Large-Scale Multiclass Transduction

Part of Advances in Neural Information Processing Systems 18 (NIPS 2005)

Bibtex Metadata Paper

Authors

Thomas Gärtner, Quoc Le, Simon Burton, Alex J. Smola, Vishy Vishwanathan

Abstract

We present a method for performing transductive inference on very large datasets. Our algorithm is based on multiclass Gaussian processes and is effective whenever the multiplication of the kernel matrix or its inverse with a vector can be computed sufficiently fast. This holds, for instance, for certain graph and string kernels. Transduction is achieved by varia- tional inference over the unlabeled data subject to a balancing constraint.