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Abstract

Go is an ancient board game that poses unique opportunities and challenges for AI
and machine learning. Here we develop a machine learning approach to Go, and
related board games, focusing primarily on the problem of learning a good eval-
uation function in a scalable way. Scalability is essential at multiple levels, from
the library of local tactical patterns, to the integration of patterns across the board,
to the size of the board itself. The system we propose is capable of automatically
learning the propensity of local patterns from a library of games. Propensity and
other local tactical information are fed into a recursive neural network, derived
from a Bayesian network architecture. The network integrates local information
across the board and produces local outputs that represent local territory owner-
ship probabilities. The aggregation of these probabilities provides an effective
strategic evaluation function that is an estimate of the expected area at the end (or
at other stages) of the game. Local area targets for training can be derived from
datasets of human games. A system trained using only9 × 9 amateur game data
performs surprisingly well on a test set derived from19 × 19 professional game
data. Possible directions for further improvements are briefly discussed.

1 Introduction

Go is an ancient board game–over 3,000 years old [6, 5]–that poses unique opportunities and chal-
lenges for artificial intelligence and machine learning. The rules of Go are deceptively simple: two
opponents alternatively place black and white stones on the empty intersections of an odd-sized
square board, traditionally of size19 × 19. The goal of the game, in simple terms, is for each
player to capture as much territory as possible across the board by encircling the opponent’s stones.
This disarming simplicity, however, conceals a formidable combinatorial complexity [2]. On a
19 × 19 board, there are approximately319×19 = 10172.24 possible board configurations and, on
average, on the order of 200-300 possible moves at each step of the game, preventing any form of
semi-exhaustive search. For comparison purposes, the game of chess has a much smaller branching
factor, on the order of 35-40 [10, 7]. Today, computer chess programs, built essentially on search
techniques and running on a simple PC, can rival or even surpass the best human players. In contrast,
and in spite of several decades of significant research efforts and of progress in hardware speed, the
best Go programs of today are easily defeated by an average human amateur.

Besides the intrinsic challenge of the game, and the non-trivial market created by over 100 million
players worldwide, Go raises other important questions for our understanding of natural or artificial
intelligence in the distilled setting created by the simple rules of a game, uncluttered by the endless
complexities of the “real world”. For example, to many observers, current computer solutions to
chess appear “brute force”, hence “unintelligent”. But is this perception correct, or an illusion–is
there something like true intelligence beyond “brute force” and computational power? Where is Go
situated in the apparent tug-of-war between intelligence and sheer computational power?



Another fundamental question that is particularly salient in the Go setting is the question of knowl-
edge transfer. Humans learn to play Go on boards of smaller sized–typically9× 9–and then “trans-
fer” their knowledge to the larger19 × 19 standard size. How can we develop algorithms that are
capable of knowledge transfer?

Here we take modest steps towards addressing these challenges by developing a scalable machine
learning approach to Go. Clearly good evaluation functions and search algorithms are essential in-
gredients of computer board-game systems. Here we focus primarily on the problem of learning a
good evaluation function for Go in a scalable way. We do include simple search algorithms in our
system, as many other programs do, but this is not the primary focus. By scalability we imply that
a main goal is to develop a system more or less automatically, using machine learning approaches,
with minimal human intervention and handcrafting. The system ought to be able to transfer infor-
mation from one board size (e.g.9 × 9), to another size (e.g.19 × 19).

We take inspiration in three ingredients that seem to be essential to the Go human evaluation process:
the understanding of local patterns, the ability to combine patterns, and the ability to relate tactical
and strategic goals. Our system is built to learn these three capabilities automatically and attempts to
combine the strengths of existing systems while avoiding some of their weaknesses. The system is
capable of automatically learning the propensity of local patterns from a library of games. Propensity
and other local tactical information are fed into a recursive neural network, derived from a Bayesian
network architecture. The network integrates local information across the board and produces local
outputs that represent local territory ownership probabilities. The aggregation of these probabilities
provides an effective strategic evaluation function that is an estimate of the expected area at the end
(or at other stages) of the game. Local area targets for training can be derived from datasets of human
games. The main results we present here are derived on a19×19 board using a player trained using
only 9 × 9 game data.

