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Abstract

Survival in a non-stationary, potentially adversarial environment requires animals
to detect sensory changes rapidly yet accurately, two oft competing desiderata.
Neurons subserving such detections are faced with the corresponding challenge
to discern “real” changes in inputs as quickly as possible, while ignoring noisy
fluctuations. Mathematically, this is an example of achange-detectionproblem
that is actively researched in the controlled stochastic processes community. In
this paper, we utilize sophisticated tools developed in that community to formal-
ize an instantiation of the problem faced by the nervous system, and character-
ize the Bayes-optimal decision policy under certain assumptions. We will derive
from this optimal strategy an information accumulation and decision process that
remarkably resembles the dynamics of a leaky integrate-and-fire neuron. This cor-
respondence suggests that neurons are optimized for tracking input changes, and
sheds new light on thecomputationalimport of intracellular properties such as
resting membrane potential, voltage-dependent conductance, and post-spike reset
voltage. We also explore the influence that factors such as timing, uncertainty,
neuromodulation, and rewardshouldanddo have on neuronal dynamics and sen-
sitivity, as the optimal decision strategy depends critically on these factors.

1 Introduction
Animals interacting with a changeable, potentially adversarial environment need to excel in the
detection of changes in its sensory inputs. This detection, however, is riddled by the inherently com-
peting goals of accuracy and speed. Due to the noisy and incomplete nature of sensory inputs, the
animal can generally achieve more accurate detection by waiting for more sensory inputs. However,
gathering this extra information incurs an opportunity cost, as the extra time can be used to gather
more food, attract a mate, or escape a predator. Neurons subserving the detection process face a
similar speed-accuracy trade-off. In this work, we aim to understand the computations performed
by a neuron at the time-scale of single spikes. How sensitive a neuron is to each input spike should
depend on the relative probabilities of the input representing noise and useful information, and the
relative costs of mis-interpretation. We formulate the problem as an example ofchange-detection,
and characterize theoptimaldecision policy in this context. The formal tools we utilize to formal-
ize the change-detection problem are built upon work in the area of controlled stochastic processes.
Controlled stochastic processes refer to decision-making in environments plagued not only by infer-
ential uncertainty about the state of the world, but also uncertainty associated with the consequences
of an action or decision on the world itself. Finding optimal decision policies for such processes is
an actively researched problem in financial mathematics and operations research. As we will discuss
below, neuronal change-detection is a prime example of such a problem.

In Sec. 2, we introduce the general framework of change-detection. In Sec. 3, we apply the frame-
work to a specific scenario similar to that faced by the neuron, and characterize the optimal solution.
In Sec. 3, we demonstrate that the optimal information accumulation and decision process has dy-
namics remarkably resembling that of a spiking neuron. We examine the computational import of
certain intracellular properties, characterize the input-output firing rate relationship, and extend the
framework of multi-source detection. In Sec. 4, we explore the behavioral consequences of opti-



mal change-detection and examine issues such as the speed-accuracy trade-off, temporal and spatial
cueing, and neuromodulation.

2 A Bayesian Formulation of the Change-Detection Problem
The Generative Model
Suppose we have sequential inputsx1, x2, . . ., which are generatediid by a distributionf0(x) before
time θ ∈ {0, 1, . . .}, and by a distributionf1(x) afterwards, where the random variable (r.v.)θ
denotes the sudden, hidden change time.θ has an initial probabilityP (θ=0)=q0, and a geometric
distribution thereafter:P (θ = t) = (1−q0)(1−q)t−1q, t > 0. The change-detection problem is
concerned with finding the optimal decision policy for reporting the change fromf0 to f1 as early as
possible while minimizing false-alarms [1]. A decision policyπ is a mapping, possibly stochastic,
from all observations made so far to the control (or action) set,π(xt , {x1, . . . , xt}) 7→ {a1, a2}.
The actiona1 terminates the observation process and reportsθ ≤ t, anda2 continues the observation
for another time step. Every unique decision policy is identified by a correspondingr.v. of stopping
timesτ ∈{0, 1, . . .}. In the following, we will useπ andτ interchangeably to refer to a policy.

