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Abstract

We study a setting that is motivated by the problem of filtering spam messages
for many users. Each user receives messages according to an individual, unknown
distribution, reflected only in the unlabeled inbox. The spam filter for a user is
required to perform well with respect to this distribution. Labeled messages from
publicly available sources can be utilized, but they are governed by a distinct dis-
tribution, not adequately representing most inboxes. We devise a method that min-
imizes a loss function with respect to a user’s personal distribution based on the
available biased sample. A nonparametric hierarchical Bayesian model further-
more generalizes across users by learning a common prior which is imposed on
new email accounts. Empirically, we observe that bias-corrected learning outper-
forms naive reliance on the assumption of independent and identically distributed
data; Dirichlet-enhanced generalization across users outperforms a single (“one
size fits all”) filter as well as independent filters for all users.

1 Introduction

Design and analysis of most machine learning algorithms are based on the assumption that the train-
ing data be drawn independently and from the same stationary distribution that the resulting model
will be exposed to. In many application scenarios, however, control over the data generation pro-
cess is less perfect, and so thisassumption is often a naive over-simplification. In econometrics,
learning from biased samples is a common phenomenon, where the willingness to respond to sur-
veys is known to depend on several characteristics of the person queried; work that led to a method
for correcting sample selection bias for a class of regression problems has been distinguished by a
Nobel Prize [6]. In machine learning, the case of training data that is only biased with respect to the
ratio of class labels has been studied [4, 7]. Zadrozny [14] has derived a bias correction theorem that
applies when the bias is conditionally independent of the class label given the instance, and when
every instance has a nonzero probability of being drawn into the sample. Sample bias correction for
maximum entropy density estimation [3] and the analysis of the generalization error under covariate
shift [12] follow the same intuition.

In our email spam filtering setting, a server handles many email accounts (in case of our industrial
partner, several millions), and delivers millions of emails per day. A magnitude of spam and “ham”
(i.e.,non-spam) sources are publicly available. They include collections of emails caught in “spam
traps” — email addresses that are published on the web in an invisible font and are harvested by
spammers [11] — the Enron corpus that was disclosed in the course of the Enron trial [8], and Spam-
Assassin data. These collections have diverse properties and none of them represents the global
distribution of all emails, let alone the distribution received by some particular user. The resulting
bias does not only hinder learning, but also leads to skewed accuracy estimates, since individuals
may receive a larger proportion of emails that a filter classifies less confidently.



The following data generation model is paramount to our problem setting. An unknown process,
characterized by a distributigr(é;|3), generates parameteéts Thed; parameterize distributions
p(x, y|6;) over instances (emails) and class labejs Eachp(x, y|6;) corresponds to thieth user’s
distribution of incoming spam (& +1) or ham ¢y = —1) messages.

The goal is to obtain a classifigy : x — y for eachd; that minimizes the expectation of some loss
function Ey )0, [£(f(x), )], defined with respect to the (unknown) distributign

Labeled training daté are drawn from a blend of data sources (public email archives), resulting in
a densityp(x, y|A) = p(x|\)p(y|x, A) with parameten that governd.. The relation between the

6; and\ is such that (a) any that has nonzero probability densjiyx|\) of being drawn into the
sampleL also has a nonzero probabilityx|6;) under the target distributiorss; and (b) the concept

of spam is consensual for all users and the labeled data(y|x, A) = p(y|x, §;) for all users.

In addition to the (nonempty) labeled sample, zero or more unlabeled/date available for each

0; and are drawn according . The unlabeled samplg; is the inbox of usei. The inbox is

empty for a newly established account and grows from there on. Our problem setting corresponds
to an application scenario in which users are not prepared to manually tag spam messages in their
inbox. Due to privacy and legal constraints, we are not allowed to personally read (or label) any
single personal email; but the unlabeled messages may be used as input to an automated procedure.

The individual distribution®); are neither independent (identical spam messages are sent to many
users), nor are they likely to be identical: distributions of inbound messages vary greatly between
(professional, recreational, American, Chinese, ...) email users. We develop a nonparametric hier-
archical Bayesian model that allows us to impose a common prior orgneBuch generalization

may be particularly helpful for users with little or no available d&ta The desired outcome of the
learning process is an array of personalized spam filters for all users.