2 Data

Because the approach to be described emphasizes scalability and learning, we are able to train
our systems at a given board size and use it to play at different sizes, both larger and smaller. Pure
bootstrap approaches to Go where computer players are initialized randomly and play large numbers
of games, such as evolutionary approaches or reinforcement learning, have been tried [11]. We have
implemented these approaches and used them for small board sizes5 × 5 and7 × 7. However, in
our experience, these approaches do not scale up well to larger board sizes. For larger board sizes,
better results are obtained using training data derived from records of games played by humans. We
used available data at board sizes9 × 9, 13 × 13, and19 × 19.

Data for 9 × 9 Boards: This data consists of 3,495 games. We randomly selected 3,166 games
(90.6%) for training, and the remaining 328 games (9.4%) for validation. Most of the games in this
data set are played by amateurs. A subset of 424 games (12.13%) have at least one player with an
olf ranking of 29, corresponding to a very good amateur player.

Data for 13 × 13 Boards: This data consists of 4175 games. Most of the games, however, are
played by rather weak players and therefore cannot be used for training. For validation purposes,
however, we retained a subset of 91 games where both players have an olf ranking greater or equal
to 25–the equivalent of a good amateur player.

Data for 19× 19 Boards: This high-quality data set consists of 1835 games played by professional
players (at least 1 dan). A subset of 1131 games (61.6%) are played by 9 dan players (the highest
possible ranking). This is the dataset used in [12].

3 System Architecture

3.1 Evaluation Function, Outputs, and Targets

Because Go is a game about territory, it is sensible to have “expected territory” be the evaluation
function, and to decompose this expectation as a sum of local probabilities. More specifically, let
Aij(t) denote the ownership of intersectionij on the board at timet during the game. At the end of a



game, each intersection can be black, white, or both1. Black is represented as 1, white as 0, and both
as 0.5. The same scheme with 0.5 for empty intersections, or more complicated schemes, can be
used to represent ownership at various intermediate stages of the game. LetOij(t) be the output of
the learning system at intersectionij at timet in the game. Likewise, letTij(t) be the corresponding
training target. In the most simple case, we can useTij(t) = Aij(T ), whereT denotes the end of
the game. In this case, the outputOij(t) can be interpreted as the probabilityPij(t), estimated at
time t, of owning theij intersection at the end of the game. Likewise,

∑

ij Oij(t) is the estimate,
computed at timet, of the total expected area at the end of the game.

Propagation of information provided by targets/rewards computed at the end of the game only, how-
ever, can be problematic. With a dataset of training examples, this problem can be addressed because
intermediary area valuesAij(t) are available for training for anyt. In the simulations presented here,
we use a simple scheme

Tij(t) = (1 − w)Aij(T ) + wAij(t + k) (1)

w ≥ 0 is a parameter that controls the convex combination between the area at the end of the game
and the area at some stept + k in the more near future.w = 0 corresponds to the simple case
described above where only the area at the end of the game is used in the target function. Other
ways of incorporating target information from intermediary game positions are discussed briefly at
the end.

To learn the evaluation function and the targets, we propose to use a graphical model (Bayesian
network) which in turn leads to a directed acyclic graph recursive neural network (DAG-RNN)
architecture.

3.2 DAG-RNN Architectures

The architecture is closely related to an architecture originally proposed for a problem in a com-
pletely different area – the prediction of protein contact maps [8, 1]. As a Bayesian network, the
architecture can be described in terms of the DAG in Figure 1 where the nodes are arranged in 6 lat-
tice planes reflecting the Go board spatial organization. Each plane containsN ×N nodes arranged
on the vertices of a square lattice. In addition to the input and output planes, there are four hidden
planes for the lateral propagation and integration of information across the Go board. Within each
hidden plane, the edges of the quadratic lattice are oriented towards one of the four cardinal direc-
tions (NE, NW, SE, and SW). Directed edges within a column of this architecture are given in Figure
1b. Thus each intersectionij in a N × N board is associated with six units. These units consist of
an input unitIij , four hidden unitsHNE

ij ,HNW
ij ,HSW

ij ,HSE
ij , and an output unitOij .

