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Abstract

In biological neurons, the timing of a spike depends on the timing of synaptic
currents, in a way that is classically described by the Phase Response Curve. This
has implications for temporal coding: an action potential that arrives on a synapse
has an implicit meaning, that depends on the position of the postsynaptic neuron
on the firing cycle. Here we show that this implicit code can be used to perform
computations. Using theta neurons, we derive a spike-timing dependent learning
rule from an error criterion. We demonstrate how to train an auto-encoder neural
network using this rule.

1 Introduction

The temporal coding hypothesis states that information is encoded in the precise timing of action
potentials sent by neurons. In order to achieve computations in the time domain, it is thus necessary
to have neurons spike at desired times. However, at a more fundamental level, it is also necessary to
describe how the timings of action potentials received by a neuron are combined together, in a way
that is consistent with the neural code.

So far, the main theory has posited that the shape of post-synaptic potentials (PSPs) is relevant
for computations [1, 2, 3]. In these models, the membrane potential at the soma of a neuron is a
weighted sum of PSPs arriving from dendrites at different times. The spike time of the neuron is
defined as the time when its membrane potential first reaches a firing threshold, and it depends on
the precise temporal arrangement of PSPs, thus enabling computations in the time domain. Hence,
the nature of the temporal code is closely tied to the shape of PSPs. A consequence is that the length
of the rising segment of post-synaptic potentials limits the available coding interval [1, 2].

Here we propose a new theory, based on the non-linear dynamics of integrate-and-fire neurons. This
theory takes advantage of the fact that the effect of synaptic currents depends on the internal state of
the postsynaptic neuron. For neurons spiking regularly, this dependency is classically described by
the Phase Response Curve (PRC) [4]. We use theta neurons, which are mathematically equivalent
to quadratic integrate-and-fire neurons [5, 6]. In these neuron models, once the potential has crossed
the firing threshold, the neuron is still sensitive to incoming currents, which may change the timing
of the next spike.

In the proposed model, computations do not rely on the shape of PSPs, which alleviates the re-
striction imposed by the length of their rising segment. Therefore, we may use a simplified model
of synaptic currents; we model synaptic currents as Diracs, which means that we do not take into
account synaptic time constants. Another advantage of our model is that computations do not rely
on the delays imposed by inter-neuron transmission; this means that it is not necessary to fine-tune
delays in order to learn desired spike times.



2 Description of the model

2.1 The Theta Neuron

The theta neuron is described by the following differential equation:

dθ

dt
= (1− cosθ) + αI(1 + cosθ) (1)

whereθ is the “potential” of the neuron, andI is a variable input current, measured in radians
per unit of time. For convenience, we call units of time ’milliseconds’. The neuron is said to fire
everytimeθ crossesπ. The dynamics of the model can be represented on a phase circle (Figure 1).
The effect of an input current is not uniform across the circle; currents that occur late (forθ close
to π) have little effect onθ, while currents that arrive whenθ is close to zero have a much greater
effect.
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Figure 1:Phase circle of the theta model. The neuron fires everytimeθ crossesπ. ForI < 0 there
are two fixed points: An unstable pointθ+

0 = arccos 1+αI
1−αI

, and an attractorθ−0 = −θ+
0 .

2.2 Synaptic interactions

The input currentI is the sum of a constant currentI0 and transient synaptic currentsIi(t), where
i ∈ 1..N indexes the synapses:

I = I0 +

N
∑

i=1

Ii(t) (2)

Synaptic currents are modeled as Diracs :Ii(t) = wiδ(t − ti), whereti is the firing time of presy-
naptic neuroni, andwi is the weight of the synapse. Transmission delays are not taken into account.

Figure 2: Response properties of the theta model. Curves shows the change of firing timetf
of a neuron receiving a Dirac current of weightw at timet. Left: For I0 > 0, the neuron spikes
regularly (I0 = 0.005, θ(0) = −π). If w is small, the curves corresponding tow > 0 andw < 0 are
symmetric; the positive curve is called the Phase Response Curve (PRC). Ifw is large, curves are no
longer symmetric; the portions correspond to the ascending (resp. descending) phase ofsin θ have
different slopes. Right: Response forI0 < 0. The initial condition is slightly above the unstable
equilibrium point (I0 = −0.005, θ(0) = θ+

0 + 0.0001), so that the neuron fires if not perturbed.
Forw > 0, the response curve is approximately linear, until it reaches zero. Forw < 0, the current
might cancel the spike if it occurs early.



Figure 2 shows how the firing time of a theta neuron changes withthe time of arrival of a synaptic
current. In our time coding model, we view this curve as the transfer function of the neuron; it
describes how the neuron converts input spike times into output spike times.

