can hope to achieve the better minimax convergence rate of
n−4/(4+r) if the r relevant variables can be isolated. Thus, we are faced with the problem
of variable selection in nonparametric regression.

A large body of previous work has addressed this fundamental problem, which has led
to a variety of methods to combat the curse of dimensionality. Many of these are based



on very clever, though often heuristic techniques. For additive models of the form
f(x) =

∑
j fj(xj), standard methods like stepwise selection,Cp and AIC can be used

(Hastie et al. 2001). For spline models, Zhang et al. (2005) use likelihood basis pur-
suit, essentially the lasso adapted to the spline setting. CART (Breiman et al. 1984) and
MARS (Friedman 1991) effectively perform variable selection as part of their function fit-
ting. More recently, Li et al. (2005) use independence testing for variable selection and
Bühlmann and Yu (2005) introduced a boosting approach. While these methods have met
with varying degrees of empirical success, they can be challenging to implement and de-
manding computationally. Moreover, these methods are typically difficult to analyze the-
oretically, and so often come with no formal guarantees. Indeed, the theoretical analysis
of sparseparametricestimators such as the lasso (Tibshirani 1996) is difficult, and only
recently has significant progress been made on this front (Donoho 2004; Fu and Knight
2000).

In this paper we present a new approach to sparse nonparametric function estimation that
is both computationally simple and amenable to theoretical analysis. We call the general
frameworkrodeo, for regularization of derivative expectation operator. It is based on the
idea that bandwidth and variable selection can be simultaneously performed by computing
the infinitesimal change in a nonparametric estimator as a function of the smoothing pa-
rameters, and then thresholding these derivatives to effectively get a sparse estimate. As
a simple version of this principle we use hard thresholding, effectively carrying out a se-
quence of hypothesis tests. A modified version that replaces testing with soft thresholding
effectively solves a sequence of lasso problems. The potential appeal of this approach is
that it can be based on relatively simple and theoretically well understood nonparametric
techniques such as local linear smoothing, leading to methods that are simple to implement
and can be used in high dimensional problems. Moreover, we show that the rodeo can
achieve near optimal minimax rates of convergence, and therefore circumvents the curse of
dimensionality when the true function is indeed sparse. When applied in one dimension,
our method yields a locally optimal bandwidth. We present experiments on both synthetic
and real data that demonstrate the effectiveness of the new approach.

2 Rodeo: The Main Idea

The key idea in our approach is as follows. Fix a pointx and letm̂h(x) denote an estimator
of m(x) based on a vector of smoothing parametersh = (h1, . . . , hd). If c is a scalar,
then we writeh = c to meanh = (c, . . . , c). Let M(h) = E(m̂h(x)) denote the mean of
m̂h(x). For now, assume thatxi is one of the observed data points and thatm̂0(x) = Yi.
In that case,m(x) = M(0) = E(Yi). If P = (h(t) : 0 ≤ t ≤ 1) is a smooth path through
the set of smoothing parameters withh(0) = 0 andh(1) = 1 (or any other fixed, large
bandwidth) then

m(x) = M(0) = M(1)−
∫ 1

0

dM(h(s))

ds
ds = M(1)−

∫ 1

0

〈
D(s), ḣ(s)

〉
ds

whereD(h) = ∇M(h) =
(

∂M
∂hj

, . . . , ∂M
∂hj

)T

is the gradient ofM(h) andḣ(s) = dh(s)
ds is

the derivative ofh(s) along the path. A biased, low variance estimator ofM(1) is m̂1(x).
An unbiased estimator ofD(h) is

Z(h) =

(
∂m̂h(x)

∂h1
, . . . ,

∂m̂h(x)

∂hd

)T

. (2)

The naive estimator

m̂(x) = m̂1(x)−
∫ 1

0

〈
Z(s), ḣ(s)

〉
ds (3)
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Figure 1: The bandwidths for the relevant
variables (h2) are shrunk, while the band-
widths for the irrelevant variables (h1) are
kept relatively large. The simplest rodeo al-
gorithm shrinks the bandwidths in discrete
steps1, β, β2, . . . for some0 < β < 1.

is identically equal tôm0(x) = Yi, which has poor risk since the variance ofZ(h) is large
for smallh. However, our sparsity assumption onm suggests that there should be paths for
which D(h) is also sparse. Along such a path, we replaceZ(h) with an estimatorD̂(h)
that makes use of the sparsity assumption. Our estimate ofm(x) is then

m̃(x) = m̂1(x)−
∫ 1

0

〈
D̂(s), ḣ(s)

〉
ds . (4)

To implement this idea we need to do two things: (i) we need to find a sparse path and (ii)
we need to take advantage of this sparseness when estimatingD along that path.