The rest of this paper is structured as follows. We devise our solution in Section 2. In Section 3,
we study the effectiveness of correcting sample bias for spam, and of using a Dirichlet process to
generalize across users, experimentally. Section 4 concludes.

2 Learning from Biased Data

The available labeled dafaare governed by(x|\); directly training a classifier o would there-

fore minimize the expected logs ). [¢(f(x), y)] with respect t(x|)). By contrast, the task is

to find classifiersf; that minimize, for uset, the expected 0SB ,,)~0, [£(f(x), y)] with respect to
p(x]6;). We can minimize the loss with respecttdrom a sampld. whose instances are governed

by A when each instance is re-weighted. The weights have to be chosen such that minimizing the
loss on the weighted sampleamounts to minimizing the loss with respecito

In order to derive weighting factors with this property, consider the following model of the process
that selects the labeled sample After drawing an instanc& according top(x|6;), a coins is
tossed with probability(s|x, 6;, A). We movex into the labeled sample (and add the proper class
label) if s = 1; otherwisex is discarded. Our previous assumption that &amyith positivep(x|\)

also has a positive(x|6;) implies that there existsj&( s|x, 6;, A) such that

p(x|\) o p(x|0;)p(s = 1]x,6;, N). (1)

That is, repeatedly executing the above process with an appropfike d;, \) will create a sample
of instances governed by(x|\). Equation 1 defines(s|x, 6;, A); the succeeding subsections will
be dedicated to estimating it from the available data. Sirfegx, 0;, \) describes the discrepancy
between the sample distributigiix|\) and the targep(x|6;), we refer to it as theample bias.

But let us first show that minimizing the loss drwith instances re-weighted by(s|x, 6;, A) " in

fact minimizes the expected loss with respecfto The rationale behind this claim deviates only

in minor points from the proof of the bias correction theorem of [14]. Proposition 1 introduces a
normalizing constant(s = 1|6;, A). Its value can be easily obtained as it normalizes Equation 1.
Proposition 1 The expected loss with respectiix, y|0;) = p(x,y|)\)%
pected loss with respect fdx, y|6;), whenp(s|x, 6;, \) satisfies Equation 1.

equalsthe ex-



Proof. Equation 2 expands the expected value and the definitigr(xafy|0;) in Proposition 1.
Equation 3 splite(x, y|A). We apply the definition op(s|x, 8;, ) (Equation 1) and obtain Equa-
tion 4. Equation 4 is rewritten as an expected value.
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- / (F (), )Py, 6:)p(x16:)d(x, 3) = By, L (x),9)] (4)

2.1 Individualized Bias Estimation

Equation 1 says that there is an unknop(|x, 6;, \) with p(x|\) o« p(x|0;)p(s = 1]x,6;,A)
which we call the sample bias. We will now discuss how to obtain an estifatex, 6;, A). The
individualized empirical sample bias an estimate of the unknown true bias, conditioned on a user’s
unlabeled inboXU; and labeled datd; hencep;(s|x, 0;, A) = p(s|x,U;, L).

Equation 1 immediately implies

p(x|A)
p(x]6;)’

but neitherp(x|\) nor p(x|6;) are known. However, distributiop(x|)\) is reflected in the labeled

sampleL, and distributiorp(x|6;) in the unlabeled inbo¥’;. Instances il are examples that have
been selected into the labeled sampke; s = 1|x € L. Instances if/; have not been selected into
the labeled samplég., s = 0|x € U,. We definesy, 1, to be the vector of selection decisions for all
instances irU; and L. That is,sy, ;, contains|U;| elements that are 0, and| elements that are 1.

p(s =1]x,0;,\) (5)

A density estimatop(s|x, A, §;) can be trained on the instanceslirandU;, using vectossy, 1. as
target variable. We use a regularized logistic regression density estimator parameterizeg with

1
The likelihood of the density estimator is
P(sy, |w,U;, L) = queUip(s = 0|xy, W) szeL p(s = 1|x¢, w). @)

We train parametersy; = argmax,, log P(sy, r|w,U;, L) + logn(w) (we write n(w) for the
regularizer) [15] using the fast implementation of regularized logistic regression of [9].