2.3 Learning rule

We derive a spike-timing dependent learning rule from the objective of learning a set of target firing
times. Following [2], we consider the mean squared error,E, between desired spike timest̄s and
actual spike timests:

E =< (ts − t̄s)
2 > (3)

where< . > denotes the mean. Gradient descent onE yields the following stochastic learning rule:

∆wi = −η
∂E

∂wi

= −2η(ts − t̄s)
∂ts
∂wi

(4)

The partial derivative∂ts

∂wi
expresses the credit assignment problem for synapses.
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Figure 3: Notations used in the text. An incoming spike triggers an instantaneous change of the
potentialθ. θ−i (resp. θ+

i ) denotes the postsynaptic potential before (resp. after) the presynaptic
spike. A small modificationdwi of the synaptic weightwi induces a changedθ+

i

Let F denote the “remaining time”, that is, the time that remains before the neuron will fire:

F (t) =

∫ π

θ(t)

dθ

(1− cosθ) + αI(1 + cosθ)
(5)

In our model,I is not continuous, because of Dirac synaptic currents. For the moment, we assume
thatθ is between the unstable pointθ+

0 andπ. In addition, we assume that the neuron receives one
spike on each of its synapses, and that all synaptic weights are positive. Lettj denote the time of
arrival of the action potential on synapsej. Let θ−j (resp. θ+

j ) denote the potential before (resp.
after) the synaptic current:

{

θ−j = θ(t−j )

θ+
j = θ(t+j ) = θ−j + αwj(1 + cos θ−j )

(6)

We consider the effect of a small change of weightwi. We shall rewrite integral (5) on the intervals
where the integrand is continuous. To keep notations simple, we assume that action potentials are
ordered,ie : tj ≤ tj+1 for all j. For consistency, we use the notationθ−N+1 = π. We may write:

F (ti) =
∑

j≥i

∫ θ
−

j+1

θ
+

j

dθ

(1− cosθ) + αI0(1 + cosθ)
(7)

The partial derivative of the spiking timets can be expressed as :

∂ts
∂wi

=
∂F

∂θ+
i

∂θ+
i

∂wi

+
∑

j>i

(

∂F

∂θ+
j

∂θ+
j

∂wi

+
∂F

∂θ−j

∂θ−j
∂wi

)

(8)



In this expression, the sum expresses how a change of weightwi will modify the effect of other
spikes, forj > i. Thejth terms of this sum depend on the time elapsed betweentj andti. Since we
have noa priori information on the distribution oftj giventi, we shall consider that this term is not
correlated with∂E

∂wi
. For that reason, we neglect this sum in our stochastic learning rule:

∂ts
∂wi

≈
∂F

∂θ+
i

∂θ+
i

∂wi

(9)

which yields :
∂ts
∂wi

≈ −
(1 + cos θ−i )α

(1− cos θ+
i ) + αI0(1 + cos θ+

i )
(10)

Note that this expression is not bounded whenθ+
i is close to the unstable pointθ+

0 . In that case,θ
is in a region where it changes very slowly, and the timing of other action potentials forj > i will
mostly determine the firing timets. This means that approximation (9) will not hold. In addition,
it is necessary to extend the learning rule to the caseθ+

i ∈ [θ−0 θ+
0 [, where the above expression is

negative. For these reasons, we introduce acredit bound, C, and we modify the learning rule as
follows:

if 0 < −
∂ts
∂wi

< C then: ∆wi = −2η(ts − t̄s)
∂ts
∂wi

(11)

else: ∆wi = 2η(ts − t̄s)C (12)

2.4 Algorithm

The algorithm updates the weights in the direction of the gradient. The learning rule takes effect at
the end of atrial of fixed duration. If a neuron does not fire at all during the trial, then its firing time
is considered to be equal to the duration of the trial.

For each synapse, it is necessary to compute the credit from Equation (10) everytime a current is
transmitted. We may relax the assumption that each synapse receives one single action potential; if
a presynaptic neuron fires several times before the postsynaptic neuron fires, then the credit corre-
sponding to all spikes is summed.

Theta neurons were simulated using Euler integration of Equation (1). The time step must be care-
fully chosen; if the temporal resolution is too coarse, then the credit assignment problem becomes
too difficult, which increases the number of trials necessary for learning. On the other hand, small
values of the time step mean that simulations take more time.

3 Auto-encoder network

Predicting neural activities has been proposed as a possible role for spike-timing dependent learning
rules [7]. Here we train a network to predict its own activities using the learning rule derived above.
For this, a time-delayed version of the input (echo) is used as the desired output (see Figure 4). The
network has to find a representation of the input that minimizes mean squared reconstruction error.

