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Abstract

Computation of a satisfactory control policy for a Markov decision process when
the parameters of the model are not exactly known is a problem encountered in
many practical applications. The traditional robust approach is based on a worst-
case analysis and may lead to an overly conservative policy. In this paper we con-
sider the tradeoff between nominal performance and the worst case performance
over all possible models. Based on parametric linear programming, we propose a
method that computes thewholeset of Pareto efficient policies in the performance-
robustness plane when only the reward parameters are subject to uncertainty. In
the more general case when the transition probabilities are also subject to error,
we show that the strategy with the “optimal” tradeoff might be non-Markovian
and hence is in general not tractable.

1 Introduction

In many decision problems the parameters of the problem are inherently uncertain. This uncertainty,
termedparameter uncertainty, can be the result of estimating the parameters from a finite sample or
a specification of the parameters that itself includes uncertainty. The standard approach in decision
making to circumvent the adverse effect of the parameter uncertainty is to find a solution that per-
forms best under the worst possible parameters. This approach, termed the “robust” approach, has
been used in both single stage ([1]) and multi-stage decision problems (e.g., [2]).

In robust optimization problems, it is usually assumed that the constraint parameters are uncertain.
By requiring the solution to be feasible to all possible parameters within the uncertainty set, Soyester
([1]) solved the column-wise independent uncertainty case, and Ben-Tal and Nemirovski ([3]) solved
the row-wise independent case. In robust MDP problems, there may be two different types of
parameter uncertainty, namely, the reward uncertainty and the transition probability uncertainty.
Under the assumption that the uncertainty is state-wise independent (an assumption made by all
papers to date, to the best of our knowledge), the optimality principle holds and this problem can be
decomposed as a series of step by step mini-max problems solved by backward induction ([2, 4, 5]).

The above cited results focus on worst-case analysis. This implies that the vector ofnominal param-
eters(the parameters used as an approximation of the true one regardless of the uncertainty) is not
treated in a special way and is just an element of the set of feasible parameters. The objective of the
worst-case analysis is to eliminate the possibility of disastrous performance. There are several dis-
advantages to this approach. First, worst-case analysis may lead to an overly conservative solution,
i.e., a solution which provides mediocre performance underall possible parameters. Second, the
desirability of the solution highly depends on the precise modeling of the uncertainty set which is
often based on some ad-hoc criterion. Third, it may happen that the nominal parameters are close to



the real parameters, so that the performance of the solution under nominal parameters may provide
important information for predicting the performance under the true parameters. Finally, there is
a certain tradeoff relationship between the worst-case performance and the nominal performance,
that is, if the decision maker insists on maximizing one criterion, the other criterion may decrease
dramatically. On the other hand, relaxing both criteria may lead to a well balanced solution with
both satisfactory nominal performance and also reasonable robustness to parameter uncertainty.

In this paper we capture the Robustness-Performance (RP) tradeoff explicitly. We use the worst-
case behavior of a solution as the function representing its robustness, and formulate the decision
problem as an optimization ofboth the robustness criterion and the performance under nominal
parameters simultaneously. Here, “simultaneously” is achieved by optimizing the weighted sum of
the performance criterion and the robustness criterion. To the best of our knowledge, this is the first
attempt to address the overly conservativeness of worst-case analysis in robust MDP.

Instead of optimizing the weighted sum of the robustness and performance for some specific weights,
we show how to efficiently find the solutions for all possible weights. We prove that the set of these
solutions is in fact equivalent to the set of all Pareto efficient solutions in the robustness-performance
space. Therefore, we solve the tradeoff problemwithoutchoosing a specific tradeoff parameter, and
leave the subjective decision of determining the exact tradeoff to the decision maker. Instead of
arbitrarily claiming that a certain solution is a good tradeoff, our algorithm computes the whole
tradeoff relationship so that the decision maker can choose the most desirable solution according to
her preference, which is usually complicated and an explicit form is not available. Our approach
thus avoids the tuning of tradeoff parameters, where generally no good a-priori method exists. This
is opposed to certain relaxations of the worst-case robust optimization approach like [6] (for single
stage only) where some explicit tradeoff parameters have to be chosen. Unlike risk sensitive learning
approaches [7, 8, 9] which aim to tune a strategy online, our approach compute a robust strategy off-
line without trial and error.

