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Abstract

Latent Dirichlet allocation (LDA) is a Bayesian network that has recently gained
much popularity in applications ranging from document modeling to computer
vision. Due to the large scale nature of these applications, current inference pro-
cedures like variational Bayes and Gibbs sampling have been found lacking. In
this paper we propose the collapsed variational Bayesian inference algorithm for
LDA, and show that it is computationally efficient, easy to implement and signifi-
cantly more accurate than standard variational Bayesian inference for LDA.

1 Introduction

Bayesian networks with discrete random variables form a very general and useful class of proba-
bilistic models. In a Bayesian setting it is convenient to endow these models with Dirichlet priors
over the parameters as they are conjugate to the multinomial distributions over the discrete random
variables [1]. This choice has important computational advantages and allows for easy inference in
such models.

A class of Bayesian networks that has gained significant momentum recently is latent Dirichlet
allocation (LDA) [2], otherwise known as multinomial PCA [3]. It has found important applications
in both text modeling [4, 5] and computer vision [6]. Training LDA on a large corpus of several
million documents can be a challenge and crucially depends on an efficient and accurate inference
procedure. A host of inference algorithms have been proposed, ranging from variational Bayesian
(VB) inference [2], expectation propagation (EP) [7] to collapsed Gibbs sampling [5].

Perhaps surprisingly, the collapsed Gibbs sampler proposed in [5] seem to be the preferred choice
in many of these large scale applications. In [8] it is observed that EP is not efficient enough to
be practical while VB suffers from a large bias. However, collapsed Gibbs sampling also has its
own problems: one needs to assess convergence of the Markov chain and to have some idea of
mixing times to estimate the number of samples to collect, and to identify coherent topics across
multiple samples. In practice one often ignores these issues and collects as many samples as is
computationally feasible, while the question of topic identification is often sidestepped by using
just 1 sample. Hence there still seems to be a need for more efficient, accurate and deterministic
inference procedures.

In this paper we will leverage the important insight that a Gibbs sampler that operates in a collapsed
space—where the parameters are marginalized out—mixes much better than a Gibbs sampler that
samples parameters and latent topic variables simultaneously. This suggests that the parameters
and latent variables are intimately coupled. As we shall see in the following, marginalizing out the
parameters induces new dependencies between the latent variables (which areconditionally inde-
pendent given the parameters), but these dependencies are spread out over many latent variables.
This implies that the dependency between any two latent variables is expected to be small. This is



precisely the right setting for a mean field (i.e. fully factorized variational) approximation: a par-
ticular variable interacts with the remaining variables only through summary statistics called the
field, and the impact of any single variable on the field is very small [9]. Note that this is not true
in the joint space of parameters and latent variables because fluctuations in parameters can have a
significant impact on latent variables. We thus conjecture that the mean field assumptions are much
better satisfied in the collapsed space of latent variables than in the joint space of latent variables
and parameters. In this paper we leverage this insight and propose a collapsed variational Bayesian
(CVB) inference algorithm.

In theory, the CVB algorithm requires the calculation of very expensive averages. However, the
averages only depend on sums of independent Bernoulli variables, and thus are very closely approx-
imated with Gaussian distributions (even for relatively small sums). Making use of this approxi-
mation, the final algorithm is computationally efficient, easy to implement and significantly more
accurate than standard VB.

2 Approximate Inference in Latent Dirichlet Allocation

LDA models each document as a mixture over topics. We assume there areK latent topics, each
being a multinomial distribution over a vocabulary of sizeW . For documentj, we first draw a
mixing proportionθj = {θjk} overK topics from a symmetric Dirichlet with parameterα. For
the ith word in the document, a topiczij is drawn with topick chosen with probabilityθjk, then
wordxij is drawn from thezij th topic, withxij taking on valuew with probabilityφkw . Finally, a
symmetric Dirichlet prior with parameterβ is placed on the topic parametersφk = {φkw}. The full
joint distribution over all parameters and variables is:

p(x, z, θ, φ|α, β) =

D∏

j=1

Γ(Kα)

Γ(α)K

∏K
k=1 θ

α−1+njk·

jk

K∏

k=1

Γ(Wβ)

Γ(β)W

∏W
w=1 φ

β−1+n·kw

kw (1)

wherenjkw = #{i : xij = w, zij = k}, and dot means the corresponding index is summed out:
n·kw =

∑
j njkw , andnjk· =

∑
w njkw .