The network has three populations of neurons: (i) An input populationX of sizen neurons, where
an input vector is represented using spike times. We call Inter Stimulus Interval (ISI) the interval
between the spikes encoding the input and the echo. After the ISI, populationX fires a second burst
of spikes, that is a time-delayed version of the initial burst. (ii) An output populationY , of size
m neurons, that is activated by neurons inX. (iii) A population X ′ of sizen neurons, where the
input is reconstructed. Neurons inX ′ are activated byY . The learning rule updates the feedback
connections(wij)i≤n,j≤m from Y to X, comparing spike times inX and inX ′.

We useI0 < 0, so the response to positive transient currents is approximately linear (see fig. 2). We
thus expect neurons to perform linear summation of spike times. For the feed-forward connections
from X to Y , we use the transpose of the feedback weights matrix. This is inspired by Oja’s
Principal Subspace Network [8]. If spike times are within the linear part of the response curve, then
we expect this network to perform Principal Component Analysis (PCA) in the time domain.

However, one difference is that the PRC we use is always positive (type I neurons). This means that
spike times can only code for positive values (even though synaptic weights can be of both signs).
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Figure 4:Auto-encoder network. An input vector is translated into firing times of the input pop-
ulation. Output neurons are activated by input neurons through feed-forward connections. A re-
construction of the input burst is generated through feedback connections. Target firing times are
provided by a delayed version of the input burst (echo).

In order to code for values of both signs, one would need a transfer function that changes its sign
around a time that would code for zero, so that the effect of a current is reversed when its arrival
time crosses zero. Here we may view the neural code as a positive code: Early spikes code for high
values, and late spikes code for values close to zero.

In this architecture, it is necessary to ensure that each neuron inY fires a single spike on each trial.
In order to do this, we impose that neurons inY have the same average firing time. For this, we add
a centering term to the learning rule:

∆wij = −η
∂E

∂wij

− λφj (13)

whereλ ∈ IR andφj is theaverage phase of neuronj. φj is a leaky average of the difference
between the firing timetj and the average firing times of all neurons in populationY . It is updated
after each trial:

φj ← τφj + (1− τ)

(

tj −
1

m

m
∑

k=1

tk

)

(14)

This modification of the learning rule results in neurons that have no preferred firing order.

4 Experiments

We usedI0 = −0.01 for all neurons. This ensures that neurons have no spontaneous activity. At
the beginning of a trial, all neurons were initialized to their stable fixed point. In order to balance
the effect of the different sizes of populationsX andY , different values ofα were used forX and
Y neurons: We usedαX = 0.1 andαY = m

n
αX . In the leaky average we usedτ = 0.1

In each experiment, the input vector was encoded in spike times. When doing so, one must make
sure that the values taken by the input are within the coding interval of the neurons,ie the range
of values where the PRC is not zero. In practice, spikes that arrive too late in the firing cycle
are not taken into account by the learning rule. In that case, the weights corresponding to other
synapses become overly increased, which eventually causes some postsynaptic neurons inX ′ to fire
before presynaptic neurons inY (”anticausal spikes”). If this occurs, one possibility is to reduce the
variance of the input.

4.1 Principal Component Analysis of a Gaussian distribution

A two-dimensional Gaussian random variable was encoded in the spike times of three input neurons.
The ellipsoid had a long axis of standard deviation1ms and a short axis of deviation0.5ms, and it



was rotated byπ/3. Because the network does not have an absolute time reference, it is necessary
to use three input neurons, in order to encode two degrees of freedom in relative spiking times.
The output layer had two neurons (one degree of freedom). Therefore the network has to find a 1D
representation of a 2D variable, that minimizes the mean-squared reconstruction error.

The input was encoded as follows:
{

t0 = 3
t1 = 3 + ν1 cos(π/3) + 0.5ν2 sin(π/3)
t2 = 3 + 0.5ν2 cos(π/3) + ν1 sin(π/3)

(15)

whereν1 and ν2 are two independent random variables picked from a Gaussian distribution of
variance 1. Input spikes times were centered aroundt = 3ms, wheret = 0 denotes the beginning
of a trial. We used a time step of0.05 ms. Each trial lasted for 400 iterations, which corresponds
to 20ms of simulated time. The ISI was5ms. The credit bound wasC = 1000. Other parameters
wereη = 0.0001 andλ = 0.001. Weights were initialized with random values between0.5 and1.5.

