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Abstract

We develop a Bayesian “sum-of-trees” model, named BART, where each tree is
constrained by a prior to be a weak learner. Fitting and inference are accomplished
via an iterative backfitting MCMC algorithm. This model is motivated by ensem-
ble methods in general, and boosting algorithms in particular. Like boosting, each
weak learner (i.e., each weak tree) contributes a small amount to the overall model.
However, our procedure is defined by a statistical model: a prior and a likelihood,
while boosting is defined by an algorithm. This model-based approach enables a
full and accurate assessment of uncertainty in model predictions, while remaining
highly competitive in terms of predictive accuracy.

1 Introduction

We consider the fundamental problem of making inference about an unknown functionf that pre-
dicts an outputY using ap dimensional vector of inputsx whenY = f(x) + ε, ε ∼ N(0, σ2). To
do this, we consider modelling or at least approximatingf(x) = E(Y | x), the mean ofY given
x, by a sum ofm regression trees:f(x) ≈ g1(x) + g2(x) + . . . + gm(x) where eachgi denotes a
binary regression tree.

The sum-of-trees model is fundamentally an additive model with multivariate components. It is
vastly more flexible than a single tree model which does not easily incorporate additive effects. Be-
cause multivariate components can easily account for high order interaction effects, a sum-of-trees
model is also much more flexible than typical additive models that use low dimensional smoothers
as components.

Our approach is fully model based and Bayesian. We specify a prior, and then obtain a sequence of
draws from the posterior using Markov chain Monte Carlo (MCMC). The prior plays two essential
roles. First, withm chosen large, it restrains the fit of each individualgi so that the overall fit is
made up of many small contributions in the spirit of boosting (Freund & Schapire (1997), Friedman
(2001)). Eachgi is a “weak learner”. Second, it “regularizes” the model by restraining the overall
fit to achieve good bias-variance tradeoff. The prior specification is kept simple and a default choice
is shown to have good out of sample predictive performance.

Inferential uncertainty is naturally quantified in the usual Bayesian way: variation in the MCMC
draws off =

∑
gi (evaluated at a set ofx of interest) andσ indicates our beliefs about plausible

values given the data. Note that the depth of each tree is not fixed so that we infer the level of inter-
action. Our point estimate off is the average of the draws. Thus, our procedure captures ensemble



learning (in which many trees are combined) both in the fundamental sum-of-trees specification and
in the model-averaging used to obtain the estimate.

2 The Model

The model consists of two parts: a sum-of-trees model, which we have named BART (Bayesian
Additive Regression Trees), and a regularization prior.

2.1 A Sum-of-Trees Model

To elaborate the form of a sum-of-trees model, we begin by establishing notation for a single tree
model. LetT denote a binary tree consisting of a set of interior node decision rules and a set
of terminal nodes, and letM = {µ1, µ2, . . . , µB} denote a set of parameter values associated with
each of theB terminal nodes ofT . Prediction for a particular value of input vectorx is accomplished
as follows: Ifx is associated with terminal nodeb of T by the sequence of decision rules from top
to bottom, it is then assigned theµb value associated with this terminal node. We useg(x;T,M) to
denote the function corresponding to(T,M) which assigns aµb ∈ M to x.

Using this notation, and lettinggi(x) = g(x;Ti,Mi), our sum-of-trees model can more explicitly
be expressed as

Y = g(x;T1,M1) + g(x;T2,M2) + · · ·+ g(x;Tm,Mm) + ε, (1)

ε ∼ N(0, σ2). (2)

Unlike the single tree model, whenm > 1 the terminal node parameterµi given byg(x;Tj ,Mj)
is merely part of the conditional mean ofY givenx. Such terminal node parameters will represent
interaction effects when their assignment depends on more than one component ofx (i.e., more
than one variable). Because (1) may be based on trees of varying sizes, the sum-of-trees model can
incorporate both direct effects and interaction effects of varying orders. In the special case where
every terminal node assignment depends on just a single component ofx, the sum-of-trees model
reduces to a simple additive function.

With a large number of trees, a sum-of-trees model gains increased representation flexibility, which,
when coupled with our regularization prior, gives excellent out of sample predictive performance.
Indeed, in the examples in Section 4, we setm as large as 200. Note that withm large there
are hundreds of parameters of which onlyσ is identified. This is not a problem for our Bayesian
analysis. Indeed, this lack of identification is the reason our MCMC mixes well. Even whenm is
much larger than needed to capturef (effectively, we have an “overcomplete basis”) the procedure
still works well.