Given the observed wordsx = {xij} the task of Bayesian inference is to compute the posterior
distribution over the latent topic indicesz = {zij}, the mixing proportionsθ = {θj} and the topic
parametersφ = {φk}. There are three current approaches, variational Bayes (VB) [2], expectation
propagation [7] and collapsed Gibbs sampling [5]. We review the VB and collapsed Gibbs sam-
pling methods here as they are the most popular methods and to motivate our new algorithm which
combines advantages of both.

2.1 Variational Bayes

Standard VB inference upper bounds the negative log marginal likelihood− log p(x|α, β) using the
variational free energy:

− log p(x|α, β) ≤ F̃(q̃(z, θ, φ)) = Eq̃[− log p(x, z, φ, θ|α, β)] −H(q̃(z, θ, φ)) (2)

with q̃(z, θ, φ) an approximate posterior,H(q̃(z, θ, φ)) = Eq̃[− log q̃(z, θ, φ)] the variational en-
tropy, andq̃(z, θ, φ) assumed to be fully factorized:

q̃(z, θ, φ) =
∏

ij

q̃(zij |γ̃ij)
∏

j

q̃(θj |α̃j)
∏

k

q̃(φk|β̃k) (3)

q̃(zij |γ̃ij) is multinomial with parameters̃γij andq̃(θj |α̃j), q̃(φk|β̃k) are Dirichlet with parameters
α̃j andβ̃k respectively. Optimizing̃F(q̃) with respect to the variational parameters gives us a set of
updates guaranteed to improvẽF(q̃) at each iteration and converges to a local minimum:

α̃jk = α +
∑

i γ̃ijk (4)

β̃kw = β +
∑

ij 111(xij =w)γ̃ijk (5)

γ̃ijk ∝ exp
(
Ψ(α̃jk) + Ψ(β̃kxij

) − Ψ(
∑

w β̃kw)
)

(6)



whereΨ(y) = ∂ log Γ(y)
∂y

is the digamma function and111 is the indicator function.

Although efficient and easily implemented, VB can potentially lead to very inaccurate results. No-
tice that the latent variablesz and parametersθ, φ can be strongly dependent in the true posterior
p(z, θ, φ|x) through the cross terms in (1). This dependence is ignored in VB which assumes that
latent variables and parameters are independent instead. As a result, the VB upper bound on the
negative log marginal likelihood can be very loose, leading to inaccurate estimates of the posterior.

2.2 Collapsed Gibbs Sampling

Standard Gibbs sampling, which iteratively samples latent variablesz and parametersθ, φ, can
potentially have slow convergence due again to strong dependencies between the parameters and
latent variables. Collapsed Gibbs sampling improves upon Gibbs sampling by marginalizing outθ
andφ instead, therefore dealing with them exactly. The marginal distribution overx andz is

p(z,x|α, β) =
∏

j

Γ(Kα)

Γ(Kα+nj··)

∏
k

Γ(α+njk·)

Γ(α)

∏

k

Γ(Wβ)
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∏
w

Γ(β+n·kw)

Γ(β)
(7)

Given the current state of all but one variablezij , the conditional probability ofzij is:

p(zij = k|z¬ij ,x, α, β) =
(α + n

¬ij
jk· )(β + n

¬ij
·kxij

)(Wβ + n
¬ij
·k· )−1

∑K
k′=1(α + n

¬ij
jk′·)(β + n

¬ij
·k′xij

)(Wβ + n
¬ij
·k′·)

−1
(8)

where the superscript¬ij means the corresponding variables or counts withxij andzij excluded,
and the denominator is just a normalization. The conditional distribution ofzij is multinomial with
simple to calculate probabilities, so the programming and computational overhead is minimal.

