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Abstract

We study a setting that is motivated by the problem of filtering spam messages
for many users. Each user receives messages according to an individual, unknown
distribution, reflected only in the unlabeled inbox. The spam filter for a user is
required to perform well with respect to this distribution. Labeled messages from
publicly available sources can be utilized, but they are governed by a distinct dis-
tribution, not adequately representing most inboxes. We devise a method that min-
imizes a loss function with respect to a user’s personal distribution based on the
available biased sample. A nonparametric hierarchical Bayesian model further-
more generalizes across users by learning a common prior which is imposed on
new email accounts. Empirically, we observe that bias-corrected learning outper-
forms naive reliance on the assumption of independent and identically distributed
data; Dirichlet-enhanced generalization across users outperforms a single (“one
size fits all”) filter as well as independent filters for all users.

1 Introduction

Design and analysis of most machine learning algorithms are based on the assumption that the train-
ing data be drawn independently and from the same stationary distribution that the resulting model
will be exposed to. In many application scenarios, however, control over the data generation pro-
cess is less perfect, and so thisiid assumption is often a naive over-simplification. In econometrics,
learning from biased samples is a common phenomenon, where the willingness to respond to sur-
veys is known to depend on several characteristics of the person queried; work that led to a method
for correcting sample selection bias for a class of regression problems has been distinguished by a
Nobel Prize [6]. In machine learning, the case of training data that is only biased with respect to the
ratio of class labels has been studied [4, 7]. Zadrozny [14] has derived a bias correction theorem that
applies when the bias is conditionally independent of the class label given the instance, and when
every instance has a nonzero probability of being drawn into the sample. Sample bias correction for
maximum entropy density estimation [3] and the analysis of the generalization error under covariate
shift [12] follow the same intuition.

In our email spam filtering setting, a server handles many email accounts (in case of our industrial
partner, several millions), and delivers millions of emails per day. A magnitude of spam and “ham”
(i.e.,non-spam) sources are publicly available. They include collections of emails caught in “spam
traps” – email addresses that are published on the web in an invisible font and are harvested by
spammers [11] – the Enron corpus that was disclosed in the course of the Enron trial [8], and Spam-
Assassin data. These collections have diverse properties and none of them represents the global
distribution of all emails, let alone the distribution received by some particular user. The resulting
bias does not only hinder learning, but also leads to skewed accuracy estimates, since individuals
may receive a larger proportion of emails that a filter classifies less confidently.



The following data generation model is paramount to our problem setting. An unknown process,
characterized by a distributionp(θi|β), generates parametersθi. Theθi parameterize distributions
p(x, y|θi) over instancesx (emails) and class labelsy. Eachp(x, y|θi) corresponds to thei-th user’s
distribution of incoming spam (y= +1) or ham (y = −1) messagesx.

The goal is to obtain a classifierfi : x 7→ y for eachθi that minimizes the expectation of some loss
functionE(x,y)∼θi

[`(f(x), y)], defined with respect to the (unknown) distributionθi.

Labeled training dataL are drawn from a blend of data sources (public email archives), resulting in
a densityp(x, y|λ) = p(x|λ)p(y|x, λ) with parameterλ that governsL. The relation between the
θi andλ is such that (a) anyx that has nonzero probability densityp(x|λ) of being drawn into the
sampleL also has a nonzero probabilityp(x|θi) under the target distributionsθi; and (b) the concept
of spam is consensual for all users and the labeled data;i.e.,p(y|x, λ) = p(y|x, θi) for all usersi.

In addition to the (nonempty) labeled sample, zero or more unlabeled dataUi are available for each
θi and are drawn according toθi. The unlabeled sampleUi is the inbox of useri. The inbox is
empty for a newly established account and grows from there on. Our problem setting corresponds
to an application scenario in which users are not prepared to manually tag spam messages in their
inbox. Due to privacy and legal constraints, we are not allowed to personally read (or label) any
single personal email; but the unlabeled messages may be used as input to an automated procedure.