In a DAG-RNN the relationships between the variables are deterministic, rather than probabilistic,
and implemented in terms of neural networks with weight sharing. Thus the previous architecture,
leads to a DAG-RNN architecture consisting of 5 neural networks in the form
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where, for instance,NO is a single neural network that is shared across all spatial locations. In
addition, since Go is “isotropic” we use a single network shared across the four hidden planes. Go
however involves strong boundaries effects and therefore we add one neural networkNC for the
corners, shared across all four corners, and one neural networkNS for each side position, shared
across all four sides. In short, the entire Go DAG-RNN architecture is described by four feedforward
NNs (corner, side, lateral, output) that are shared at all corresponding locations. For each one
of these feedforward neural networks, we have experimented with several architectures, but we

1This is called “seki”. Seki is a situation where two live groups share liberties and where neither of them
can fill them without dying.



typically use a single hidden layer. The DAG-RNN in the main simulation results uses 16 hidden
nodes and 8 output nodes for the lateral propagation networks, and 16 hidden nodes and one output
node for the output network. All transfer functions are logistic. The total number of free parameters
is close to 6000.

Because the underlying graph is acyclic, these networks can be unfolded in space and training can
proceed by simple gradient descent (back-propagation) taking into account relevant symmetries and
weight sharing. Networks trained at one board size can be reused at any other board size, providing
a simple mechanism for reusing and extending acquired knowledge. For a board of sizeN × N ,
the training procedure scales likeO(WMN4) whereW is the number of adjustable weights, and
M is the number of training games. There are roughlyN2 board positions in a game and, for
each position,N2 outputsOij to be trained, hence theO(N4) scaling. Both game records and
the positions within each selected game record are randomly selected during training. Weights are
updated essentially on line, once every 10 game positions. Training a single player on our9×9 data
takes on the order of a week on a current desktop computer, corresponding roughly to 50 training
epochs at 3 hours per epoch.
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a. Planar lattices of the architecture. b. Connection details within anij column.

Figure 1: (a) The nodes of a DAG-RNN are regularly arranged in one input plane, one output plane,
and four hidden planes. In each plane, nodes are arranged on a square lattice. The hidden planes
contain directed edges associated with the square lattices. All the edges of the square lattice in each
hidden plane are oriented in the direction of one of the four possible cardinal corners: NE, NW,
SW, and SE. Additional directed edges run vertically in column from the input plane to each hidden
plane and from each hidden plane to the output plane. (b) Connection details within one column of
Figure 1a. The input node is connected to four corresponding hidden nodes, one for each hidden
plane. The input node and the hidden nodes are connected to the output node.Iij is the vector of
inputs at intersectionij. Oij is the corresponding output. Connections of each hidden node to its
lattice neighbors within the same plane are also shown.

3.3 Inputs

At a given board intersection, the input vectorIij has multiple components–listed in Table 1. The
first three components–stone type, influence, and propensity–are associated with the corresponding
intersection and afixed number of surrounding locations. Influence and propensity are described
below in more detail. The remaining features correspond togroup properties involving variable
numbers of neighboring stones and are self explanatory for those who are familiar with Go. The
groupGij associated with a given intersection is the maximal set of stones of the same color that are
connected to it. Neighboring (or connected) opponent groups ofGij are groups of the opposite color
that are directly connected (adjacent) toGij . The idea of using higher order liberties is from Werf
[13]. O1st andO2nd provide the number of true eyes and the number of liberties of the weakest and



the second weakest neighboring opponent groups. Weakness here is defined in alphabetical order
with respect to the number of eyes first, followed by the number of liberties.

Table 1: Typical input features. The first three features–stone type, influence, and propensity–
are properties associated with the corresponding intersection and a fixed number of surrounding
locations. The other properties are group properties involving variable numbers of neighboring
stones.