The paper is organized as follows. Section 2 is devoted to the RP tradeoff for Linear Programming.
In Section 3 and Section 4 we discuss the RP tradeoff for MDP with uncertain rewards, and uncer-
tain transition probabilities, respectively. In Section 5 we present a computational example. Some
concluding remarks are offered in Section 6.

2 Parametric linear programming and RP tradeoffs in optimization

In this section, we briefly recall Parametric Linear Programming (PLP) [10, 11, 12], and show
how it can be used to find the whole set of Pareto efficient solutions for RP tradeoffs in Linear
Programming. This serves as the base for the discussion of RP tradeoffs in MDPs.

2.1 Parametric Linear Programming

A Parametric Linear Programming is the following set of infinitely many optimization problems:

For allλ ∈ [0, 1]: Minimize: λc(1)>x + (1 − λ)c(2)>x (1)

Subject to: Ax = b

x ≥ 0.

We call c(1)>x the first objective, andc(2)>x the second objective. We assume that the Linear
Program (LP) is feasible and bounded for both objectives. Although there are uncountably many
possibleλ, Problem (1) can be solved by a simplex-like algorithm. Here, “solve” means that for each
λ, we find at least one optimal solution. An outline of the PLP algorithm is described in Algorithm
1, which is essentially a tableau simplex algorithm while the entering variable is determined in a
specific way. See [10] for a precise description.

Algorithm 1. 1. Find a basic feasible optimal solution forλ = 0. If multiple solutions exist,

choose one among those with minimalc(1)>x.

2. Record current basic feasible solution. Check the reduced cost (i.e., the zero row in the
simplex table) of the first objective, denoted asc̄

(1)
j . If none of them is negative, end.



3. Among all columns with negativēc(1)
j , choose the one with largest ratio|c̄(1)

j /c̄
(2)
j | as the

entering variable.

4. Pivot the base, go to 2.

This algorithm is based on the observation that for anyλ, there exists an optimal basic feasible
solution. Hence, by finding a suitable subset of all vertices of the feasible region, we can solve
the PLP. Furthermore, we can find this subset by sequentially pivoting among neighboring extreme
points like the simplex algorithm does. This algorithm terminates after finitely many iterations. It
is also known that the optimal value for PLP is a continuous piecewise linear function ofλ. The
theoretical computational cost is exponential, although practically it works well. Such property is
shared by all simplex based algorithm. A detailed discussion on PLP can be found in [10, 11, 12].

2.2 RP tradeoffs in Linear Programming

Consider the following LP:

NOMINAL PROBLEM : Minimize: c>x (2)

Subject to:Ax ≤ b

HereA ∈ R
n×m,x ∈ R

m,b ∈ R
n, c ∈ R

m.

Suppose that the constraint matrixA is only a guess of the unknown true parameterAr which is
known to belonging to setA (we callA the uncertainty set). We assume thatA is constraint-wise
independent and polyhedral for each of the constraints. That is,A =

∏n

i=1 Ai, and for eachi, there
exists a matrixT (i) and a vectorv(i) such thatAi =

{

a(i)>|T (i)a(i) ≤ v(i)
}

.

To quantify how a solutionx behaves with respect to the parameter uncertainty, we define the follow-
ing criterion to be minimized as itsrobustness measure(more accurately, non-robustness measure).

p(x) , sup
Ã∈A

∥

∥

∥

∥

[

Ãx − b
]+

∥

∥

∥

∥

1

= sup
Ã∈A

n
∑

i=1

max
[

ã(i)>x − bi, 0
]

=

n
∑

i=1

max

{[

sup
ã(i):T (i)ã(i)≤v(i)

ã(i)>x

]

− bi, 0

}

.

