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Abstract

Probabilistictemporal planning attempts to find good policies for acting
in domains with concurrent durative tasks, multiple uncertain outcomes,
and limited resources. These domains are typically modelled as Markov
decision problems and solved using dynamic programming methods.
This paper demonstrates the application of reinforcement learning — in
the form of a policy-gradient method — to these domains. Our emphasis
is large domains that are infeasible for dynamic programming. Our ap-
proach is to construct simple policies, or agents, for each planning task.
The result is a general probabilistic temporal planner, named the Factored
Policy-Gradient Planner (FPG-Planner), which can handle hundreds of
tasks, optimising for probability of success, duration, and resource use.

1 Introduction

To date, only a few planning tools have attempted to handle general probabilistic temporal
planning problems. These tools have only been able to produce good policies for relatively
trivial examples. We apply policy-gradient reinforcement learning (RL) to these domains
with the goal of creating tools that produce good policies in real-world domains rather than
perfect policies in toy domains. We achieve this by: (1) factoring the policy into simple
independent policies for starting each task; (2) presenting each policy with critical observa-
tions instead of the entire state; (3) using function approximators for each policy; (4) using
local optimisation methods instead of global optimisation; and (5) using algorithms with
memory requirements that are independent of the state space size.

Policy gradient methods do not enumerate states and are applicable to multi-agent settings
with function approximation [1, 2], thus they are a natural match for our approach to han-
dling large planning problems. We use the GPOMDP algorithm [3] to estimate the gradient
of a long-term average reward of the planner’s performance, with respect to the parameters
of each task policy. We show that maximising a simple reward function naturally minimises
plan durations and maximises the probability of reaching the plan goal.

A frequent criticism of policy-gradient methods compared to traditional forward chaining
planners — or even compared to value-based RL methods — is the lack of a clearly inter-
pretable policy. A minor contribution of this paper is a description of how policy-gradient
methods can be used to prune a decision tree over possible policies. After training, the
decision tree can be translated into a list of policy rules.

Previous probabilistic temporal planners include CPTP [4], Prottle [5], Tempastic [6] and a
military operations planner [7]. Most these algorithms use some form of dynamic program-



ming (either RTDP [8] or AO*) to associate values with each state/action pair. However,
this requires values to be stored for each encountered state. Even though these algorithms
do not enumerate the entire state space their ability to scale is limited by memory size. Even
problems with only tens of tasks can produce millions of relevant states. CPTP, Prottle, and
Tempastic minimise either plan duration or failure probability, not both. The FPG-Planner
minimises both of these metrics and can easily optimise over resources too.

2 Probabilistic temporal planning

Tasks are the basic planning unit corresponding to grounded1 durative actions. Tasks have
the effect of setting condition variables to true or false. Each task has a set of preconditions,
effects, resource requirements, and a fixed probability of failure. Durations may be fixed or
dependent on how long it takes for other conditions to be established. A task iseligible to
begin when its preconditions are satisfied and sufficient resources are available. A starting
task may have some immediate effects. As tasks end a set of effects appropriate to the
outcome are applied. Typically, but not necessarily, succeeding tasks set some facts to
true, while failing tasks do nothing or negate facts. Resources are occupied during task
execution and consumed when the task ends. Different outcomes can consume varying
levels of resources. The planning goal is to set a subset of the conditions to a desired value.

The closest work to that presented here is described by Peshkin et al. [1] which describes
how a policy-gradient approach can be applied to multi-agent MDPs. This work lays the
foundation for this application, but does not consider the planning domain specifically. It
is also applied to relatively small domains, where the state space could be enumerated.

Actions in temporal planning consist of launching multiple tasks concurrently. The number
of candidate actions available in a given state is the power set of the tasks that are eligible
to start. That is, withN eligible tasks there are2N possible actions. Current planners
explore this action space systematically, pruning actions that lead to low rewards. When
combined with probabilistic outcomes the state space explosion cripples existing planners
for tens of tasks and actions. A key reason treat each task as an individual policy agent is to
deal with this explosion of the action space. We replace the single agent choosing from the
power-set of eligible tasks with a single simple agent for each task. The policy learnt by
each agent is whether to start its associated task given its observation, independent of the
decisions made by the other agents. This idea alone does not simplify the problem. Indeed,
if the agents received perfect state information they could learn to predict the decision of
the other agents and still act optimally. The significant reduction in complexity arises from:
(1) restricting the class of functions that represent agents, (2) providing only partial state
information, (3) optimising locally, using gradient ascent.