2.2 Dirichlet-Enhanced Bias Estimation

This section addresses estimation of the samplef§ids, 6,,1, A) for a new user.+ 1 by general-
izing across existing uset§,, . . ., U,,. The resulting estimatgp (s|x, 6,11, A) will be conditioned
on the new user’s inbo¥,, . ; and the labeled dath, but also on all other users’ inboxes. We write
pp(s|X,0nt1, A) = p(s|x,Upt1; L, Uy, ..., U,) for theDirichlet-enhanced empirical sample bias.

Equation 1 says that there ispés = 1|x, 6,41, \) for usern + 1 that satisfies Equation 5. Let
us assume a parametric form (we employ a logistic model), ang,let; be the parameters that
satisfyp(s = 1|x,0,41,A) = p(s = 1|x;Wy11) o p(x|\)/p(x]05+1). We resort to a Dirichlet
process (DP) [5{7(w;) as a model for the prior belief ow,,.; givenwy, ..., w,. Dirichlet pro-
cessG|{a, Gy} ~ DP(a, Gyp) with concentration parameterand base distributiotry generates
parametersv;: The first elementv, is drawn according t67; in our case, the uninformed prior. It
generatesv,,,; according to Equation 8, whetéw;) is a point distribution centered at;.

aGo + 35, 6(ws)

Wil Wiy oo, Wy ~ ain (8)

Equation9 integrates over the parameter of the bias for new userl. Equation 10 splits the
posterior into the likelihood of the sample selection coin tosses and the common prior which is



modeledas a Dirichlet process.
p(s|x,Upy1; L, U, ..., U,) = /p(s\x; w)p(W|Up41; L, U, ..., Uy )dw (9)

p(W|Upi1, L, UL, ... U)o P(sy,,, p|w,Upi1, L)G(wW|L, Uy, ..., U,)  (10)
Likelihood P(sy, ., ,1.|w, Un+1, L) is resolved in Equation 7 for a logistic model of the bias.

2.3 Estimation of the Dirichlet Process

The parameters of previous users’ bvas, . . ., w,, constitute the priow,, 1 |{w;}?, ~ G for user
n + 1. Since the parametess; are not observable, an estimatg 1|L, {U;}"_, ~ G has to be
based on the available data. Exact calculation of this prior requires integrating over,the , w,;

since this is not feasible, MCMC sampling [10] or variational approximation [1] can be used.

In our application, the model ¢f(s|x, 6;, A) involves a regularized logistic regression in a space of
more than 800,000 dimensions. In each iteration of the MCMC process or the variational inference
of [1], logistic density estimators for all users would need to be trained—which is prohibitive. We
therefore follow [13] and approximate the Dirichlet Process as
a+n
Comparedo the original Equation 8, the sum of point distributions at true parametgisreplaced
by a weighted sum over point distributions at pivotgl. Parameter estimation is divided in two
steps. First, pivotal models of the sample bias are trained for each, s#ely based on a user’s
inbox and the labeled data. Secondly, parameigase estimated using variational EM; they express
correlations between, and allow for generalization across, multiple users. Tresp and Yu [13] suggest
to use a maximum likelihood estimage’; we implementw; by training logistic regression models

1
) 14X (12)

with w} = argmax,, log P(sy, r|w, U;, L)+ log n(w).
Algorithmically, the pivotal models are obtained analogously to the individualized estimation of the
selection bias for each user described in Section 2.1.

11)

p(s =1x;w}) =

After the pivotal models have been identified, an EM algorithm maximizes the likelihood over the
parameters;. For the E step we rely on the assumption that the posterior is a weighted sum over
point distributions at the pivotal density estimates (Equation 13). With this assumption, the posterior
is no longer a continuous distribution and the E step resolves to the computation of a discrete number
of variational parameters;; (Equation 14).

p(wlU;, L) = Zi:l Gij6(wy) (13)
¢ij o< P(su,rlw", U, L)G(w)) (14)
Equation 11 yields the M step wiih; = Z;;l ¢i;. Likelihood P(sy, |w*, Uy, L), is calculated
as in Equation 7. The entire estimation procedure is detailed in Table 1, steps 1 through 3.