(3)

Here[·]+ stands for the positive part of a vector,ã(i)> is theith row of the matrixÃ, andbi is the
ith element ofb. In words, the functionp(x) is the largest possible sum of constraint violations.

Using the weighted sum of the performance and robustness objective as the minimizing objective,
we formulate the explicit tradeoff between robustness and performance as:

GENERAL PROBLEM : λ ∈ [0, 1] Minimize: λc>x + (1 − λ)p(x)

Subject to:Ax ≤ b.

HereA ∈ R
n×m,x ∈ R

m,b ∈ R
n, c ∈ R

m.

(4)

By duality theorem, for a givenx, supã(i):T (i)ã(i)≤v(i) ã(i)>x equals to the optimal value of the
following LP ony(i):

Minimize: v(i)>y(i)

Subject to: T (i)>y(i) = x

y(i) ≥ 0.

Thus, by adding slack variables, we rewrite GENERAL PROBLEM as the following PLP and solve
it using Algorithm 1:

GENERALPROBLEM (PLP) : λ ∈ [0, 1] Minimize: λc>x + (1 − λ)1>z

Subject to:Ax ≤ b,

T (i)>y(i) = x,

v(i)>y(i) − bi ≤ zi,

z ≥ 0,

y(i) ≥ 0; i = 1, 2, · · · , n.

(5)



Here,1 stands for a vector of ones of lengthn, zi is the ith element ofz, andx,y(i), z are the
optimization variables.

3 The robustness-performance tradeoff for MDPs with uncertain rewards

A (finite) MDP is defined as a 5-tuple< T, S,As, p(·|s, a), r(s, a) > where: T is the (possibly
infinite) set of decision stages;S is the state set;As is the action set of states; p(·|s, a) is the
transition probability; andr(s, a) is the expected reward of states with actiona ∈ As. We use
r to denote the vector combining the reward for all state-action pairs andrs to denote the vector
combining all reward of states. Thus,r(s, a) = rs(a). BothS andAs are assumed finite. Bothp
andr are time invariant.

In this section, we consider the case wherer is not known exactly. More specifically, we have a
nominal parameterr(s, a) which is believed to be a reasonably good guess of the true reward. The
rewardr is known to belong to a bounded setR. We further assume that the uncertainty setR is
state-wise independent and a polytope for each state. That is,R =

∏

s∈S Rs, and for eachs ∈ S,
there exists a matrixCs and a vectords such thatRs = {rs|Csrs ≥ ds}. We assume that for
different visits of one state, the realization of the reward need not be identical and may take different
values within the uncertainty set. The set of admissible control policies for the decision maker is the
set of randomized history dependent policies, which we denote byΠHR.

In the following three subsections we discuss different standard reward criteria: cumulative reward
with a finite horizon, discounted reward with infinite horizon, and limiting average reward with
infinite horizon under a unichain assumption.

3.1 Finite horizon case

In the finite horizon case (T= {1, · · · , N}), we assume without loss of generality that each state
belongs to only one stage, which is equivalent to the assumption of non-stationary reward realization,
and useSi to denote the set of states at theith stage. We also assume that the first stage consists of
only one states1, and that there are no terminal rewards. We define the following two functions as
the performance measure and the robustness measure of a policyπ ∈ ΠHR:

P (π) , Eπ{
N−1
∑

i=1

r(si, ai)},

R(π) , min
r∈R

Eπ{
N−1
∑

i=1

r(si, ai)}.
(6)

The minimum is attainable, sinceR is compact and the total expected reward is a continuous func-
tion of r. We say that a strategyπ is Pareto efficientif it obtains the maximum ofP (π) among all
strategies that have a certain value ofR(π). The following result is straightforward; the proof can
be found in the full version of the paper.

Proposition 1. 1. If π∗ is a Pareto efficient strategy, then there exists aλ ∈ [0, 1] such that
π∗ ∈ arg maxπ∈ΠHR{λP (π) + (1 − λ)R(π)}.