Feature Description
b,w,e the stone type: black, white or empty
influence the influence from the stones of the same color and the opposing color
propensity a local statistics computed from3 × 3 patterns in the training data (section 3.3)
Neye the number of true eyes
N1st the number of liberties, which is the number of empty intersections connected

to a group of stones. We also call it the 1st-order liberties
N2nd the number of 2nd-order liberties, which is defined as the liberties of the 1st-

order liberties
N3rd the number of 3rd-order liberties, which is defined as the liberties of the 2nd-

order liberties
N4th the number of 4th-order liberties, which is defined as the liberties of the 3rd-

order liberties
O1st features of the weakest connected opponent group (stone type, number of liber-

ties, number of eyes)
O2nd features of the second weakest connected opponent group (stone type, number

of liberties, number of eyes)

Influence: We use two types of influence calculation. Both algorithms are based on Chen’s method
[4]. One is an exact implementation of Chen’s method. The other uses a stringent influence prop-
agation rule. In Chen’s exact method, any opponent stone can block the propagation of influence.
With a stringent influence propagation rule, an opponent stone can block the propagation of influ-
ence if and only if it is stronger than the stone emitting the influence. Strength is again defined in
alphabetical order with respect to the number of eyes first, followed by the number of liberties.

Propensity–Automated Learning and Scoring of a Pattern Library: We develop a method to
learn local patterns and their value automatically from a database of games. The basic method is
illustrated in the case of3 × 3 patterns, which are used in the simulations. Considering rotation and
mirror symmetries, there are 10 unique locations for a3 × 3 window on a9 × 9 board (see also
[9]). Given any3 × 3 pattern of stones on the board and a set of games, we then compute nine
numbers, one for each intersection. These numbers are local indicators of strength or propensity.
The propensitySij(p) of each intersectionij associated with stone patternp and a3× 3 windoww
is defined as:

Sw
ij(p) =

NBij(p) − NWij(p)

NBij(p) + NWij(p) + C
(3)

whereNBij(p) is the number of times that patternp ends with a black stone at intersectionij at
the end of the games in the data, andNWij(p) is the same for a white stone. BothNBij(p) and
NWij(p) are computed taking into account the location and the symmetries of the corresponding
windoww. C plays a regularizing role in the case of rare patterns and is set to 1 in the simulations.
ThusSw

ij(p) is an empirical normalized estimate of the local differential propensity towards con-
quering the corresponding intersection in the local context provided by the corresponding pattern
and window.

In general, a given intersectionij on the board is covered by several3 × 3 windows. Thus, for a
given intersectionij on a given board, we can compute a valueSw

ij(p) for each different window
that contains the intersection. In the following simulations, a single final valueSij(p) is computed
by averaging over the differentw’s. However, more complex schemes that retain more information
can easily be envisioned by, for instance: (1) computing also the standard deviation of theSw

ij(p) as
a function ofw; (2) using a weighted average, weighted by the importance of the windoww; and
(3) using the entire set ofSw

ij(p) values, asw varies aroundij, to augment the input vector.



3.4 Move Selection and Search

For a given position, the next move can be selected using one-level search by considering all possible
legal moves and computing the estimate at timet of the total expected areaE =

∑

ij Oij(t) at the
end of the game, or some intermediate position, or a combination of both, whereOij(t) are the
outputs (predicted probabilities) of the DAG-RNNs. The next move can be chosen by maximizing
this evaluation function (1-ply search). Alternatively, Gibbs sampling can be used to choose the
next move among all the legal moves with a probability proportional toeE/Temp, whereTemp is
a temperature parameter [3, 11, 12]. We have also experimented with a few other simple search
schemes, such as 2-ply search (MinMax).

4 Results

We trained a large number of players using the methods described above. In the absence of training
data, we used pure bootstrap approaches (e.g. reinforcement learning) at sizes5 × 5 and7 × 7 with
results that were encouraging but clearly insufficient. Not surprisingly, when used to play at larger
board sizes, the RNNs trained at these small board sizes yield rather weak players. The quality of
most13 × 13 games available to us is too poor for proper training, although a small subset can be
used for validation purposes. We do not have any data for sizesN = 11, 15, and17. And because
of theO(N4) scaling, training systems directly at19 × 19 takes many months and is currently in
progress. Thus the most interesting results we report are derived by training the RNNs using the9×9
game data, and using them to play at9×9 and, more importantly, at larger board sizes. Several9×9
players achieve top comparable performance. For conciseness, here we report the results obtained
with one of them, trained with target parametersw = 0.25 andk = 2 in Equation 1,
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Figure 2: (a) Validation error vs. game phase. Phase is defined by the total number of stones on
the board. The four curves respectively represent the validation errors of the neural network after 1,
2, 33, and 38 epochs of training. (b) Percentage of moves made by professional human players on
boards of size19 × 19 that are contained in them top-ranked moves according to the DAG-RNN
trained on9 × 9 amateur data, for various values ofm. The baseline associated with the red curve
corresponds to a random uniform player.