3 POMDP formulation of planning

Our intention is to deliberately use simple agents that only consider partial state informa-
tion. This requires us to explicitly consider partial observability. A finite partially observ-
able Markov decision process consists of: a finite set of statess ∈ S; a finite set of actions
a ∈ A; probabilitiesPr[s′|s,a] of making state transitions→ s′ under actiona; a reward
for each stater(s) : S → R; and a finite set of observation vectorso ∈ O seen by the agent
in place of the complete state descriptions. For this application, observations are drawn
deterministically given the state, but more generally may be stochastic.Goal statesare
states where all the goal state variables are satisfied. Fromfailure statesit is impossible
to reach a goal state, usually because time or resources have run out. These two classes
of state are combined to form the set ofresetstates that produce an immediate reset to the

1Grounded means that tasks do not have parameters that can be instantiated.



initial states0. A single trajectory through the state space consists of many individual trials
that automatically reset tos0 each time a goal state or failure state is reached.

Policies are stochastic, mapping observation vectorso to a probability over actions. LetN
be the number of basic tasks available to the planner. In our setting an actiona is a binary
vector of lengthN . An entry of 1 at indexn means ‘Yes’ begin taskn, and a 0 entry means
‘No’ do not start taskn. The probability of actions isPr[a|o, θ], where conditioning onθ
reflects the fact that the policy is controlled by a set of real valued parametersθ ∈ Rp. This
paper assumes that all stochastic policies (i.e., any values forθ) reach reset states in finite
time when executed froms0. This is enforced by limiting the maximum duration of a plan.
This ensures that the underlying MDP isergodic, a necessary condition for GPOMDP. The
GPOMDP algorithm maximises the long-term average reward

η(θ) = lim
T→∞

1
T

T−1∑
t=0

r(st).

In the context of planning, the instantaneous reward provides the agent with a measure of
progress toward the goal. A simple reward scheme is to setr(s) = 1 for all statess that
represent the goal state, and 0 for all other states. To maximiseη(θ), successful planning
outcomes must be reached as frequently as possible. This has the desired property of
simultaneously minimising plan duration, as well as maximising the probability of reaching
the goal (failure states achieve no reward). It is tempting to provide a negative reward for
failure states, but this can introduce poor local maxima in the form of policies that avoid
negative rewards by avoiding progress altogether. We provide a reward of 1000 each time
the goal is achieved, plus an admissible heuristic reward for progress toward the goal. This
additionalshapingreward provides a reward of 1 for every goal state variable achieved, and
-1 for every goal variable that becomes unset. Policies that are optimal with the additional
shaping reward are still optimal under the basic goal state reward [9].

3.1 Planning state space

For probabilistic temporal planning our state description contains [7]: the state’s absolute
time, a queue of impending events, the status of each task, the truth value of each condition,
and the available resources. In a particular state, only a subset of the eligible tasks will
satisfy all preconditions for execution. We call these taskseligible. When a decision to start
a fixed duration task is made an end-task event is added to a time ordered event queue. The
event queue holds a list of events that the planner is committed to, although the outcome of
those events may be uncertain.

The generation of successor states is shown in Alg. 1. The algorithm begins by starting the
tasks given by the current action, implementing any immediate effects. An end-task event
is added at an appropriate time in the queue. The state update then proceeds to process
events until there is at least one task that is eligible to begin. Events have probabilistic
outcomes. Line 20 of Alg. 1 samples one possible outcome from the distribution imposed
by probabilities in the problem definition. Future states are only generated at points where
tasks can be started. Thus, if an event outcome is processed and no tasks are enabled, the
search recurses to the next event in the queue.