The individual distributionsθi are neither independent (identical spam messages are sent to many
users), nor are they likely to be identical: distributions of inbound messages vary greatly between
(professional, recreational, American, Chinese, . . . ) email users. We develop a nonparametric hier-
archical Bayesian model that allows us to impose a common prior on newθi. Such generalization
may be particularly helpful for users with little or no available dataUi. The desired outcome of the
learning process is an array of personalized spam filters for all users.

The rest of this paper is structured as follows. We devise our solution in Section 2. In Section 3,
we study the effectiveness of correcting sample bias for spam, and of using a Dirichlet process to
generalize across users, experimentally. Section 4 concludes.

2 Learning from Biased Data

The available labeled dataL are governed byp(x|λ); directly training a classifier onL would there-
fore minimize the expected lossE(x,y)∼λ[`(f(x), y)] with respect top(x|λ). By contrast, the task is
to find classifiersfi that minimize, for useri, the expected lossE(x,y)∼θi

[`(f(x), y)] with respect to
p(x|θi). We can minimize the loss with respect toθi from a sampleL whose instances are governed
by λ when each instance is re-weighted. The weights have to be chosen such that minimizing the
loss on the weighted sampleL amounts to minimizing the loss with respect toθi.

In order to derive weighting factors with this property, consider the following model of the process
that selects the labeled sampleL. After drawing an instancex according top(x|θi), a coins is
tossed with probabilityp(s|x, θi, λ). We movex into the labeled sample (and add the proper class
label) if s = 1; otherwise,x is discarded. Our previous assumption that anyx with positivep(x|λ)
also has a positivep(x|θi) implies that there exists ap(s|x, θi, λ) such that

p(x|λ) ∝ p(x|θi)p(s = 1|x, θi, λ). (1)

That is, repeatedly executing the above process with an appropriatep(s|x, θi, λ) will create a sample
of instances governed byp(x|λ). Equation 1 definesp(s|x, θi, λ); the succeeding subsections will
be dedicated to estimating it from the available data. Sincep(s|x, θi, λ) describes the discrepancy
between the sample distributionp(x|λ) and the targetp(x|θi), we refer to it as thesample bias.

But let us first show that minimizing the loss onL with instances re-weighted byp(s|x, θi, λ)−1 in
fact minimizes the expected loss with respect toθi. The rationale behind this claim deviates only
in minor points from the proof of the bias correction theorem of [14]. Proposition 1 introduces a
normalizing constantp(s = 1|θi, λ). Its value can be easily obtained as it normalizes Equation 1.

Proposition 1 The expected loss with respect top(x, y|θ̄i) = p(x, y|λ) p(s=1|θi,λ)
p(s=1|x,θi,λ) equalsthe ex-

pected loss with respect top(x, y|θi), whenp(s|x, θi, λ) satisfies Equation 1.



Proof. Equation 2 expands the expected value and the definition ofp(x, y|θ̄i) in Proposition 1.
Equation 3 splitsp(x, y|λ). We apply the definition ofp(s|x, θi, λ) (Equation 1) and obtain Equa-
tion 4. Equation 4 is rewritten as an expected value.

E(x,y)∼θ̄i
[`(f(x), y)] =

∫
`(f(x), y)p(x, y|λ)

p(s = 1|θi, λ)
p(s = 1|x, θi, λ)

d(x, y) (2)

=
∫

`(f(x), y)p(y|x, λ)p(x|λ)
p(s = |θi, λ)

p(s = 1|x, θi, λ)
d(x, y) (3)

=
∫

`(f(x), y)p(y|x, θi)p(x|θi)d(x, y) = E(x,y)∼θi
[`(f(x), y)] (4)

2.1 Individualized Bias Estimation

Equation 1 says that there is an unknownp(s|x, θi, λ) with p(x|λ) ∝ p(x|θi)p(s = 1|x, θi, λ)
which we call the sample bias. We will now discuss how to obtain an estimatep̂I(s|x, θi, λ). The
individualized empirical sample biasis an estimate of the unknown true bias, conditioned on a user’s
unlabeled inboxUi and labeled dataL; hence,̂pI(s|x, θi, λ) = p(s|x, Ui, L).