2.2 A Regularization Prior

The complexity of the prior specification is vastly simplified by letting theTi be i.i.d, theµi,b (node
b of treei) be i.i.d given the set ofT , andσ be independent of allT andµ. Given these independence
assumptions we need only choose priors for a single treeT , a singleµ, andσ. Motivated by our
desire to make eachg(x;Ti,Mi) a small contribution to the overall fit, we put prior weight on small
trees and smallµi,b.

For the tree prior, we use the same specification as in Chipman, George & McCulloch (1998). In
this prior, the probability that a node is nonterminal isα(1 + d)−β whered is the depth of the node.
In all examples we use the same prior corresponding to the choiceα = .95 andβ = 2. With this
choice, trees with 1, 2, 3, 4, and≥ 5 terminal nodes receive prior probability of 0.05, 0.55, 0.28,
0.09, and 0.03, respectively. Note that even with this prior, trees with many terminal nodes can be
grown if the data demands it. At any non-terminal node, the prior on the associated decision rule
puts equal probability on each available variable and then equal probability on each available rule
given the variable.

For the prior on aµ, we start by simply shifting and rescalingY so that we believe the prior proba-
bility that E(Y | x) ∈ (−.5, .5) is very high. We letµ ∼ N(0, σ2

µ). Given theTi and anx, E(Y | x)
is the sum ofm independentµ’s. The standard deviation of the sum is

√
m σµ. We chooseσµ so
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Figure 1: Three priors onσ whenσ̂ = 2.

that .5 is withink standard deviations of zero:k
√

mσµ = .5. For example ifk = 2 there is a 95%
(conditional) prior probability that the mean ofY is in (−.5, .5). k = 2 is our default choice and in
practice we typically rescale the responsey so that its observed values range from -5. to .5. Note
that this prior increases the shrinkage ofµi,b (toward zero) asm increases.

For the prior onσ we start from the usual inverted-chi-squared prior:σ2 ∼ ν λ/χ2
ν . To choose the

hyperparametersν andλ, we begin by obtaining a “rough overestimate”σ̂ of σ. We then pick a
degrees of freedom valueν between 3 and 10. Finally, we pick a value ofq such as 0.75, 0.90 or
0.99, and setλ so that theqth quantile of the prior onσ is located at̂σ, that isP (σ < σ̂) = q. Figure
1 illustrates priors corresponding to three(ν, q) settings when the rough overestimate isσ̂ = 2. We
refer to these three settings,(ν, q) = (10, 0.75), (3, 0.90), (3, 0.99), as conservative, default and
aggressive, respectively. For automatic use, we recommend the default setting(ν, q) = (3, 0.90)
which tends to avoid extremes. Simple data-driven choices ofσ̂ we have used in practice are the
estimate from a linear regression or the sample standard deviation ofY . Note that this prior choice
can be influential. Strong prior beliefs thatσ is very small could lead to over-fitting.

3 A Backfitting MCMC Algorithm

Given the observed datay, our Bayesian setup induces a posterior distribution
p((T1,M1), . . . , (Tm,Mm), σ| y) on all the unknowns that determine a sum-of-trees model.
Although the sheer size of this parameter space precludes exhaustive calculation, the following
backfitting MCMC algorithm can be used to sample from this posterior.

At a general level, our algorithm is a Gibbs sampler. For notational convenience, letT(i) be the
set of all trees in the sumexceptTi, and similarly defineM(i). The Gibbs sampler here entailsm
successive draws of(Ti,Mi) conditionally on(T(i),M(i), σ):

(T1,M1)|T(1),M(1), σ, y

(T2,M2)|T(2),M(2), σ, y (3)

...

(Tm,Mm)|T(m),M(m), σ, y,



followed by a draw ofσ from the full conditional:

σ|T1, . . . Tm,M1, . . . ,Mm, y. (4)

Hastie & Tibshirani (2000) considered a similar application of the Gibbs sampler for posterior sam-
pling for additive and generalized additive models withσ fixed, and showed how it was a stochastic
generalization of the backfitting algorithm for such models. For this reason, we refer to our algorithm
as backfitting MCMC. In contrast with the stagewise nature of most boosting algorithms (Freund &
Schapire (1997), Friedman (2001), Meek, Thiesson & Heckerman (2002)), the backfitting MCMC
algorithm repeatedly resamples the parameters of each learner in the ensemble.