Figure 5: Principal Component Analysis of a 2D Gaussian distribution. The input vector was
encoded in the relative spike times of three input neurons. Top: Evolution of the weights over 20.000
learning iterations. Bottom: Final synaptic weights represented as bars. Note the complementary
shapes of weight vectors. Right: The input (white dots) and its reconstruction (dark dots) from the
network’s activities. Each branch corresponds to a firing order of the two output neurons.

Figure 5 shows that the network has learned to extract the principal direction of the distribution. Two
branches are visible in the distribution of dots corresponding to the reconstruction. They correspond
to two firing orders of the output neurons. The direction of the branches results from the synaptic
weights of the neurons. Note that the lower branch has a slight curvature. This suggests that the
response function of neurons is not perfectly linear in the interval where spike times are coded. The
fact that branches do not exactly have the same orientation might result from non-linearities, or from
the approximation made in deriving the learning rule.

There are six synaptic weights in the network. One degree of freedom per neuron inX ′ is used to
adapt its mean firing times to the value imposed by the ISI; the smaller the ISI, the larger the weights.
This ”normalization” removes three degrees of freedom. One additional constraint is imposed by
the centering term that was added to the learning rule in (13). Thus the network had two degrees of
freedom. It used them to find the directions of the two branches shown in Figure 5 (left). These two
branches can be viewed as the base vectors used in the compressed representation inY .

The network uses two base vectors in order to represent one single principal direction; each codes
for one half of the Gaussian. This is because the network uses a positive code, where negative values
are not allowed.

4.2 Encoding natural images

An encoder network was trained on the set of raw natural images used in [9]1. The encoder had64
output neurons and256 input neurons. On each trial, a random patch of size16× 16 was extracted

1Images were retrieved from http://redwood.berkeley.edu/bruno/sparsenet/



from a random image of the dataset, and encoded in the network.Raw grey values from the dataset
were encoded as milliseconds. The standard deviation per pixel was1.00ms. The time step of the
simulation was0.1ms, and each trial lasted for 200 time steps (20ms). The ISI was9ms, and the
parameters of the learning rule wereη = 0.0001, C = 50 andλ = 0.001. Weights were initialized
with random values between0 and0.3.

Figure 6:Synaptic weights learned by the network. 64 neurons were trained to represent natural
images patches of size16 × 16. Different grey scales are used in order to display positive and
negative weights (black is negative, white is positive). Left: grey scale between -1 and 1. Only
positive weights are visible at this scale, because they are much larger than negative weights. Right:
grey scale between -0.1 and 0.1. Negative weights are visible, positive weights are beyond scale.

Synaptic weights after100.000 trials are shown in Figure 6. There is a strong difference of amplitude
between positive and negative weights; positive weights typically have values between 0 and 1, while
negative weights are one order of magnitude smaller. For that reason, weights are displayed twice,
with two different grey scales. An image reconstructed from spike times is shown in Figure 7. After
training, the mean reconstruction error on the entire dataset was0.25ms/pixel. For comparison, the
mean error performed by Oja’s principal subspace network [8] trained on the same image patches
was0.11ms/pixel.

The difference of amplitude between positive and negative weights results from higher sensitivity
of the response curves to negative weights, as shown in Figure 2. Synaptic weights with negative
values have the ability to strongly delay the output spike, and even to cancel it.

Synaptic weights have the shape of local filters, with antagonistic center-surround structures. This
contrasts with the base vectors typically obtained from PCA of natural images, which are not local.
One possible explanation lies in the response properties of the theta neurons. The response function
is not linear, especially in the case of negative weights (Figure 2). This will disfavor solutions in-
volving linear combinations of both positive and negative weights, and favor sparse representations.
Hence, the network could be performing something similar to Nonlinear PCA [10].

5 Conclusions

We have shown that the dynamic response properties of spiking neurons can be effectively used as
transfer functions, in order to perform computations (in this paper, PCA and Nonlinear PCA). A
similar proposal was made in [11], where the PRC of neurons has been adapted to a biologically
realistic STDP rule. Here we took a complementary approach, adapting the learning rule to the
neuronal dynamics.

We used theta neurons, which are of type I, and equivalent to quadratic integrate-and-fire neurons.
Type I neurons have a PRC that is always positive. This means that spike times can encode only



Figure 7: Natural image and reconstruction from spike times. The512 × 512 image from the
training set (left) was divided into16 × 16 patches, and encoded using 64 neurons. The recon-
struction (right) is derived from spikes times inX ′. Standard deviation of the encoded images was
1.00ms/pixel. The mean reconstruction error on the entire dataset was0.25ms/pixel, about2.5
times the error made by PCA.

positive values. In order to encode values of both signs, one would need the transfer function to
change its sign around a time that codes for zero. This will be possible with more complex type II
neurons, where the sign of the PRC is not constant.
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