Collapsed Gibbs sampling has been observed to converge quickly [5]. Notice from (8) thatzij

depends onz¬ij only through the countsn¬ij
jk· , n

¬ij
·kxij

, n
¬ij
·k· . In particular, the dependence ofzij on

any particular other variablezi′j′ is very weak, especially for large datasets. As a result we expect the
convergence of collapsed Gibbs sampling to be fast [10]. However, as with other MCMC samplers,
and unlike variational inference, it is often hard to diagnose convergence, and a sufficiently large
number of samples may be required to reduce sampling noise.

The argument of rapid convergence of collapsed Gibbs sampling is reminiscent of the argument for
when mean field algorithms can be expected to be accurate [9]. The countsn

¬ij
jk· , n

¬ij
·kxij

, n
¬ij
·k· act as

fields through whichzij interacts with other variables. In particular, averaging both sides of (8) by
p(z¬ij |x, α, β) gives us the Callen equations, a set of equations that the true posterior must satisfy:

p(zij = k|x, α, β) = Ep(z¬ij |x,α,β)

[
(α+n

¬ij
jk· )(β+n

¬ij
·kxij

)(Wβ+n
¬ij
·k· )−1

∑K
k′=1(α+n

¬ij
jk′·)(β+n

¬ij
·k′xij

)(Wβ+n
¬ij
·k′·)

−1

]
(9)

Since the latent variables are already weakly dependent on each other, it is possible to replace (9)
by a set of mean field equations where latent variables are assumed independent and still expect
these equations to be accurate. This is the idea behind the collapsed variational Bayesian inference
algorithm of the next section.

3 Collapsed Variational Bayesian Inference for LDA

We derive a new inference algorithm for LDA combining the advantages of both standard VB and
collapsed Gibbs sampling. It is a variational algorithm which, instead of assuming independence,
models the dependence of the parameters on the latent variables in an exact fashion. On the other
hand we still assume that latent variables are mutually independent. This is not an unreasonable
assumption to make since as we saw they are only weakly dependent on each other. We call this
algorithm collapsed variational Bayesian (CVB) inference.

There are two ways to deal with the parameters in an exact fashion, the first is to marginalize them
out of the joint distribution and to start from (7), the second is to explicitly model the posterior of
θ, φ given z andx without any assumptions on its form. We will show that these two methods



are equivalent. The only assumption we make in CVB is that the latent variablesz are mutually
independent, thus we approximate the posterior as:

q̂(z, θ, φ) = q̂(θ, φ|z)
∏

ij

q̂(zij |γ̂ij) (10)

whereq̂(zij |γ̂ij) is multinomial with parameterŝγij . The variational free energy becomes:

F̂(q̂(z)q̂(θ, φ|z)) = Eq̂(z)q̂(θ,φ|z)[− log p(x, z, θ, φ|α, β)] −H(q̂(z)q̂(θ, φ|z))

=Eq̂(z)[Eq̂(θ,φ|z)[− log p(x, z, θ, φ|α, β)] −H(q̂(θ, φ|z))] −H(q̂(z)) (11)

We minimize the variational free energy with respect toq̂(θ, φ|z) first, followed by q̂(z). Since
we do not restrict the form of̂q(θ, φ|z), the minimum is achieved at the true posteriorq̂(θ, φ|z) =
p(θ, φ|x, z, α, β), and the variational free energy simplifies to:

F̂(q̂(z)) , min
q̂(θ,φ|z)

F̂(q̂(z)q̂(θ, φ|z)) = Eq̂(z)[− log p(x, z|α, β)] −H(q̂(z)) (12)

We see that CVB is equivalent to marginalizing outθ, φ before approximating the posterior overz.
As CVB makes a strictly weaker assumption on the variational posterior than standard VB, we have

F̂(q̂(z)) ≤ F̃(q̃(z)) , min
q̃(θ)q̃(φ)

F̃(q̃(z)q̃(θ)q̃(φ)) (13)

and thus CVB is a better approximation than standard VB. Finally, we derive the updates for the
variational parameterŝγij . Minimizing (12) with respect tôγijk, we get

γ̂ijk = q̂(zij = k) =
exp

(
Eq̂(z¬ij)[p(x, z¬ij , zij = k|α, β)]

)
∑K

k′=1 exp
(
Eq̂(z¬ij)[p(x, z¬ij , zij = k′|α, β)]

) (14)