4 Factored Policy-Gradient

We assume the presence of policy agents, parameterised with independent sets of param-
eters for each agentθ = {θ1, . . . , θN}. We seek to adjust the parameters of the policy to
maximise the long-term average rewardη(θ). The GPOMDP algorithm [3] estimates the
gradient∇η(θ) of the long-term average reward with respect to the current set of policy



Alg. 1: findSuccessor(States, Action a)
1: for eachan =’Yes’ in a do
2: s.beginTask(n)
3: s.addEvent(n, s.time+taskDuration(n))
4: end for
5: repeat
6: if s.time> maximum makespanthen
7: s.failureLeaf=true
8: return
9: end if

10: if s.operationGoalsMet()then
11: s.goalLeaf=true
12: return
13: end if
14: if ¬s.anyEligibleTasks()then
15: s.failureLeaf=true
16: return
17: end if
18: event = s.nextEvent()
19: s.time =event.time
20: sampleoutcome from event
21: s.implementEffects(outcome)
22: until s.anyEligibleTasks()

Alg. 2: Gradient Estimator
1: Sets0 to initial state,t = 0, et = [0]
2: while t < T do
3: et = βet−1

4: Generate observationot of st

5: for Each eligible taskn do
6: Sampleatn =Yes oratn =No
7: et = et +∇ log Pr[atn|o, θn]
8: end for
9: Try action at =

{at1, at2, . . . , atN}
10: while mutex prohibitsat do
11: randomly disable task inat

12: end while
13: st+1 = findSuccessor(st,at)
14: ∇̂tη(θ) = ∇̂t−1η(θ)−

1
t+1

(r(st+1)et − ∇̂t−1η(θ))
15: t← t + 1
16: end while
17: Return∇̂T η(θ)

parameters.Once an estimatê∇η(θ) is computed overT simulation steps, we maximise
the long-term average reward with the gradient ascentθ ← θ+α∇̂η(θ), whereα is a small
step size. The experiments in this paper use a line search to determine good values ofα.
We do not guarantee that the best representable policy is found, but our experiments have
produced policies comparable to global methods like real-time dynamic programming [8].

The algorithm works by sampling a single long trajectory through the state space (Fig. 4):
(1) the first state represents time 0 in the plan; (2) the agents all receive the vector observa-
tionot of the current statest; (3) each agent representing an eligible task emits a probability
of starting; (4) each agent samples start or do not start and issues it as a planning action;
(5) the state transition is sampled with Alg. 1; (6) the agents receive the global reward for
the new state action and update their gradient estimates. Steps 1 to 6 are repeatedT times.

Each vector actionat is a combination of independent ‘Yes’ or ‘No’ choices made by each
eligible agent. Each agent is parameterised by an independent set of parameters that make
up θ ∈ Rp: θ1, θ2, . . . , θN . If atn represents the binary decision made by agentn at timet
about whether to start its corresponding task, then the policy factors into

Pr[at|ot, θ] = Pr[at1, . . . , atN |ot, θ1, . . . , θN ]
= Pr[at1|ot, θ1]× · · · × Pr[atN |ot, θN ].

It is not necessary for all agents to receive the same observation, and it may be advantageous
to show different agents different parts of the state, leading to adecentralisedplanning
algorithm. Similar approaches are adopted by Peshkin et al. [1], Tao et al. [2], using policy-
gradient methods to train multi-agent systems. The main requirement for each policy-agent
is that log Pr[atn|ot, θn] be differentiable with respect to the parameters for each choice
task startatn =‘Yes’ or ‘No’. We now describe two such agents.

4.1 Linear approximator agents

One representation of agents is a linear network mapped into probabilities using a logistic
regression function:
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Pr[atn = Y es|ot, θn] =
exp(o>t θn)

exp(o>t θn) + 1
(1)

If the dimension of the observation vector is|o| then each set of parametersθn can be
thought of as an|o| vector that represents the approximator weights for taskn. The log
derivatives, necessary for Alg. 2, are given in [10]. Initially, the parameters are set to small
random values: a near uniform random policy. This encourages exploration of the action
space. Each gradient step typically moves the parameters closer to a deterministic policy.
After some experimentation we chose an observation vector that is a binary description of
the eligible tasks and the state variable truth values plus a constant 1 bit to provide bias to
the agents’ linear networks.