Equation 1 immediately implies

p(s = 1|x, θi, λ) ∝ p(x|λ)
p(x|θi)

, (5)

but neitherp(x|λ) nor p(x|θi) are known. However, distributionp(x|λ) is reflected in the labeled
sampleL, and distributionp(x|θi) in the unlabeled inboxUi. Instances inL are examples that have
been selected into the labeled sample;i.e.,s = 1|x ∈ L. Instances inUi have not been selected into
the labeled sample;i.e.,s = 0|x ∈ Ui. We definesUi,L to be the vector of selection decisions for all
instances inUi andL. That is,sUi,L contains|Ui| elements that are 0, and|L| elements that are 1.

A density estimator̂p(s|x, λ, θi) can be trained on the instances inL andUi, using vectorsUi,L as
target variable. We use a regularized logistic regression density estimator parameterized withwi:

p̂I(s = 1|x, λ, θi) = p(s = 1|x;wi) =
1

1 + e〈wi,x〉 . (6)

The likelihood of the density estimator is

P (sUi,L|w, Ui, L) =
∏

xu∈Ui

p(s = 0|xu,w)
∏

x`∈L
p(s = 1|x`,w). (7)

We train parameterswi = argmaxw log P (sUi,L|w, Ui, L) + log η(w) (we write η(w) for the
regularizer) [15] using the fast implementation of regularized logistic regression of [9].

2.2 Dirichlet-Enhanced Bias Estimation

This section addresses estimation of the sample biasp(s|x, θn+1, λ) for a new usern+1 by general-
izing across existing usersU1, . . . , Un. The resulting estimatêpD(s|x, θn+1, λ) will be conditioned
on the new user’s inboxUn+1 and the labeled dataL, but also on all other users’ inboxes. We write
p̂D(s|x, θn+1, λ) = p(s|x, Un+1; L,U1, . . . , Un) for theDirichlet-enhanced empirical sample bias.

Equation 1 says that there is ap(s = 1|x, θn+1, λ) for usern + 1 that satisfies Equation 5. Let
us assume a parametric form (we employ a logistic model), and letwn+1 be the parameters that
satisfyp(s = 1|x, θn+1, λ) = p(s = 1|x;wn+1) ∝ p(x|λ)/p(x|θn+1). We resort to a Dirichlet
process (DP) [5]G(wi) as a model for the prior belief onwn+1 givenw1, . . . ,wn. Dirichlet pro-
cessG|{α, G0} ∼ DP (α, G0) with concentration parameterα and base distributionG0 generates
parameterswi: The first elementw1 is drawn according toG0; in our case, the uninformed prior. It
generateswn+1 according to Equation 8, whereδ(wi) is a point distribution centered atwi.

wn+1|w1, . . . ,wn ∼ αG0 +
∑n

i=1 δ(wi)
α + n

(8)

Equation9 integrates over the parameter of the bias for new usern + 1. Equation 10 splits the
posterior into the likelihood of the sample selection coin tosses and the common prior which is



modeledas a Dirichlet process.

p(s|x, Un+1; L,U1, . . . , Un) =
∫

p(s|x;w)p(w|Un+1; L,U1, . . . , Un)dw (9)

p(w|Un+1, L, U1, . . . , Un) ∝ P (sUn+1,L|w, Un+1, L)Ĝ(w|L,U1, . . . , Un) (10)

LikelihoodP (sUn+1,L|w, Un+1, L) is resolved in Equation 7 for a logistic model of the bias.