The key observation is that ifxj is irrelevant, then we expect that changing the bandwidth
hj for that variable should cause only a small change in the estimatorm̂h(x). Conversely,
if xj is relevant, then we expect that changing the bandwidthhj for that variable should
cause a large change in the estimator. Thus,Zj = ∂m̂h(x)/∂hj should discriminate be-
tween relevant and irrelevant covariates. To simplify the procedure, we can replace the
continuum of bandwidths with a discrete set where eachhj ∈ B = {h0, βh0, β

2h0, . . .}
for some0 < β < 1. Moreover, we can proceed in a greedy fashion by estimatingD(h)

sequentially withhj ∈ B and settingD̂j(h) = 0 whenhj < ĥj , whereĥj is the firsth
such that|Zj(h)| < λj(h) for some thresholdλj . This greedy version, coupled with the
hard threshold estimator, yields̃m(x) = m̂bh(x). A conceptual illustration of the idea is
shown in Figure 1. This idea can be implemented using a greedy algorithm, coupled with
the hard threshold estimator, to yield a bandwidth selection procedure based on testing.

This approach to bandwidth selection is similar to that of Lepski et al. (1997), which uses a
more refined test leads to estimators that achieve good spatial adaptation over large function
classes. Our approach is also similar to a method of Ruppert (1997) that uses a sequence of
decreasing bandwidths and then estimates the optimal bandwidth by estimating the mean
squared error as a function of bandwidth. Our greedy approach tests whether an infinites-
imal change in the bandwidth from its current setting leads to a significant change in the
estimate, and is more easily extended to a practical method in higher dimensions. Related
work of Hristache et al. (2001) focuses on variable selection in multi-index models rather
than on bandwidth estimation.

3 Rodeo using Local Linear Regression

We now present the multivariate case in detail, using local linear smoothing as the basic
method since it is known to have many good properties. Letx = (x(1), . . . , x(d)) be some
point at which we want to estimatem. Let m̂H(x) denote the local linear estimator of



m(x) using bandwidth matrixH. Thus,

m̂H(x) = eT
1 (XT

x WxXx)−1XT
x WxY, Xx =




1 (X1 − x)T

...
...

1 (Xn − x)T


 (5)

wheree1 = (1, 0, . . . , 0)T , andWx is the diagonal matrix with(i, i) elementKH(Xi − x)
and KH(u) = |H|−1K(H−1u). The estimatorm̂H can be written asm̂H(x) =∑n

i=1 G(Xi, x, h)Yi where

G(u, x, h) = eT
1 (XT

x WxXx)−1

(
1

(u− x)T

)
KH(u− x) (6)

is called theeffective kernel. We assume that the covariates are random with sampling den-
sity f(x), and make the same assumptions as Ruppert and Wand (1994) in their analysis
of the bias and variance of local linear regression. In particular, (i) the kernelK has com-
pact support with zero odd moments and

∫
uu⊤K(u) du = ν2(K)I and (ii) the sampling

densityf(x) is continuously differentiable and strictly positive. In the version of the algo-
rithm that follows, we takeK to be a product kernel andH to be diagonal with elements
h = (h1, . . . , hd).

Our method is based on the statistic

Zj =
∂m̂h(x)

∂hj
=

n∑

i=1

Gj(Xi, x, h)Yi (7)

whereGj(u, x, h) = ∂G(u,x,h)
∂hj

. Straightforward calculations show that

Zj =
∂m̂h(x)

∂hj
= = e⊤1 (X⊤

x WxXx)−1X⊤
x

∂Wx

∂hj
(Y −Xxα̂) (8)

whereα̂ = (X⊤
x WxXx)−1X⊤

x WxY is the coefficient vector for the local linear fit. Note
that the factor|H|−1 =

∏d
i=1 1/hi in the kernel cancels in the expression form̂, and

therefore we can ignore it in our calculation ofZj . Assuming a product kernel we have

Wx = diag




d∏

j=1

K((X1j − xj)/hj), . . . ,

d∏

j=1

K((Xnj − xj)/hj)


 (9)

and∂Wx/∂hj = WxDj where

Dj = diag

(
∂ log K((X1j − xj)/hj)

∂hj
, . . . ,

∂ log K((Xnj − xj)/hj)

∂hj

)
(10)

and thusZj = e⊤1 (X⊤
x WxXx)−1X⊤

x WxDj(Y −Xxα̂). For example, with the Gaussian
kernelK(u) = exp(−u2/2) we haveDj = 1

h3

j

diag
(
(X1j − xj)

2, . . . , (Xnj − xj)
2
)
.