Plugging in (7), expandinglog Γ(η+n)
Γ(η) =

∑n−1
l=0 log(η + l) for positive realsη and positive integers

n, and cancelling terms appearing both in the numerator and denominator, we get

γ̂ijk =
exp

(
Eq̂(z¬ij)[log(α+n

¬ij
jk· ) + log(β+n

¬ij
·kxij

) − log(Wβ+n
¬ij
·k· )]

)

∑K
k′=1 exp

(
Eq̂(z¬ij)[log(α+n

¬ij
jk′·) + log(β+n

¬ij
·k′xij

) − log(Wβ+n
¬ij
·k′·)]

) (15)

3.1 Gaussian approximation for CVB Inference

For completeness, we describe how to compute each expectation term in (15) exactly in the ap-
pendix. This exact implementation of CVB is computationally too expensive to be practical, and
we propose instead to use a simple Gaussian approximation which works very accurately and which
requires minimal computational costs.

In this section we describe the Gaussian approximation applied toEq̂[log(α + n
¬ij
jk· )]; the other

two expectation terms are similarly computed. Assume thatnj·· � 0. Notice thatn¬ij
jk· =∑

i′ 6=i 111(zi′j = k) is a sum of a large number independent Bernoulli variables111(zi′j = k) each
with mean parameter̂γi′jk, thus it can be accurately approximated by a Gaussian. The mean and
variance are given by the sum of the means and variances of the individual Bernoulli variables:

Eq̂[n
¬ij
jk· ] =

∑

i′ 6=i

γ̂i′jk Varq̂[n
¬ij
jk· ] =

∑

i′ 6=i

γ̂i′jk(1 − γ̂i′jk) (16)

We further approximate the functionlog(α + n
¬ij
jk· ) using a second-order Taylor expansion about

Eq̂[n
¬ij
jk· ], and evaluate its expectation under the Gaussian approximation:

Eq̂[log(α + n
¬ij
jk· )] ≈ log(α + Eq̂[n

¬ij
jk· ]) −

Varq̂(n
¬ij
jk· )

2(α + Eq̂[n
¬ij
jk· ])

2
(17)

BecauseEq̂[n
¬ij
jk· ] � 0, the third derivative is small and the Taylor series approximation is very

accurate. In fact, we have found experimentally that the Gaussian approximation works very well



even whennj·· is small. The reason is that we often haveγ̂i′jk being either close to 0 or 1 thus
the variance ofn¬ij

jk· is small relative to its mean and the Gaussian approximation will be accurate.
Finally, plugging (17) into (15), we have our CVB updates:

γ̂ijk ∝
(
α+Eq̂[n

¬ij
jk· ]

)(
β+Eq̂[n

¬ij
·kxij

]
)(

Wβ+Eq̂[n
¬ij
·k· ]

)−1

exp

(
−

Varq̂(n¬ij

jk·
)

2(α+Eq̂ [n¬ij

jk·
])2

−
Varq̂(n¬ij

·kxij
)

2(β+Eq̂[n¬ij

·kxij
])2

+
Varq̂(n¬ij

·k·
)

2(Wβ+Eq̂ [n¬ij

·k·
])2

)
(18)

Notice the striking correspondence between (18), (8) and (9), showing that CVB is indeed the mean
field version of collapsed Gibbs sampling. In particular, the first line in (18) is obtained from (8)
by replacing the fieldsn¬ij

jk· , n
¬ij
·kxij

andn
¬ij
·k· by their means (thus the term mean field) while the

exponentiated terms are correction factors accounting for the variance in the fields.

CVB with the Gaussian approximation is easily implemented and has minimal computational costs.
By keeping track of the mean and variance ofnjk·, n·kw andn·k·, and subtracting the mean and
variance of the corresponding Bernoulli variables whenever we require the terms withxij , zij re-
moved, the computational cost scales only asO(K) for each update tôq(zij). Further, we only
need to maintain one copy of the variational posterior over the latent variable for each unique docu-
ment/word pair, thus the overall computational cost per iteration of CVB scales asO(MK) where
M is the total number of unique document/word pairs, while the memory requirement isO(MK).
This is the same as for VB. In comparison, collapsed Gibbs sampling needs to keep track of the
current sample ofzij for every word in the corpus, thus the memory requirement isO(N) while the
computational cost scales asO(NK) whereN is the total number of words in the corpus—higher
than for VB and CVB. Note however that the constant factor involved in theO(NK) time cost of
collapsed Gibbs sampling is significantly smaller than those for VB and CVB.