2.3 Estimation of the Dirichlet Process

The parameters of previous users’ biasw1, . . . ,wn constitute the priorwn+1|{wi}n
i=1 ∼ G for user

n + 1. Since the parameterswi are not observable, an estimatewn+1|L, {Ui}n
i=1 ∼ Ĝ has to be

based on the available data. Exact calculation of this prior requires integrating over thew1, . . . ,wn;
since this is not feasible, MCMC sampling [10] or variational approximation [1] can be used.

In our application, the model ofp(s|x, θi, λ) involves a regularized logistic regression in a space of
more than 800,000 dimensions. In each iteration of the MCMC process or the variational inference
of [1], logistic density estimators for all users would need to be trained—which is prohibitive. We
therefore follow [13] and approximate the Dirichlet Process as

Ĝ(w) ≈ αG0 +
∑n

i=1 φiδ(w∗
i )

α + n
. (11)

Comparedto the original Equation 8, the sum of point distributions at true parameterswi is replaced
by a weighted sum over point distributions at pivotalw∗

i . Parameter estimation is divided in two
steps. First, pivotal models of the sample bias are trained for each useri, solely based on a user’s
inbox and the labeled data. Secondly, parametersφi are estimated using variational EM; they express
correlations between, and allow for generalization across, multiple users. Tresp and Yu [13] suggest
to use a maximum likelihood estimatew∗

i ; we implementw∗
i by training logistic regression models

p(s = 1|x;w∗
i ) = 1

1+e
〈w∗

i
,x〉

with w∗
i = argmaxw log P (sUi,L|w, Ui, L)+ log η(w).

(12)

Algorithmically, the pivotal models are obtained analogously to the individualized estimation of the
selection bias for each user described in Section 2.1.

After the pivotal models have been identified, an EM algorithm maximizes the likelihood over the
parametersφi. For the E step we rely on the assumption that the posterior is a weighted sum over
point distributions at the pivotal density estimates (Equation 13). With this assumption, the posterior
is no longer a continuous distribution and the E step resolves to the computation of a discrete number
of variational parametersφij (Equation 14).

p̂(w|Uj , L) =
∑n

i=1
φijδ(w∗

i ) (13)

φij ∝ P (sUj ,L|w∗, Uj , L)Ĝ(w∗
i ) (14)

Equation 11 yields the M step withφi =
∑n

j=1 φij . LikelihoodP (sUj ,L|w∗, Uj , L), is calculated
as in Equation 7. The entire estimation procedure is detailed in Table 1, steps 1 through 3.

2.4 Inference

Having obtained pivotal modelsp(s|x;w∗
i ) and parametersφi, we need to infer the Dirichlet-

enhanced empirical sample biasp(s|x, Ui;L,U1, . . . , Un). During the training procedure,i is one of
the known users fromU1, . . . , Un. At application time, we may furthermore experience a message
bound for usern + 1.

Without loss of generality, we discuss the inference problem for a new usern + 1. InsertingĜ(w)
into Eqs. 9 and 10 leads to Equation 15. ExpandingĜ(w) according to Eq. 11 yields Equation 16.

p(s|x, Un+1;L, U1, . . . , Un) ∝
∫

p(s|x;w)P (sUn+1,L|w, Un+1, L)Ĝ(w)dw (15)

∝ α

∫
p(s|x;w)P (sUn+1,L|w, Un+1, L)G0(w)dw (16)

+
∑n

i=1
p(s|x;w∗

i )P (sUn+1,L|w∗
i , Un+1, L)φi



Thesecond summand in Equation 16 is determined by summing over the pivotal modelsp(s|x;w∗
i ).

The first summand can be determined by applying Bayes’ rule in Equation 17;G0 is the uninformed
prior; the resulting termp(s|x, Un+1, L) = p(s|x;w∗

n+1) is the outcome of a new pivotal density
estimator, trained to discriminateL againstUn+1. It is determined as in Equation 12.