The idea is that given(T(i),M(i)) andσ we may subtract the fit from(T(i),M(i)) from both sides of
(1) leaving us with a single tree model with known error variance. This draw may be made following
the approach of Chipman et al. (1998) or the refinement of Wu, Tjelmeland & West (2007). These
methods draw(Ti,Mi) | T(i),M(i), σ, y asTi | T(i),M(i), σ, y followed byMi | Ti, T(i),M(i), σ, y.
The first draw is done by the Metropolis-Hastings algorithm after integrating outMi and the second
is a set of normal draws. The draw ofσ is easily accomplished by subtracting all the fit from both
sides of (1) so the theε are considered to be observed. The draw is then a standard inverted-chi-
squared.

The Metropolis-Hastings draw ofTi | T(i),M(i), σ, y is complex and lies at the heart of our method.
The algorithm of Chipman et al. (1998) proposes a new tree based on the current tree using one of
four moves. The moves and their associated proposal probabilities are: growing a terminal node
(0.25), pruning a pair of terminal nodes (0.25), changing a non-terminal rule (0.40), and swapping
a rule between parent and child (0.10). Although the grow and prune moves change the implicit
dimensionality of the proposed tree in terms of the number of terminal nodes, by integrating outMi

from the posterior, we avoid the complexities associated with reversible jumps between continuous
spaces of varying dimensions (Green 1995).

We initialize the chain withm single node trees, and then iterations are repeated until satisfactory
convergence is obtained. At each iteration, each tree may increase or decrease the number of termi-
nal nodes by one, or change one or two decision rules. Eachµ will change (or cease to exist or be
born), andσ will change. It is not uncommon for a tree to grow large and then subsequently collapse
back down to a single node as the algorithm iterates. The sum-of-trees model, with its abundance
of unidentified parameters, allows for “fit” to be freely reallocated from one tree to another. Be-
cause each move makes only small incremental changes to the fit, we can imagine the algorithm as
analogous to sculpting a complex figure by adding and subtracting small dabs of clay.

Compared to the single tree model MCMC approach of Chipman et al. (1998), our backfitting
MCMC algorithm mixes dramatically better. When only single tree models are considered, the
MCMC algorithm tends to quickly gravitate toward a single large tree and then gets stuck in a local
neighborhood of that tree. In sharp contrast, we have found that restarts of the backfitting MCMC
algorithm give remarkably similar results even in difficult problems. Consequently, we run one long
chain rather than multiple starts.

In some ways backfitting MCMC is a stochastic alternative to boosting algorithms for fitting linear
combinations of trees. It is distinguished by the ability to sample from a posterior distribution. At
each iteration, we get a new draw

f∗ = g(x;T1,M1) + g(x;T2,M2) + . . . + g(x;Tm,Mm) (5)

corresponding to the draw ofTj andMj . These draws are a (dependent) sample from the posterior
distribution on the “true”f . Rather than pick the “best”f∗ from these draws, the set of multiple
draws can be used to further enhance inference. We estimatef by the posterior mean off which
is approximated by averaging thef∗ over the draws. Further, we can gauge our uncertainty about
the actual underlyingf by the variation across the draws. For example, we can use the 5% and 95%
quantiles off∗(x) to obtain 90% posterior intervals forf(x).

4 Examples

In this section we illustrate the potential of our Bayesian ensemble procedure BART in a large exper-
iment using 42 datasets. The data are a subset of 52 sets considered by Kim, Loh, Shih & Chaudhuri



Method Parameter Values considered
Lasso shrinkage (in range 0-1) 0.1, 0.2, ..., 1.0
Gradient # of trees 50, 100, 200
Boosting Shrinkage (multiplier of each tree added) 0.01, 0.05, 0.10, 0.25

Max depth permitted for each tree 1, 2, 3, 4
Neural # hidden units see text
Nets Weight decay .0001,.001, .01, .1, 1, 2, 3
Random # of trees 500
Forests % variables sampled to grow each node 10, 25, 50, 100
BART-cv Sigma prior:(ν, q) combinations (3,0.90), (3,0.99), (10,0.75)

# trees 50, 200
µ Prior: k value forσµ 2, 3, 5

Table 1: Operational parameters for the various competing models.