2.4 Inference

Having obtained pivotal models(s|x; w}) and parameters,;, we need to infer the Dirichlet-
enhanced empirical sample bias|x, U;; L, Uy, ..., U,). During the training proceduréijs one of

the known users frony, ..., U,. At application time, we may furthermore experience a message
bound for usen + 1.

Without loss of generality, we discuss the inference problem for a newnuset. Insertingé(w)
into Egs. 9 and 10 leads to Equation 15. Expanditigv) according to Eq. 11 yields Equation 16.

p(S|X, Un+1; Lv Ula ce Un) X /p(S|X, W)P(SUTL+1,L|W7 UnJrlv L)G(W)dw (15)

o< 04/p(s|x;w)P(sUn+1,L|w7 Un+t1, L)Go(w)dw (16)

+ 3 s Wi P(s, W U, L)



Thesecond summand in Equation 16 is determined by summing over the pivotal modetsw ).
The first summand can be determined by applying Bayes’ rule in Equatid®lig;the uninformed
prior; the resulting termp(s|x, U, 41, L) = p(s|x;w};, ) is the outcome of a new pivotal density
estimator, trained to discriminafeagainst/,,, ;. It is determined as in Equation 12.

/p(s|x;w)P(sUn+l,L|w,U”H,L)GO(W)dW x /p(s|x; w)p(w|Ups1, L)dw  (17)

= p(s|x,Ups1,L) (18)

The Dirichlet-enhanced empirical sample bjas|x,U,,+1; L, Uy,...,U,) for usern + 1 is a
weighted sum of the pivotal density estimate|x; w’; , ;) for usern + 1, and model®(s|x; w;) of

all usersi; the latter are weighted according to their likelihaB@sy, ., r.|w;, Un41, L) of observ-

ing the messages of user+ 1. Inference for the users that are available at training time is carried
out in step 4(a) of the training procedure (Table 1).

Table 1: Dirichlet-enhanced, bias-corrected spam filtering.

Input: Labeleddatal, unlabeled inboxe#, ..., U,.
1. For all usersi = 1...n: Train a pivotal density estimat@(s=1|x, w}) as in Eq. 12.
2. Initialize GO(w?) by settingg; = 1fori =1...n.
3. Fort =1,...until convergence:
(a) E-step: Forall 4, 7, estimaterﬁﬁj from Equation 14 usingz*~! and the density esti-
matorsp(s|x, w}).
(b) M-step: Estimate(i*(w) according to Equation 11 using = > i1 B
4. For all usersi:

(a) For all x € L: determine empirical sample bia$s|x, U;; L, Uy, ...,U,), condi-
tioned on the observables according to Equation 16.
(b) Train SVM classifierf; : X — {spamham}by solving Optimization Problem 1.

Return classifiersf; for all users:.

2.5 Training a Bias-Corrected Support Vector Machine

Given the requirement of high accuracy and the need to handle many attributes, SVMs are widely
acknowledged to be a good learning mechanism for spam filtering [2]. The final bias-corrected SVM

fn+1 can be trained by re-sampling or re-weightibgccording tos(x) = p(szl‘x”é‘fl"_’gﬁl T

wherep(s|x, Uy y1; L, Uy, ..., Uy,) is the empirical sample bias apds=1|6;, \) is the normalizer

that assured |, s(x) = |L|. Letx;, € L be an example that incurs a margin violation (istack

term) of £,. The expected contribution of;, to the SVM criterion iss(x){, becausex;, will be

drawn s(x) times on average into each re-sampled data set. Therefore, training the SVM on the
re-sampled data or optimizing with re-scaled slack terms lead to identical optimization problems.

Optimization Problem 1 Given labeled datd, re-sampling weights(x), and regularization pa-
rameterC; over allv, b, &, ..., &y, minimize

1, 5 m
§|v| +Czk=1 s(x)& (19)
subjectto V7 yk((v,xk) +0) > 1 — & Vit & > 0. (20)

The bias-corrected spam filter is trained in step 4(b) of the algorithm (Table 1).