4.2 Decision tree agents

Often we have a selection of potential control rules. A decision tree can represent all
such control rules at the leaves. The nodes are additional parameterised or hardwired rules
that select between different branches, and therefore different control rules. An action
a is selected by starting at the root node and following a path down the tree, visiting a
set of decision nodesD. At each node we either applying a hard coded branch selection
rule, or sample a stochastic branch rule from the probability distribution invoked by the
parameterisation. Assuming the independence of decisions at each node, the probability or
reaching an action leafl equals the product of branch probabilities at each decision node

Pr[a = l|o, θ] =
∏
d∈D

Pr[d′|o, θd], (2)

whered represents the current decision node, andd′ represents the next node visited in the
tree. The final next noded′ is the leafl. The probability of a branch followed as a result
of a hard-coded rule is 1. The individualPr(d′|o, θd) functions can be any differentiable
function of the observation vectoro.

For multi-agent domains, such as our formulation of planning, we have a decision tree for
each task agent. We use the same initial tree (with different parameters), for each agent,
shown in Fig. 3. NodesA, D, F, H represent hard coded rules that switch with probability
one between the Yes and No branches based on a boolean observation that gives the truth
of the statement in the node for the current state. NodesB, C, E, G are parameterised so



that they select branches stochastically. For this application, the probability of choosing
the Yes or No branches is a single parameter logistic function that is independent of the
observations. Parameter adjustments have the simple effect of pruning parts the tree that
represent poor policies, leaving the hard coded rules to choose the best action given the
observation. The policy encoded by the parameter is written in the node label. For example
for task agentn, and decision node C “task duration matters?”, we have the probability

Pr(Y es|o, θn,C) = Pr(Y es|θn,C) =
exp(θn,C)

exp(θn,C) + 1

The log gradient of this function is given in [10]. If set parameters to always select the
dashed branch in Fig. 3 we would be following the policy:if the task IS eligible, and
probability this task success does NOT matter, and the duration of this task DOES matter,
and this task IS fast, then start, otherwise do not start.Apart from being easy to interpret
the optimised decision tree as a set of — possibly stochastic — if-then rules, we can also
encode highly expressive policies with only a few parameters.

4.3 GPOMDP for planning

Alg. 4 describes the algorithm for computinĝ∇η(θ), based on GPOMDP [3]. The vector
quantityet is an eligibility trace. It has dimensionp (the total number of parameters),
and can be thought of as storing the eligibility of each parameter for being reinforced
after receiving a reward. The gradient estimate provably converges to a biased estimate of
∇η(θ) asT → ∞. The quantityβ ∈ [0, 1) controls the degree of bias in the estimate.
As β approaches 1, the bias of the estimates drop to 0. However ifβ = 1, estimates
exhibit infinite variance in the limit asT → ∞. Thus the parameterβ is used to achieve
a bias/variance tradeoff in our stochastic gradient estimates. GPOMDP gradient estimates
have been proven to converge, even under partial observability.

Line 8 computes the log gradient of the sampled action probability and adds the gradient
for then’th agent’s parameters into the eligibility trace. The gradient for parameters not
relating to agentn is 0. We do not computePr[atn|ot, θn] or gradients for tasks with
unsatisfied preconditions. If all eligible agents decidenot to start their tasks, we issue a
null-action. If the state event queue is not empty, we process the next event, otherwise time
is incremented by 1 to ensure all possible policies will eventually reach a reset state.

5 Experiments

5.1 Comparison with previous work

We compare the FPG-Planner with that of our earlier RTDP based planner for military
operations [7], which is based on real-time dynamic programming with [8]. The domains
come from the Australian Defence Science and Technology Organisation, and represent
military operations planning scenarios. There are two problems, the first with 18 tasks
and 12 conditions, and the second with 41 tasks and 51 conditions. The goal is to set the
“Objective island secured” variable to true. There are multiple interrelated tasks that can
lead to the goal state. Tasks fail or succeed with a known probability and can only execute
once, leading to relatively large probabilities of failure even for optimal plans. See [7] for
details. Unless stated, FPG-Planner experiments usedT = 500, 000 gradient estimation
steps andβ = 0.9. Optimisation time was limited to 20 minutes wall clock time on a single
user 3GHz Pentium IV with 1GB ram. All evaluations are based on 10,000 simulated
executions of finalised policies. Results quote the average duration, resource consumption,
and the percentage of plans that terminate in a failure state.

We repeat the comparison experiments 50 times with different random seeds and report



Table 1: Two domains compared with a dynamic programming based planner.