∫
p(s|x;w)P (sUn+1,L|w, Un+1, L)G0(w)dw ∝

∫
p(s|x;w)p(w|Un+1, L)dw (17)

= p(s|x, Un+1, L) (18)

The Dirichlet-enhanced empirical sample biasp(s|x, Un+1; L,U1, . . . , Un) for usern + 1 is a
weighted sum of the pivotal density estimatep(s|x;w∗

n+1) for usern+1, and modelsp(s|x;w∗
i ) of

all usersi; the latter are weighted according to their likelihoodP (sUn+1,L|w∗
i , Un+1, L) of observ-

ing the messages of usern + 1. Inference for the users that are available at training time is carried
out in step 4(a) of the training procedure (Table 1).

Table 1: Dirichlet-enhanced, bias-corrected spam filtering.

Input: LabeleddataL, unlabeled inboxesU1, . . . , Un.

1. For all usersi = 1 . . . n: Train a pivotal density estimator̂p(s=1|x,w∗
i ) as in Eq. 12.

2. Initialize Ĝ0(w∗
i ) by settingφi = 1 for i = 1 . . . n.

3. For t = 1, . . . until convergence:

(a) E-step: For all i, j, estimateφt
ij from Equation 14 usinĝGt−1 and the density esti-

matorsp(s|x,w∗
i ).

(b) M-step: EstimateĜt(w∗
i ) according to Equation 11 usingφi =

∑n
j=1 φt

ij .

4. For all usersi:

(a) For all x ∈ L: determine empirical sample biasp(s|x, Ui; L,U1, . . . , Un), condi-
tioned on the observables according to Equation 16.

(b) Train SVM classifierfi : X → {spam, ham}by solving Optimization Problem 1.

Return classifiersfi for all usersi.

2.5 Training a Bias-Corrected Support Vector Machine

Given the requirement of high accuracy and the need to handle many attributes, SVMs are widely
acknowledged to be a good learning mechanism for spam filtering [2]. The final bias-corrected SVM
fn+1 can be trained by re-sampling or re-weightingL according tos(x) = p(s=1|θi,λ)

p(s=1|x,Un+1;L,U1,...,Un) ,
wherep(s|x, Un+1;L, U1, . . . , Un) is the empirical sample bias andp(s=1|θi, λ) is the normalizer
that assures

∑
x∈L s(x) = |L|. Let xk ∈ L be an example that incurs a margin violation (i.e.,slack

term) of ξk. The expected contribution ofxk to the SVM criterion iss(x)ξk becausexk will be
drawns(x) times on average into each re-sampled data set. Therefore, training the SVM on the
re-sampled data or optimizing with re-scaled slack terms lead to identical optimization problems.

Optimization Problem 1 Given labeled dataL, re-sampling weightss(x), and regularization pa-
rameterC; over all v, b, ξ1, . . . , ξm, minimize

1
2
|v|2+C

∑m

k=1
s(x)ξk (19)

subjectto ∀m
k=1yk(〈v,xk〉+ b) ≥ 1− ξk; ∀m

k=1ξk ≥ 0. (20)

The bias-corrected spam filter is trained in step 4(b) of the algorithm (Table 1).

2.6 Incremental Update

The Dirichlet-enhanced bias correction procedure is intrinsically incremental, which fits into the
typical application scenario. When a new usern + 1 subscribes to the email service, the prior



Table 2: Email accounts used for experimentation.