2.6 Incremental Update

The Dirichlet-enhanced bias correction procedure is intrinsically incremental, which fits into the
typical application scenario. When a new use# 1 subscribes to the email service, the prior



Table 2: Email accounts used for experimentation.

User Ham Spam

Williams Enron/Williams Dornbosspam trap (www.dornbos.com) (part 1)

Beck Enron/Beck spamtrap of Bruce Guenter (www.em.eabruceg/spam)
Farmer Enron/Rarmer personaspam of Paul Wouters (www.xtdnet.nl/paul/spam)
Kaminski Enron/Kaminski spamcollection of SpamArchive.org (part 1)

Kitchen Enron/Kitchen personakpam of the second author.

Lokay Enron/Lokay spamcollection of SpamAssassin (www.spamassassin.org)
Sanders Enron/Sanders personakpam of Richard Jones (www.annexia.org/spam)
German traveler | Usenet/de.rec.reisen.migcDornbosspam trap (www.dornbos.com) (part 2)

German architect Usenet/de.sci.architektur spamcollection of SpamArchive.org (part 2)

W1 |L, {U;}, ~ G is already available. A pivotal modg(s|x, U, 1; L) can be trained; when

U,.+1 is still empty (the new user has not yet received emails), then the regularizer of the density esti-
matep(s|x, U,+1, L) resolves to the uniform distribution. Inferencepdt|x, U,,11; L, Uy, ..., Uy)

for the new user proceeds as discussed in Section 2.4.

When datal/,,; becomes available, the prior can be updated. This update is exercised by invok-
ing the EM estimation procedure with additional parametrs, and ¢,,..1). The estimates of
P(su,,.|lwji,Uj, L) for all pairs of existing usersand; do not change and can be reused. The EM

procedure returns the updated prey,, o| L, {U; } 7} ~ G for the next new uset + 2.

3 Experiments

In our experiments, we study the relative benefit of the following filters. The baseline is constituted
by a filter that is trained undéid assumption from the labeled data. The second candidate is a “one
size fits all” bias-corrected filter. Here, all users’ messages are pooled as unlabeled data and the bias
p(s|x, Ont1,A) IS modeled by an estimatgi (s|x, 41, A) = p(s|x, U?:f Ui, L). An individ-

ually bias-corrected filter uses estimatgrgs|x, 0,11, ) = p(s|x,U,+1, L). Finally, we assess

the Dirichlet-enhanced bias-corrected filter. It uses the hierarchical Bayesian model to determine
the empirical bia®p (s|x, 0n+1,A) = p(s|x, Un+1; L, Us, ..., U,) conditioned on the new user’s
messages, the labeled data, and all previous users’ messages.

Evaluating the filters with respect to the personal distributions of messages requires labeled emails
from distinct users. We construct nine accounts using real but disclosed messages. Seven of them
contain ham emails received by distinct Enron employees from the Enron corpus [8]; we use the
individuals with the largest numbers of messages from a set of mails that have been cleaned from
spam. We simulate two foreign users: the “German traveler” receives postings to a moderated
German traveling newsgroup, the “German architect” postings to a newsgroup on architecture.

Each account is augmented with between 2551 and 6530 spam messages from a distinct source, see
Table 2. The number of ham emails varies between 1189 and 5983, reflecting about natural ham-
to-spam ratios. The ham section of the labeled datmntains 4000 ham emails from the Spam-
Assassin corpus, 1000 newsletters and 500 emails from Enron employee Taylor. The labeled data
contain 5000 spam emails relayed by blacklisted servers. The data are available from the authors.

The total of 76,214 messages are transformed into binary term occurrance vectors with a total of
834,661 attributes; charset and base64 decoding are applied, email headers are discarded, tokens
occurring less than 4 times are removed. SVM param@tezoncentration parameter, and the
regularization parameter of the logistic regression are adjusted on a small reserved tuning set.

We iterate over all users and let each one play the role of the newwusdr. We then iterate over

the size of the new user’s inbox and average 10 repetitions of the evaluation process, sémpling

from the inbox and using the remaining messages as hold-out data for performance evaluation. We
train the different filters on identical samples and measure the area under the ROC curve (AUC).