Problem RTDP Factored Linear Factored Tree
Dur Res Fail% Dur Res Fail% Dur Res Fail%

AssaultAve 171 8.0 26.1 105 8.3 26.6 115 8.3 27.1
Assault Best 113 6.2 24.0 93.1 8.7 23.1 112 8.4 25.6
Webber Ave 245 4.4 58.1 193 4.1 57.9 186 4.1 58.0
Webber Best 217 4.2 57.7 190 4.1 57.0 181 4.1 57.3

Table 2: Effect of different observations.

Observation Dur Res Fail%
Eligible & Conds 105 8.3 26.6
Conds only 112 8.1 28.1
Eligible only 112 8.1 29.6

Table 3: Results for the Art45/25 domain.

Policy Dur Res Fail%
Random 394 206 83.4
Naive 332 231 78.6
Linear 121 67 7.4
Dumb Tree 157 92 19.1
Prob Tree 156 62 10.9
Dur Tree 167 72 17.4
Res Tree 136 53 8.50

meanand best results in Table 1. The “Best” plan minimises an arbitrarily chosen com-
bined metric of10× fail% + dur. FPG-Planning with a linear approximator significantly
shortens the duration of plans, without increasing the failure rate. The very simple deci-
sion tree performs less well than than the linear approximator, but better than the dynamic
programming algorithm. This is somewhat surprising given the simplicity of the tree for
each task. The shorter duration for the Webber decision tree is probably due to the slightly
higher failure rate. Plans failing early produces shorter durations.

Table 1 assumes that the observation vectoro presented to linear agents is a binary descrip-
tion of the eligible tasks and the condition truth values plus a constant 1 bit to provide bias
to the agents’ linear networks. Table 2 shows that giving the agents less information in the
observation harms performance.

5.2 Large artificial domains

Each scenario consists ofN tasks andC state variables. The goal state of the synthetic
scenarios is to assert 90% of the state variables, chosen during scenario synthesis, to be
true. See [10] for details. All generated problems have scope for choosing tasks instead of
merely scheduling them. All synthetic scenarios are guaranteed to have at least one policy
which will reach the operation goal assuming all tasks succeed. Even a few tens of tasks
and conditions can generate a state space too large for main memory.

We generated 37 problems, each with 40 tasks and 25 conditions (Art40/25). Although the
number of tasks and conditions is similar to the Webber problem described above, these
problems demonstrate significantly more choices to the planner, making planning non-
trivial. Unlike the initial experiments, all tasks can be repeated as often as necessary so the
overall probability of failure depends on how well the planner chooses and orders tasks to
avoid running out of time and resources. Our RTDP based planner was not able to perform
any significant optimisation in 20m due to memory problems. Thus, to demonstrate FPG-
Planning is having some effect, we compared the optimised policies to two simple policies.
The randompolicy starts each eligible task with probability 0.5. Thenaivepolicy starts
all eligible tasks. Both of these policies suffer from excessive resource consumption and
negative effects that can cause failure.

Table 3 shows that the linear approximator produces the best plans, but it requiresC + 1
parameters per task. The results for the decision tree illustrated in Fig. 3 are given in the



“Prob Tree” row. This tree uses a constant 4 parameters per task, and subsequently requires
fewer operations when computing gradients. The “Dumb” row is a decision stub, with one
parameter per task that simply learns whether to start when eligible. The remaining “Dur”
and “Res” Tree rows re-order the nodes in Fig. 3 to swap the nodesC andE respectively
with nodeB. This tests the sensitivity of the tree to node ordering. There appears to be
significant variation in the results. For example, when node E is swapped with B, the
resultant policies use less resources.

We also performed optimisation of a 200 task, 100 condition problem generated using the
same rules as the Art40/25 domain. The naive policy had a failure rate of 72.4%. No
time limit was applied. Linear network agents (20,200 parameters) optimised for 14 hours,
before terminating with small gradients, and resulted in a plan with 20.8% failure rate. The
decision tree agent (800 parameters) optimised for 6 hours before terminating with a 1.7%
failure rate. The smaller number of parameters and a priori policies embedded in the tree,
allow the decision tree to perform well in very large domains. Inspection of the resulting
parameters demonstrated that different tasks pruned different regions of the decision tree.

6 Conclusion

We have demonstrated an algorithm with great potential to produce good policies in real-
world domains. Further work will refine our parameterised agents, and validate this ap-
proach on realistic larger domains. We also wish to characterise possible local minima.
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