User Ham Spam
Williams Enron/Williams Dornbosspam trap (www.dornbos.com) (part 1)
Beck Enron/Beck spamtrap of Bruce Guenter (www.em.ca/∼bruceg/spam)
Farmer Enron/Farmer personalspam of Paul Wouters (www.xtdnet.nl/paul/spam)
Kaminski Enron/Kaminski spamcollection of SpamArchive.org (part 1)
Kitchen Enron/Kitchen personalspam of the second author.
Lokay Enron/Lokay spamcollection of SpamAssassin (www.spamassassin.org)
Sanders Enron/Sanders personalspam of Richard Jones (www.annexia.org/spam)
German traveler Usenet/de.rec.reisen.miscDornbosspam trap (www.dornbos.com) (part 2)
German architect Usenet/de.sci.architektur spamcollection of SpamArchive.org (part 2)

wn+1|L, {Ui}n
i=1 ∼ Ĝ is already available. A pivotal modelp(s|x, Un+1;L) can be trained; when

Un+1 is still empty (the new user has not yet received emails), then the regularizer of the density esti-
matep(s|x, Un+1, L) resolves to the uniform distribution. Inference ofp(s|x, Un+1; L,U1, . . . , Un)
for the new user proceeds as discussed in Section 2.4.

When dataUn+1 becomes available, the prior can be updated. This update is exercised by invok-
ing the EM estimation procedure with additional parametersθ∗n+1 andφ(n+1). The estimates of
P (sUj ,L|w∗

i , Uj , L) for all pairs of existing usersi andj do not change and can be reused. The EM
procedure returns the updated priorwn+2|L, {Ui}n+1

i=1 ∼ Ĝ for the next new usern + 2.

3 Experiments

In our experiments, we study the relative benefit of the following filters. The baseline is constituted
by a filter that is trained underiid assumption from the labeled data. The second candidate is a “one
size fits all” bias-corrected filter. Here, all users’ messages are pooled as unlabeled data and the bias
p(s|x, θn+1, λ) is modeled by an estimator̂pO(s|x, θn+1, λ) = p(s|x,

⋃n+1
i=1 Ui, L). An individ-

ually bias-corrected filter uses estimatorsp̂I(s|x, θn+1, λ) = p(s|x, Un+1, L). Finally, we assess
the Dirichlet-enhanced bias-corrected filter. It uses the hierarchical Bayesian model to determine
the empirical biaŝpD(s|x, θn+1, λ) = p(s|x, Un+1;L,U1, . . . , Un) conditioned on the new user’s
messages, the labeled data, and all previous users’ messages.

Evaluating the filters with respect to the personal distributions of messages requires labeled emails
from distinct users. We construct nine accounts using real but disclosed messages. Seven of them
contain ham emails received by distinct Enron employees from the Enron corpus [8]; we use the
individuals with the largest numbers of messages from a set of mails that have been cleaned from
spam. We simulate two foreign users: the “German traveler” receives postings to a moderated
German traveling newsgroup, the “German architect” postings to a newsgroup on architecture.

Each account is augmented with between 2551 and 6530 spam messages from a distinct source, see
Table 2. The number of ham emails varies between 1189 and 5983, reflecting about natural ham-
to-spam ratios. The ham section of the labeled dataL contains 4000 ham emails from the Spam-
Assassin corpus, 1000 newsletters and 500 emails from Enron employee Taylor. The labeled data
contain 5000 spam emails relayed by blacklisted servers. The data are available from the authors.

The total of 76,214 messages are transformed into binary term occurrance vectors with a total of
834,661 attributes; charset and base64 decoding are applied, email headers are discarded, tokens
occurring less than 4 times are removed. SVM parameterC, concentration parameterα, and the
regularization parameter of the logistic regression are adjusted on a small reserved tuning set.

We iterate over all users and let each one play the role of the new usern + 1. We then iterate over
the size of the new user’s inbox and average 10 repetitions of the evaluation process, samplingUn+1

from the inbox and using the remaining messages as hold-out data for performance evaluation. We
train the different filters on identical samples and measure the area under the ROC curve (AUC).

Figure 1 shows the AUC performance of theiid baseline and the three bias-corrected filters for the
first two Enron and one of the German users. Error bars indicate standard error of the difference to
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Figure1: AUC of theiid baseline and the three bias-corrected filters versus size of|Un+1|.
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the iid filter. Figure 2 (left) aggregates the results over all nine users by averaging the rate by which
the risk1−AUC is reduced. We compute this reduction as1− 1−AUCcorrected

1−AUCbaseline
, whereAUCcorrected

is one of the bias-corrected filters andAUCbaseline is the AUC of theiid filter.