2. If π∗ ∈ arg maxπ∈ΠHR{λP (π) + (1 − λ)R(π)} for someλ ∈ (0, 1). Thenπ∗ is a Pareto
efficient strategy.

For0 ≤ t ≤ N , s ∈ St, andλ ∈ [0, 1] define:

Pt(π, s) , Eπ

{

N−1
∑

i=t

r(si, ai)|st = s

}

Rt(π, s) , min
r∈R

Eπ

{

N−1
∑

i=t

r(si, ai)|st = s

}

cλ
t (s) , max

π∈ΠHR

{λPt(π, s) + (1 − λ)Rt(π, s)} .

(7)



We setPN ≡ RN ≡ cN ≡ 0, and note thatcλ
1 (s1) is the optimal RP tradeoff with weightλ. The

following theorem shows that the principle of optimality holds forc. The proof is omitted since it
follows similarly to standard backward induction in finite horizon robust decision problems.

Theorem 1. For s ∈ St, t < N , let ∆s be the probability simplex onAs, then

cλ
t (s) = max

q∈∆s

{

min
rs∈Rs

[

λ
∑

a∈As
r(s, a)q(a) + (1 − λ)

∑

a∈As
r(s, a)q(a)

]

+

∑

s′∈St+1

∑

a∈As
p(s′|s, a)q(a)cλ

t+1(s
′)

}

.

We now consider the maximin problem in each state and show how to find the solutions for allλ
in one pass. We also prove thatcλ

t (s) is piecewise linear inλ. Let St+1 = {s1, · · · , sk}. Assume
for all j ∈ {1, · · · , k}, cλ

t+1(s
j) are continuous piece-wise linear functions. Thus, we can divide

[0, 1] into finite (sayn) intervals[0, λ1], · · · [λn−1, 1] such that in each interval, allct+1 functions
are linear. That is, there exist constantslji andmj

i such thatcλ
t+1(s

j) = lji λ+mj
i , for λ ∈ [λi−1, λi].

By the duality theorem, we have thatcλ
t (s) equals to the optimal value of the following LP ony and

q.

Maximize: (1 − λ)d>
s y + λr>s q +

k
∑

j=1

∑

a∈As

p(sj |s, a)q(a)cλ
t+1(s

j)

Subject to:C>
s y = q,

1>q = 1,

q,y ≥ 0.

(8)

Observe that the feasible set is the same for allλ. Substitutingcλ
t+1(s

j) and rearranging, it follows
that forλ ∈ [λi−1, λi] the objective function equals to

(1 − λ)
{

∑

a∈As

[

∑k

j=1 p(sj |s, a)mj
i

]

q(a) + d>
s y

}

+λ
{

∑

a∈As

[

r(s, a) +
∑k

j=1 p(sj |s, a)(lji + mj
i )

]

q(a)
}

.

Thus, forλ ∈ [λi−1, λi], from the optimal solution forλi−1, we can solve for allλ using Algo-
rithm 1. Furthermore, we need not to re-initiate for each interval, since the optimal solution for
the end ofith interval is also the optimal solution for the begin of the next interval. It is obvious
that the resultingcλ

t (s) is also continuous, piecewise linear. Thus, sincecN = 0, the assumption of
continuous and piecewise linear value functions holds by backward induction.

3.2 Discounted reward infinite horizon case

In this section we address the RP tradeoff for infinite horizon MDPs with a discounted reward
criterion. For a fixedλ, the problem is equivalent to a zero-sum game, with the decision maker
trying to maximize the weighted sum andNaturetrying to minimize it by selecting an adversarial
reward realization. A well known result in discounted zero-sum stochastic games states that, even if
non-stationary policies are admissible, a Nash equilibrium in which both players choose a stationary
policy exists; see Proposition 7.3 in [13].