4 Experiments

We compared the three algorithms described in the paper: standard VB, CVB and collapsed Gibbs
sampling. We used two datasets: first is “KOS” (www.dailykos.com), which hasJ = 3430 docu-
ments, a vocabulary size ofW = 6909, a total ofN = 467, 714 words in all the documents and on
average136 words per document. Second is “NIPS” (books.nips.cc) withJ = 1675 documents, a
vocabulary size ofW = 12419,N = 2, 166, 029 words in the corpus and on average1293 words per
document. In both datasets stop words and infrequent words were removed. We split both datasets
into a training set and a test set by assigning10% of the words in each document to the test set. In
all our experiments we usedα = 0.1, β = 0.1, K = 8 number of topics for KOS andK = 40 for
NIPS. We ran each algorithm on each dataset 50 times with different random initializations.

Performance was measured in two ways. First using variational bounds of the log marginal proba-
bilities on the training set, and secondly using log probabilities on the test set. Expressions for the
variational bounds are given in (2) for VB and (12) for CVB. For both VB and CVB, test set log
probabilities are computed as:

p(xtest) =
∏

ij

∑

k

θ̄jkφ̄kxtest
ij

θ̄jk =
α + Eq[njk·]

Kα + Eq[nj··]
φ̄kw =

β + Eq[n·kw]

Wβ + Eq[n·k·]
(19)

Note that we used estimated mean values ofθjk andφkw [11]. For collapsed Gibbs sampling, given
S samples from the posterior, we used:

p(xtest) =
∏

ij

∑

k

1

|S|

S∑

s=1

θs
jkφs

kxtest
ij

θs
jk =

α + ns
jk·

Kα + ns
j··

φs
kw =

β + ns
·kw

Wβ + ns
·k·

(20)

Figure 1 summarizes our results. We show both quantities as functions of iterations and as his-
tograms of final values for all algorithms and datasets. CVB converged faster and to significantly
better solutions than standard VB; this confirms our intuition that CVB provides much better approx-
imations than VB. CVB also converged faster than collapsed Gibbs sampling, but Gibbs sampling
attains a better solution in the end; this is reasonable since Gibbs sampling should be exact with



0 20 40 60 80 100
−9

−8.5

−8

−7.5

Collapsed VB
Standard VB

0 20 40 60 80 100
−9

−8.8

−8.6

−8.4

−8.2

−8

−7.8

−7.6

−7.4

Collapsed VB
Standard VB

−7.8 −7.675 −7.55
0

5

10

15

20
Collapsed VB
Standard VB

−7.65 −7.6 −7.55 −7.5 −7.45 −7.4
0

5

10

15

20

25

30

35

40
Collapsed VB
Standard VB

0 20 40 60 80 100
−7.9

−7.8

−7.7

−7.6

−7.5

−7.4

Collapsed Gibbs
Collapsed VB
Standard VB

0 20 40 60 80 100
−7.9

−7.8

−7.7

−7.6

−7.5

−7.4

−7.3

−7.2

Collapsed Gibbs
Collapsed VB
Standard VB

−7.7 −7.65 −7.6 −7.55 −7.5 −7.45 −7.4
0

5

10

15

20
Collapsed Gibbs
Collapsed VB
Standard VB

−7.5 −7.45 −7.4 −7.35 −7.3 −7.25 −7.2
0

5

10

15

20

25

30 Collapsed Gibbs
Collapsed VB
Standard VB

Figure 1:Left: results for KOS.Right: results for NIPS.First row: per word variational bounds as functions
of numbers of iterations of VB and CVB.Second row: histograms of converged per word variational bounds
across random initializations for VB and CVB.Third row: test set per word log probabilities as functions
of numbers of iterations for VB, CVB and Gibbs.Fourth row: histograms of final test set per word log
probabilities across 50 random initializations.
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Figure 2:Left: test set per word log probabilities.Right: per word variational bounds. Both as functions of
the number of documents for KOS.

enough samples. We have also applied the exact but much slower version of CVB without the Gaus-
sian approximation, and found that it gave identical results to the one proposed here (not shown).