(2007). Ten datasets were excluded either because Random Forests was unable to use over 32 cat-
egorical predictors, or because a single train/test split was used in the original paper. All datasets
correspond to regression problems with between 3 and 28 numeric predictors and 0 to 6 categorical
predictors. Categorical predictors were converted into 0/1 indicator variables corresponding to each
level. Sample sizes vary from 96 to 6806 observations.

As competitors we considered linear regression with L1 regularization (the Lasso) (Efron, Hastie,
Johnstone & Tibshirani 2004) and four black-box models: Friedman’s (2001) gradient boosting,
random forests (Breiman 2001), and neural networks with one layer of hidden units. Implementation
details are given in Chipman, George & McCulloch (2006). Tree models were not considered, since
they tend to sacrifice predictive performance for interpretability.

We considered two versions of our Bayesian ensemble procedure BART. InBART-cv, the prior
hyperparameters(ν, q, k, m) were treated as operational parameters to be tuned via cross-validation.
In BART-default, we set(ν, q, k, m) = (3, 0.90, 2, 200). For bothBART-cvandBART-default, all
specifications of the quantileq were made relative to the least squares linear regression estimate
σ̂, and the number of burn-in steps and MCMC iterations used were determined by inspection of a
single long run. Typically 200 burn-in steps and 1000 iterations were used.

With the exception ofBART-default(which has no tuning parameters), all free parameters in learners
were chosen via 5-fold cross-validation within the training set. The parameters considered and
potential levels are given in Table 1. The levels used were chosen with a sufficientlly wide range
that the optimal value was not at an extreme of the candidate values in most problems. Neural
networks are the only model whose operational parameters need additional explanation. In that
case, the number of hidden units was chosen in terms of the implied number of weights, rather
than the number of units. This design choice was made because of the widely varying number of
predictors across problems, which directly impacts the number of weights. A number of hidden units
was chosen so that there was a total of roughlyu weights, withu = 50, 100, 200, 500 or 800. In all
cases, the number of hidden units was further constrained to fall between 3 and 30. For example,
with 20 predictors we used 3, 8 and 21 as candidate values for the number of hidden units.

The models were compared with 20 replications of the following experiment. For each replication,
we randomly chose 5/6 of the data as a training set and the remaining 1/6 was used for testing. As
mentioned above, 5-fold cv was used within each training set. In each of the 42 datasets, the response
was minimally preprocessed, applying a log or square root transformation if this made the histogram
of observed responses more bell-shaped. In about half the cases, a log transform was used to reduce
a right tail. In one case (Fishery) a square root transform was most appropriate. Finally, in order
to enable performance comparisons across all datasets, after possible nonlinear transformation, the
resultant response was scaled to have sample mean 0 and standard deviation 1 prior to any train/test
splitting.

A total of 42 × 20 = 840 experiments were carried out. Results across these experiments are
summarized in Table 2, which gives mean RMSE values and Figure 2, which summarizes relative
performance using boxplots. In Figure 2, the relative performances are calculated as follows: In



Method BART-cv Boosting BART-default Random Forest Neural Net Lasso
RMSE 0.5042 0.5089 0.5093 0.5097 0.5160 0.5896

Table 2: Average test set RMSE values for each learner, combined across 20 train/test replicates of
42 datasets. The only statistically significant difference is Lasso versus the other methods.
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Figure 2: Test set RMSE performance relative to best (ratio of 1 means minimum RMSE test error).
Resultsare across 20 replicates in each of 42 datasets. Boxes indicate middle 50% of runs. Each
learner has the following percentage of ratios larger than 2.0, which are not plotted above: Neural
net: 5%,BART-cv: 6%,BART-defaultand Boosting: 7%, Random forests 10% and Lasso 21%.

each of the 840 experiments, the learner with smallest RMSE was identified. The relative ratio for
each learner is the raw RMSE divided by the smallest RMSE. Thus a relative RMSE of 1 means that
the learner had the best performance in a particular experiment. The central box gives the middle
50% of the data, with the median indicated by a vertical line. The “whiskers” of the plot extend
to 1.5 times the box width, or the range of values, whichever comes first. Extremes outside the
whiskers are given by individual points. As noted in the caption, relative RMSE ratios larger than
2.0 are not plotted.