Given an initial state distributionα(s), it is also a known result [14] that there exists a one-to-
one correspondence relationship between the state-action frequencies

∑∞

i=1 γi−1
E(1si=s,ai=a) for

stationary strategies and vectors belonging to the following polytopeX :
∑

a∈A
s′

x(s′, a) −
∑

s∈S

∑

a∈As

γp(s′|s, a)x(s, a) = α(s′), x(s, a) ≥ 0, ∀s,∀a ∈ As. (9)

Since it suffices to consider a stationary policy for Nature, the tradeoff problem becomes:

Maximize: inf
r∈R

∑

s∈S

∑

a∈As

[λr(s, a)x(s, a) + (1 − λ)r(s, a)x(s, a)]

Subject to:x ∈ X .

(10)



By duality of LP, Equation (10) could be rewritten as the following PLP and solved by Algorithm 1.

Maximize:λ
∑

s∈S

∑

a∈As

r(s, a)x(s, a) + (1 − λ)
∑

s∈S

[

d>
s ys

]

Subject to:
∑

a∈A
s′

x(s′, a) −
∑

s∈S

∑

a∈As

γp(s′|s, a)x(s, a) = α(s′), ∀s′,

x(s, a) ≥ 0, ∀s,∀a,

C>
s ys = xs ∀s,

ys ≥ 0, ∀s.

(11)

3.3 Limiting average reward case (unichain)

In the unichain case, the set of limiting average state-action frequency vectors (that is, all limit points
of sequences

{

1
T

∑T
n=1 Eπ[1sn=s,an=a]

}

, for π ∈ ΠHR) is the following polytopeX :
∑

a∈A
s′

x(s′, a) −
∑

s∈S

∑

a∈As

p(s′|s, a)x(s, a) = 0,∀s′ ∈ S,

∑

s∈S

∑

a∈As

x(s, a) = 1,

x(s, a) ≥ 0,∀s,∀a ∈ As.

(12)

As before, there exists an optimal maximin stationary policy. By a similar argument as for the
discounted case, the tradeoff problem can be converted to the following PLP:

Maximize:λ
∑

s∈S

∑

a∈As

r(s, a)x(s, a) + (1 − λ)
∑

s∈S

[

d>
s ys

]

Subject to:
∑

a∈A
s′

x(s′, a) −
∑

s∈S

∑

a∈As

p(s′|s, a)x(s, a) = 0, ∀s′,

∑

s∈S

∑

a∈As

x(s, a) = 1,

C>
s ys = xs, ∀s,

ys ≥ 0, ∀s,

x(s, a) ≥ 0, ∀s,∀a.

(13)

4 The RP tradeoff in MDPs with uncertain transition probabilities

In this section we provide a counterexample which demonstrates that the weighted sum criterion
in the most general case, i.e., the uncertain transition probability case, may lead to non-Markovian
optimal policies.

In the finite horizon MDP shown in the Figure 1,S = {s1, s2, s3, s4, s5, t1, t2, t3, t4}; As1 =
{a(1, 1)}; As2 = {a(2, 1)}; As3 = {a(3, 1)}; As4 = {a(4, 1)} andAs5 = {a(5, 1), a(5, 2)}.
Rewards are only available at the final stage, and are perfectly known. The nominal transition prob-
abilities arep (s2|s1, a(1, 1)) = 0.5, p (s4|s2, a(2, 1)) = 1, andp (t3|s5, a(5, 2)) = 1. The set of
possible realization isp (s2|s1, a(1, 1)) ∈ {0.5}, p (s4|s2, a(2, 1)) ∈ [0, 1], andp (t3|s5, a(5, 2)) ∈
[0, 1]. Observe that the worst parameter realization isp(s4|s2, a(2, 1)) = p(t3|s5, a(5, 2)) = 0.
We look for the strategy that maximizes the sum of the nominal reward and the worst-reward (i.e.,
λ = 0.5). Since multiple actions only exist in states5, a strategy is determined by the action chosen
ons5. Let the probability of choosing actiona(5, 1) anda(5, 2) bep and1 − p, respectively.