Figure 2a shows how the validation error changes as training progresses. Validation error here is
defined as the relative entropy between the output probabilities produced by the RNN and the target
probabilities, computed on the validation data. The validation error decreases quickly during the
first epochs. In this case, no substantial decrease in validation error is observed after epoch 30. Note
also how the error is smaller towards the end of the game due both to the reduction in the number of
possible moves and the strong end-of-game training signal.

An area and hence a probability can be assigned by the DAG-RNN to each move, and used to
rank them, as described in section 3.4. Thus we can compute the average probability of moves
played by good human players according to the DAG-RNN or other probabilistic systems such as
[12]. In Table 2, we report such probabilities for several systems and at different board sizes. For
size19 × 19, we use the same test set used in [12]. Boltzmann5 and BoltzmannLiberties are their
results reported in the pre-published version of their NIPS paper. At this size, the probabilities in



Table 2: Probabilities assigned by different systems to moves played by human players in test data.

Board Size System Log Probability Probability
9 × 9 Random player -4.13 1/62
9 × 9 RNN(1-ply search) -1.86 1/7

13 × 13 Random player -4.88 1/132
13 × 13 RNN(1-ply search) -2.27 1/10
19 × 19 Random player -5.64 1/281
19 × 19 Boltzmann5 -5.55 1/254
19 × 19 BoltzmannLiberties -5.27 1/194
19 × 19 RNN(1-ply search) -2.70 1/15

the table are computed using the 80-83rd moves of each game. For boards of size19×19, a random
player that selects moves uniformly at random among legal moves assigns a probability of 1/281 to
the moves played by professional players in the data set. BoltzmannLiberties was able to improve
this probability to 1/194. Our best DAG-RNNs trained using amateur data at9 × 9 are capable of
bringing this probability further down to 1/15 (also a considerable improvement over our previous
1/42 performance presented in April 2006 at the Snowbird Learning Conference). A remarkable
example where the top ranked move according to the DAG-RNN coincides with the move actually
played in a game between two very highly-ranked players is given in Figure 3, illustrating also the
underlying probabilistic territory calculations.
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Figure 3: Example of an outstanding move based on territory predictions made by the DAG-RNN.
For each intersection, the height of the green bar represents the estimated probability that the inter-
section will be owned by black at the end of the game. The figure on the left shows the predicted
probabilities if black passes. The figure on the right shows the predicted probabilities if black makes
the move at N12. N12 causes the greatest increase in green area and is top-ranked move for the
DAG-RNN. Indeed this is the move selected in the game played by Zhou, Heyang (black, 8 dan)
and Chang, Hao (white, 9 dan) on 10/22/2000.

Figure 2b, provides a kind of ROC curve by displaying the percentage of moves made by pro-
fessional human player on boards of size19 × 19 that are contained in them top-ranked moves
according to the DAG-RNN trained on9× 9 amateur data, for various values ofm across all phases
of the game. For instance, when there are 80 stones on the board, and hence on the order of 300
legal moves available, there is a 50% chance that a move selected by a very highly ranked human
player (dan 9) is found among the top 30 choices produced by the DAG-RNN.



5 Conclusion

We have designed a DAG-RNN for the game of Go and demonstrated that it can learn territory
predictions fairly well. Systems trained using only a set of9 × 9 amateur games achieve surpris-
ingly good performance on a19 × 19 test set that contains 1835 professional played games. The
methods and results presented clearly point also to several possible direction of improvement that
are currently under active investigation. These include: (1) obtaining larger data sets and training
systems of size greater than9 × 9; (2) exploiting patterns that are larger than3 × 3, especially at
the beginning of the game when the board is sparsely occupied and matching of large patterns is
possible using, for instance, Zobrist hashing techniques [14]; (3) combining different players, such
as players trained at different board sizes, or players trained on different phases of the game; and (4)
developing better, non-exhaustive but deeper, search methods.
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