BART has the best performance, although all methods except the Lasso are not significantly differ-
ent. The strong performance of our “default” ensemble is especially noteworthy, since it requires no
selection of operational parameters. That is, cross-validation is not necessary. This results in a huge
computational savings, since under cross-validation, the number of times a learner must be trained
is equal to the number of settings times the number of folds. This can easily be 50 (e.g. 5 folds by
10 settings), and in this experiment it was 90!

BART-defaultis in some sense the “clear winner” in this experiment. Although average predic-
tive performance was indistinguishable from the other models, it does not require cross-validation.
Moreover, the use of cross-validation makes it impossible to interpret the MCMC output as valid un-
certainty bounds. Not only is the default version of BART faster, but it also provides valid statistical
inference, a benefit not available to any of the other learners considered.

To further stress the benefit of uncertainty intervals, we report some more detailed results in the
analysis of one of the 42 datasets, the Boston Housing data. We applied BART to all 506 observa-
tions of the Boston Housing data using the default setting(ν, q, k, m) = (3, 0.90, 2, 200) and the
linear regression estimatêσ to anchorq. At each of the 506 predictor valuesx, we used 5% and
95% quantiles of the MCMC draws to obtain 90% posterior intervals forf(x). An appealing feature
of these posterior intervals is that they widen when there is less information aboutf(x). To roughly
illustrate this, we calculated Cook’s distance diagnosticDx for eachx (Cook 1977) based on a linear
least squares regression ofy on x. LargerDx indicate more uncertainty about predictingy with a
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Figure 3: Plots from a single run of the Bayesian Ensemble model on the full Boston dataset. (a)
Comparisonof uncertainty bound widths with Cook’s distance measure. (b) Partial dependence plot
for the effect ofcrime on the response (log median property value), with 90% uncertainty bounds.

linear regression atx. To see how the width of the 90% posterior intervals corresponded toDx, we
plotted them together in Figure 3(a). Although the linear model may not be strictly appropriate, the
plot is suggestive: all points with largeDx values have wider uncertainty bounds.

Uncertainty bounds can also be used in graphical summaries such as a partial dependence plot
(Friedman 2001), which shows the effect of one (or more) predictor on the response, margining
out the effect of other predictors. Since BART provides posterior draws forf(x), calculation of a
posterior distribution for the partial dependence function is straightforward. Computational details
are provided in Chipman et al. (2006). For the Boston Housing data, Figure 3(b) shows the partial
dependence plot forcrime, with 90% posterior intervals. The vast majority of data values occur for
crime < 5, causing the intervals to widen ascrime increases and the data become more sparse.

5 Discussion

Our approach is a fully Bayesian approach to learning with ensembles of tree models. Because of the
nature of the underlying tree model, we are able to specify simple, effective priors and fully exploit
the benefits of Bayesian methodology. Our prior provides the regularization needed to obtain good
predictive performance. In particular, our default prior, which is minimially dependent on the data,
performs well compared to other methods which rely on cross-validation to pick model parameters.
We obtain inference in the natural Bayesian way from the variation in the posterior draws. While
predictive performance in always our first goal, many researchers want to interpret the results. In
this case, gauging the inferential uncertainty is essential. No other competitive methods do this in a
convenient way.

Chipman et al. (2006) and Abreveya & McCulloch (2006) provide further evidence of the predictive
performance of our approach. In addition Abreveya & McCulloch (2006) illustrate the ability of
our method to uncover interesting interaction effects in a real example. Chipman et al. (2006) and
and Hill & McCulloch (2006) illustrate the inferential capabilities. Posterior intervals are shown to
have good frequentist coverage. Chipman et al. (2006) also illustrates the method’s ability to obtain
inference in the very difficult “big p, small n” problem, where there are few observations and many
potential predictors.

A common concern with Bayesian approaches is sensitivity to prior parameters. Chipman et al.
(2006) found that results were robust to a reasonably wide range of prior parameters, including
ν, q, σµ, as well as the number of trees,m. m needs to be large enough to provide enough complexity



to capturef , but makingm “too large” does not appreciably degrade accuracy (although it does
make it slower to run). Chipman et al. (2006) provide guidelines for choosingm.

In practice, the stability of the MCMC makes the method easy to use. Typcially, it burns-in rapidly.
If the method is run twice with different seeds the same results are obtained both for fit and inference.

Code is publicly available in the R-package BayesTree.
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