Let

µj ≡ µj(h) = E(Zj |X1, . . . , Xn) =

n∑

i=1

Gj(Xi, x, h)m(Xi) (11)

s2
j ≡ s2

j (h) = V(Zj |X1, . . . , Xn) = σ2
n∑

i=1

Gj(Xi, x, h)2. (12)

Then the hard thresholding version of the rodeo algorithm is given in Figure 2.

The algorithm requires that we insert an estimateσ̂ of σ in (12). One estimate ofσ can
be obtained by generalizing a method of Rice (1984). Fori < ℓ, let diℓ = ‖Xi − Xℓ‖.
Fix an integerJ and letE denote the set of pairs(i, ℓ) corresponding to theJ smallest
values ofdiℓ. Now defineσ̂2 = 1

2J

∑
i,ℓ∈E(Yi − Yℓ)

2. ThenE(σ̂2) = σ2 + bias where



Rodeo: Hard thresholding version

1. Selectparameter0 < β < 1 and initial bandwidthh0 slowly decreasing to zero,
with h0 = Ω

(
1/
√

log log n
)
. Let cn = Ω(1) be a sequence satisfyingdcn =

Ω(log n).

2. Initialize the bandwidths, and activate all covariates:

(a) hj = h0, j = 1, 2, . . . , d.
(b) A = {1, 2, . . . , d}

3. WhileA is nonempty, do for eachj ∈ A:

(a) Compute the estimated derivative expectation:Zj (equation 7) andsj (equa-
tion 12).

(b) Compute the thresholdλj = sj

√
2 log(dcn).

(c) If |Zj | ≥ λj , then sethj ← βhj , otherwise removej fromA.

4. Outputbandwidthsh⋆ = (h1, . . . , hd) and estimator̃m(x) = m̂h⋆(x).

Figure 2: The hard thresholding version of the rodeo, which can be applied using the
derivativesZj of any nonparametric smoother.

bias ≤ D supx

∑
j∈R

∣∣∣∂f(x)
∂xj

∣∣∣ with D = maxi,ℓ∈E ‖Xi − Xℓ‖. There is a bias-variance

tradeoff: largeJ makeŝσ2 positively biased, and smallJ makeŝσ2 highly variable. Note
however that the bias is mitigated by sparsity (smallr). This is the estimator used in our
examples.

4 Analysis

In this section we present some results on the properties of the resulting estimator. For-
mally, we use a triangular array approach so thatf(x), m(x), d andr can all change asn
changes. For convenience of notation we assume that the covariates are numbered such that
the relevant variablesxj correspond to1 ≤ j ≤ r, and the irrelevant variables toj > r. To
begin, we state the following technical lemmas on the mean and variance ofZj .

Lemma 4.1. Suppose thatK is a product kernel with bandwidth vectorh = (h1, . . . , hd).
If the sampling densityf is uniform, thenµj = 0 for all j ∈ Rc. More generally, assuming
thatr is bounded, we have the following whenhj → 0: If j ∈ Rc the derivative of the bias
is

µj =
∂

∂hj
E[m̂H(x)−m(x)] = −tr (HRHR) ν2

2 (∇j log f(x))
2
hj + oP (hj) (13)

where the Hessian ofm(x) isH =

(
HR 0

0 0

)
andHR = diag(h2

1, . . . , h
2
r). Forj ∈ R

we have

µj =
∂

∂hj
E[m̂H(x)−m(x)] = hjν2mjj(x) + oP (hj). (14)

Lemma 4.2. Let C =
(

σ2R(K)
4m(x)

)
whereR(K) =

∫
K(u)2 du. Then, ifhj = o(1),

s2
j = Var(Zj |X1, . . . , Xn) =

C

nh2
j

(
d∏

k=1

1

hk

)(
1 + oP (1)

)
. (15)



These lemmas parallel the calculations of Ruppert and Wand (1994) except for the dif-
ference that the irrelevant variables have different leading terms in the expansions than
relevant variables.

Our main theoretical result characterizes the asymptotic running time, selected bandwidths,
and risk of the algorithm. In order to get a practical algorithm, we need to make assump-
tions on the functionsm andf .