Consider the history “s1→ s2”. In this case, with the nominal transition probability, this trajectory
will reach t1 with a reward of10, regardless of the choice ofp. The worst transition is that action
a(2, 1) leads tos5 and actiona(5, 2) leads tot4, hence the expected reward is5p + 4(1 − p).
Therefore the optimalp equals to1, i.e., the optimal action is to choosea(5, 1) deterministically.
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s2

s3

s4

s5

t1 
r=10

t2
r=5
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0.5 (0.5)

1 (0)

0 (1) 

t3
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t4
r=4

1 (0)

0 (1)

Figure 1: Example of non-Markovian best strategy

Consider the history “s1→ s3”. In this case, the nominal reward is5p + 8(1 − p), and the worst
case reward is5p + 4(1− p). Thusp = 0 optimize the weighted sum, i.e., the optimal strategy is to
choosea(5, 2).

The unique optimal strategy for this example is thus non-Markovian. This non-Markovian property
implies a possibility that past actions affect the choice of future actions, and hence could render the
problem intractable. The optimal strategy is non-Markovian because we are taking expectation over
two different probability measures, hence the smoothing property of conditional expectation cannot
be used in finding the optimal strategy.

5 A computational example

We apply our algorithm to aT -stage machine maintenance problem. LetS , {1, · · · , n} denote the
state space for each stage. In stateh, the decision maker can choose either to replace the machine
which will lead to state1 deterministically, or to continue running, which with probabilityp will
lead to stateh + 1. If the machine is in staten, then the decision maker has to replace it. The
replacing cost is perfectly known to becr, and the nominal running cost in stateh is ch. We assume
that the realization of the running cost lies in the interval[ch − δh, ch + δh]. We setch =

√
h − 1

and δh = 2h/n. The objective is to minimize the total cost, in a risk-averse attitude. Figure 2(a)
shows the tradeoff of this MDP.

For each solution found, we sample the reward 300 times according to a uniform distribution. We
normalize the cost for each simulation, i.e., we divide the cost by the smallest expected nominal
cost. Denoting the normalized cost of theith simulation for strategyj assi(j), we use the following
function to compare the solutions:

vj(α) =
α

√

∑300
i=1 |si(j)|α

300
.

Note thatα = 1 is the mean of the simulation cost, whereas largerα puts higher penalty on deviation
representing a risk-averse decision maker. Figure 2(b) shows that, the solutions that focus on nomi-
nal parameters (i.e.,λ close to1) achieve good performance for smallα, but worse performance for
largeα. That is, if the decision maker is risk neutral, then the solutions based on nominal parameters
are good. However, these solutions are not robust and are not good choices for risk-averse decision
makers. Note that, in this example, the nominal costis the expected cost for each stage, i.e., the
parameters are exactly formulated. Even in such case, we see that risk-averse decision makers can
benefit from considering the RP tradeoff.

6 Concluding remarks

In this paper we proposed a method that directly addresses the robustness versus performance trade-
off by treating the robustness as an optimization objective. Based on PLP, for MDPs where only



(a) (b)

16.79 17   17.2 17.4 17.6 17.8 18   18.2 18.4 18.6 18.76
25.68

26    

26.5  

27    

27.5  

28    

28.5  

29    

29.28

Norminal Performance

W
or

st
 C

as
e 

P
er

fo
rm

an
ce

λ=1

λ=0

0 0.2 0.4 0.6 0.8 1
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

λ

N
o
rm

a
liz

e
d
 M

o
d
ifi

e
d
 M

e
a
n

α=1

α=10

α=100

α=1000

Figure 2: The machine maintenance problem: (a) the PR tradeoff; (b) normalized mean of the
simulation for different values ofα.

rewards are uncertain, we presented an efficient algorithm that computes the whole set of optimal
RP tradeoffs for MDPs with finite horizon, infinite horizon discounted reward, and limiting average
reward (unichain). For MDPs with uncertain transition probabilities, we showed an example where
the solution may be non-Markovian and hence may in general be intractable.

The main advantage of the presented approach is that it addresses robustness directly. This frees
the decision maker from the need to make probabilistic assumptions on the problems parameters. It
also allows the decision maker to determine the desired robustness-performance tradeoff based on
observing the whole curve of possible tradeoffs rather than guessing a single value.
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