The benefit of the individualized bias correction depends on the number of emails available for that
user; the1 − AUC risk is reduced by 35-40% when many emails are available. The “one size fits
all” filter is almost independent of the number of emails of the new user. On average, the Dirichlet-
enhanced filter reduces the risk1−AUC by about 35% for a newly created account and by almost
40% when many personal emails have arrived. It outperforms the “one size fits all” filter even for
an emptyUn+1 because fringe accounts (e.g.,the German users) can receive a lower weight in the
common prior. The baselineAUC of over 0.99 is typical for server-sided spam filtering; a 40% risk
reduction that yields an AUC of 0.994 is still a very significant improvement of the filter that can be
spent on a substantial reduction of the false positive rate, or on a higher rate of spam recognition.

The question occurs how strong a violation of theiid assumption the bias correction techniques can
compensate. In order to investigate, we control the violation of theiid property of the labeled data as
follows. We create a strongly biased sample by using only Enron users as test accountsθi, and not
using any Enron emails in the labeled data. We vary the proportion of strongly biased data versus
randomly drawn Enron mails in the labeled training data (no email occurs in the training and testing
data at the same time). When this proportion is zero, the labeled sample is drawniid from the testing
distributions; when it reaches 1, the sample is strongly biased. In Figure 2 (center) we observe that,
averaged over all users, bias-correction is effective when theiid violation lies in a mid-range. It
becomes less effective when the sample violates theiid assumption too strongly. In this case, “gaps”
occur inλ; i.e., there are regions that have zero probability in the labeled dataL ∼ λ but nonzero
probability in the testing dataUi ∼ θi. Such gaps render schemes that aim at reconstructingp(x|θi)
by weighting data drawn according top(x|λ) ineffective.

Figure 2 (right) displays the total training time over the number of users. We fix|Un+1| to 16 and
vary the number of users that influence the prior. Theiid baseline and the individually corrected filter
scale constantly. The Dirichlet-enhanced filter scales linearly in the number of users that constitute
the common prior; the EM algorithm with a quadratic complexity in the number of users contributes
only marginally to the training time. The training time is dominated by the training of the pivotal
models (linear complexity). The Dirichlet enhanced filter with incremental update scales favorably
compared to the “one size fits all” filter. Figure 2 is limited to the 9 accounts that we have engineered;
the execution time is in the order of minutes and allows to handle larger numbers of accounts.



4 Conclusion

It is most natural to define the quality criterion of an email spam filter with respect to the distribution
that governs the personal emails of its user. It is desirable to utilize available labeled email data, but
assuming that these data were governed by the same distribution unduly over-simplifies the problem
setting. Training a density estimator to characterize the difference between the labeled training data
and the unlabeled inbox of a user, and using this estimator to compensate for this discrepancy, im-
proves the performance of a personalized spam filter—provided that the inbox contains sufficiently
many messages. Pooling the unlabeled inboxes of a group of users, training a density estimator on
this pooled data, and using this estimator to compensate for the bias outperforms the individualized
bias-correction only when very few unlabeled data for the new user are available.

We developed a hierarchical Bayesian framework which uses a Dirichlet process to model the com-
mon prior for a group of users. The Dirichlet-enhanced bias correction method estimates – and com-
pensates for – the discrepancy between labeled training and unlabeled personal messages, learning
from the new user’s unlabeled inbox as well as from data of other users. Empirically, with a 35%
reduction of the1 − AUC risk for a newly created account, the Dirichlet-enhanced filter outper-
forms all other methods. When many unlabeled personal emails are available, both individualized
and Dirichlet-enhanced bias correction reduce the1−AUC risk by nearly 40% on average.
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