Figure 1 shows the AUC performance of tiiet baseline and the three bias-corrected filters for the
first two Enron and one of the German users. Error bars indicate standard error of the difference to
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Figure 2: Average reduction of 1-AUC risk over all nine users (left); reduction of 1-AUC risk
dependent on strength ibdl violation (center); number of existing users vs. training time (right).

theiid filter. Figure 2 (left) aggregates the results over all nine users by averaging the rate by which
the riskl — AUC is reduced. We compute this reductlomasllf‘fUCW whereAU C.oprected
is one of the bias-corrected filters ad@ Cyqsc1ine IS the AUC of theid filter.

The benefit of the individualized bias correction depends on the number of emails available for that
user; thel — AUC risk is reduced by 35-40% when many emails are available. The “one size fits
all” filter is almost independent of the number of emails of the new user. On average, the Dirichlet-
enhanced filter reduces the risk- AUC' by about 35% for a newly created account and by almost
40% when many personal emails have arrived. It outperforms the “one size fits all” filter even for
an emptylU,, ., because fringe accounts.g.,the German users) can receive a lower weight in the
common prior. The baselinéU C of over 0.99 is typical for server-sided spam filtering; a 40% risk
reduction that yields an AUC of 0.994 is still a very significant improvement of the filter that can be
spent on a substantial reduction of the false positive rate, or on a higher rate of spam recognition.

The question occurs how strong a violation of tideassumption the bias correction techniques can
compensate. In order to investigate, we control the violation afdhgroperty of the labeled data as
follows. We create a strongly biased sample by using only Enron users as test adgpantsnot

using any Enron emails in the labeled data. We vary the proportion of strongly biased data versus
randomly drawn Enron mails in the labeled training data (no email occurs in the training and testing
data at the same time). When this proportion is zero, the labeled sample isidtéwwm the testing
distributions; when it reaches 1, the sample is strongly biased. In Figure 2 (center) we observe that,
averaged over all users, bias-correction is effective whenidheiolation lies in a mid-range. It
becomes less effective when the sample violategdressumption too strongly. In this case, “gaps”
occur in \; i.e., there are regions that have zero probability in the labeled Hata\ but nonzero
probability in the testing datél; ~ 6;. Such gaps render schemes that aim at reconstryetig; )

by weighting data drawn according x| ) ineffective.

Figure 2 (right) displays the total training time over the number of users. Wé&fix; | to 16 and

vary the number of users that influence the prior. ifldhéaseline and the individually corrected filter
scale constantly. The Dirichlet-enhanced filter scales linearly in the number of users that constitute
the common prior; the EM algorithm with a quadratic complexity in the number of users contributes
only marginally to the training time. The training time is dominated by the training of the pivotal
models (linear complexity). The Dirichlet enhanced filter with incremental update scales favorably
compared to the “one size fits all” filter. Figure 2 is limited to the 9 accounts that we have engineered,;
the execution time is in the order of minutes and allows to handle larger numbers of accounts.



4 Conclusion

Itis most natural to define the quality criterion of an email spam filter with respect to the distribution
that governs the personal emails of its user. It is desirable to utilize available labeled email data, but
assuming that these data were governed by the same distribution unduly over-simplifies the problem
setting. Training a density estimator to characterize the difference between the labeled training data
and the unlabeled inbox of a user, and using this estimator to compensate for this discrepancy, im-
proves the performance of a personalized spam filter—provided that the inbox contains sufficiently
many messages. Pooling the unlabeled inboxes of a group of users, training a density estimator on
this pooled data, and using this estimator to compensate for the bias outperforms the individualized
bias-correction only when very few unlabeled data for the new user are available.

We developed a hierarchical Bayesian framework which uses a Dirichlet process to model the com-
mon prior for a group of users. The Dirichlet-enhanced bias correction method estimates —and com-
pensates for — the discrepancy between labeled training and unlabeled personal messages, learning
from the new user’s unlabeled inbox as well as from data of other users. Empirically, with a 35%
reduction of thel — AUC risk for a newly created account, the Dirichlet-enhanced filter outper-
forms all other methods. When many unlabeled personal emails are available, both individualized
and Dirichlet-enhanced bias correction reducelthe AU C risk by nearly 40% on average.
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