(A1) For some constantk > 0, eachj > r satisfies

∇j log f(x) = O

(
logk n

n1/4

)
(16)

(A2) For eachj ≤ r,
mjj(x) 6= 0 . (17)

Explanation of the Assumptions.To give the intuition behind these assumptions, recall
from Lemma 4.1 that

µj =

{
Ajhj + oP (hj) j ≤ r
Bjhj + oP (hj) j > r

(18)

where
Aj = ν2mjj(x), Bj = −tr(HH)ν2

2(∇j log f(x))2. (19)
Moreover,µj = 0 when the sampling densityf is uniform or the data are on a regular
grid. Consider assumption (A1). Iff is uniform then this assumption is automatically
satisfied since thenµj(s) = 0 for j > r. More generally,µj is approximately proportional
to (∇j log f(x))2 for j > r which implies that|µj | ≈ 0 for irrelevant variables iff
is sufficiently smooth in the variablexj . Hence, assumption (A1) can be interpreted as
requiring thatf is sufficiently smooth in the irrelevant dimensions.

Now consider assumption (A2). Equation (18) ensures thatµj is proportional to
hj |mjj(x)| for smallhj . Since we take the initial bandwidthh0 to be decreasingly slowly
with n, (A2) implies that|µj(h)| ≥ chj |mjj(x)| for some constantc > 0, for sufficiently
largen.

In the following we writeYn = ÕP (an) to mean thatYn = OP (bnan) wherebn is loga-
rithmic in n; similarly, an = Ω̃(bn) if an = Ω(bncn) wherecn is logarithmic inn.

Theorem 4.3. Suppose assumptions (A1) and (A2) hold. In addition, suppose thatdmin =

minj≤r |mjj(x)| = Ω̃(1) anddmax = maxj≤r |mjj(x)| = Õ(1). Then the number of
iterationsTn until the rodeo stops satisfies

P

(
1

4 + r
log1/β(nan) ≤ Tn ≤

1

4 + r
log1/β(nbn)

)
−→ 1 (20)

wherean = Ω̃(1) andbn = Õ(1). Moreover, the algorithm outputs bandwidthsh⋆ that
satisfy

P

(
h⋆

j ≥
1

logk n
for all j > r

)
−→ 1 (21)

and

P

(
h0(nbn)−1/(4+r) ≤ h⋆

j ≤ h0(nan)−1/(4+r) for all j ≤ r
)
−→ 1 . (22)

Corollary 4.4. Under the conditions of Theorem 4.3, the riskR(h⋆) of the rodeo estima-
tor satisfies

R(h⋆) = ÕP

(
n−4/(4+r)

)
. (23)



In the one-dimensional case, this result shows that the algorithm recovers the locally op-
timal bandwidth, giving an adaptive estimator, and in general attains the optimal (up to
logarithmic factors) minimax rate of convergence.

The proofs of these results are given in the full version of the paper.

5 Some Examples and Extensions

Figure 3 illustrates the rodeo on synthetic and real data. The left plot shows the bandwidths
obtained on a synthetic dataset withn = 500 points of dimensiond = 20. The covariates
are generated asxi ∼ Uniform(0, 1), the true function ism(x) = 2(x1+1)2+2 sin(10x2),
andσ = 1. The results are averaged over 50 randomly generated data sets; note that the dis-
played bandwidth paths are not monotonic because of this averaging. The plot shows how
the bandwidths of the relevant variables shrink toward zero, while the bandwidths of the ir-
relevant variables remain large. Simulations on other synthetic data sets, not included here,
are similar and indicate that the algorithm’s performance is consistent with our theoretical
analysis.

The framework introduced here has many possible generalizations. While we have fo-
cused on estimation ofm locally at a pointx, the idea can be extended to carry out global
bandwidth and variable selection by averaging over multiple evaluation pointsx1, . . . , xk.
These could be points interest for estimation, could be randomly chosen, or could be taken
to be identical to the observedXis. In addition, it is possible to consider more general
paths, for example using soft thresholding or changing only the bandwidth corresponding
to the largest|Zj |/λj .

Such a version of the rodeo can be seen as a nonparametric counterpart to least angle
regression (LARS) (Efron et al. 2004), a refinement of forward stagewise regression in
which one adds the covariate most correlated with the residuals of the current fit, in small,
incremental steps. Note first thatZj is essentially the correlation between theYis and the
Gj(Xi, x, h)s (the change in the effective kernel). Reducing the bandwidth is like adding in
more of that variable. Suppose now that we make the following modifications to the rodeo:
(i) change the bandwidths one at a time, based on the largestZ∗

j = |Zj |/λj , (ii) reduce
the bandwidth continuously, rather than in discrete steps, until the largestZ∗

j is equal to the
next largest. Figure 3 (right) shows the result of running this greedy version of the rodeo on
the diabetes dataset used to illustrate LARS. The algorithm averagesZ∗

j over a randomly
chosen set ofk = 100 data points. The resulting variable ordering is seen to be very similar
to, but different from, the ordering obtained from the parametric LARS fit.
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