We have also studied the dependence of approximation accuracies on the number of documents in
the corpus. To conduct this experiment we train on 90% of the words in a (growing) subset of the
corpus and test on the corresponding 10% left out words. In figure Figure 2 we show both variational
bounds and test set log probabilities as functions of the number of documentsJ . We observe that as
expected the variational methods improve asJ increases. However, perhaps surprisingly, CVB does
not suffer as much as VB for small values ofJ , even though one might expect that the Gaussian
approximation becomes dubious in that regime.

5 Discussion

We have described a collapsed variational Bayesian (CVB) inference algorithm for LDA. The al-
gorithm is easy to implement, computationally efficient and more accurate than standard VB. The
central insight of CVB is that instead of assuming parameters to be independent from latent vari-
ables, we treat their dependence on the topic variables in an exact fashion. Because the factorization
assumptions made by CVB are weaker than those made by VB, the resulting approximation is more
accurate. Computational efficiency is achieved in CVB with a Gaussian approximation, which was
found to be so accurate that there is never a need for exact summation.

The idea of integrating out parameters before applying variational inference has been indepen-
dently proposed by [12]. Unfortunately, because they worked in the context of general conjugate-
exponential families, the approach cannot be made generally computationally useful. Nevertheless,
we believe the insights of CVB can be applied to a wider class of discrete graphical models beyond
LDA. Specific examples include various extensions of LDA [4, 13] hidden Markov models with dis-
crete outputs, and mixed-membership models with Dirichlet distributed mixture coefficients [14].
These models all have the property that they consist of discrete random variables with Dirichlet
priors on the parameters, which is the property allowing us to use the Gaussian approximation. We
are also exploring CVB on an even more general class of models, including mixtures of Gaussians,
Dirichlet processes, and hierarchical Dirichlet processes.

Over the years a variety of inference algorithms have been proposed based on a combination of
{maximize, sample, assume independent, marginalize out} applied to both parameters and latent
variables. We conclude by summarizing these algorithms in Table 1, and note that CVB is located
in the marginalize out parameters and assume latent variables are independent cell.

A Exact Computation of Expectation Terms in (15)

We can compute the expectation terms in (15) exactly as follows. ConsiderEq̂[log(α+n
¬ij
jk· )],

which requires computinĝq(n¬ij
jk· ) (other expectation terms are similarly computed). Note that



Parameters→ maximize sample assume marginalize
↓ Latent variables independent out

maximize Viterbi EM ? ME ME
sample stochastic EM Gibbs sampling ? collapsed Gibbs

assume independentvariational EM ? VB CVB
marginalize out EM any MCMC EP for LDA intractable

Table 1:A variety of inference algorithms for graphical models. Note that not every cell is filled in (marked
by ?) while some are simply intractable. “ME” is the maximization-expectation algorithm of [15] and “any
MCMC” means that we can use any MCMC sampler for the parameters once latent variables have been
marginalized out.

n
¬ij
jk· =

∑
i′ 6=i 111(zi′j = k) is a sum of independent Bernoulli variables111(zi′j = k) each with mean

parameter̂γi′jk. Define vectorsvi′jk = [(1 − γ̂i′jk), γ̂i′jk]>, and letvjk = v1jk ⊗ · · · ⊗ vn·j·jk be
the convolution of allvi′jk. Finally let v¬ij

jk bevjk deconvolved byvijk. Thenq̂(n¬ij
jk· = m) will

be the(m+1)st entry inv
¬ij
jk . The expectationEq̂[log(α+n

¬ij
jk· )] can now be computed explicitly.

This exact implementation requires an impracticalO(n2
j··) time to computeEq̂[log(α+n

¬ij
jk· )]. At

the expense of complicating the algorithm implementation, this can be improved by sparsifying the
vectorsvjk (setting small entries to zero) as well as other computational tricks. We propose instead
the Gaussian approximation of Section 3.1, which we have found to give extremely accurate results
but with minimal implementation complexity and computational cost.
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