The Loss Function
Following convention [2], we assume a loss function linear in false alarms and detection delay:

lπ(θ, τ) = 1{τ<θ;π} + 1{τ≥θ;π}c(τ − θ) (1)

where1 is the indicator function, andc > 0 is a constant that specifies the relative importance of
speed and accuracy. The total loss is the expectation of this loss function overθ andτ :

Lπ , 〈lπ(θ, τ);π〉 =

τ=∞
∑

θ=0

(

θ−1
∑

τ=0

P (θ, τ) +

∞
∑

τ=θ

c(τ−θ)P (θ, τ)

)

= P (τ < θ) + c〈(τ−θ)+〉 (2)

An optimal policyπ∗ minimizesLπ. Due to the linear loss in detection delay, the expected loss
blows up for all policies that do not stop almost surely (a.s.; probability=1) in finite time; there-
fore, we restrict the optimization problem in the following to the class of almost-surely finite-time
policies. Using the notationPt , P (θ ≤ t|xt), we have the following:

P (θ > τ) =

∞
∑

t=0

P (τ = t, θ>τ)=

∞
∑

t=0

∫

P (θ>τ |xτ )P (τ = t|xt)p(xt)dxt =〈1−Pτ 〉τ,xτ

〈(τ−θ)+〉=

∞
∑

t=0

〈1{τ>t}·1{θ≤t}〉θ,τ =

∞
∑

τ=0

τ−1
∑

t=0

P (τ)P (θ≤ t)=

∞
∑

τ=0

P (τ)

t−1
∑

t=0

〈Pt〉θ,xt
=〈

τ−1
∑

t=0

Pt〉θ,xt,τ

The cumulative posterior probabilityPτ at the detection timeτ , therefore, is the critical factor in
loss evaluation and policy optimization:

Lπ = 〈cΣτ−1
k=0Pk + (1 − Pτ)〉θ,Pk,τ ;π . (3)

Bayes Rule gives us the iterative update rule for the cumulative posteriorPt ,P (θ ≤ t|xt),

Pt+1 =
(Pt + (1 − Pt)q)f1(xt+1)

(Pt + (1 − Pt)q)f1(xt+1) + (1 − Pt)(1 − q)f0(xt+1)
, P0 =q0 . (4)

Pt+1 is a deterministic function ofPt andxt+1, but appears to take a stochastic trajectory since
xt+1 is an i.i.d.-distributedr.v. The expectation of〈Pt+1|xt〉 is Pt+(1−Pt)q. We also define the
monotonically relatedposterior ratioΦt =

Pt

1−Pt

, which has the update rule

Φt+1 =
f1(xt+1)(Φt+q)

f0(xt+1)(1 − q)
, Φ0 =

q

1 − q
. (5)

Optimal Policy: Threshold Crossing
In order to optimize over the space ofall possible stopping rules (policies), we define the following:
(1) theconditional termination cost,Ct, associated with stopping at timet after observingxt: Ct ,

c
∑t−1

i=0 Pi + (1 − Pt); (2) theminimal conditional cost,γt, to be expected after observationxt:
γt , ess infτ 〈Cτ |xt〉, whereτ ranges over all stopping rules that terminate no earlier thant, and



the expectation is taken over all future observations (whichcan be a function of the decision taken
at every time step); (3)ess inf, the largest (a.s.)r.v. less than (a.s.) everyr.v. Xn, n ∈ N .

As an example of Bellman’s Equation,γt satisfies the dynamic programming equationγt =
min{Ct, 〈γt+1|xt〉}, and that the stationary, deterministic stopping ruleτ∗ = min{t≥ 1|γt = Ct}
achieves optimality (Eq. 2). This implies that the optimal policy consists of a stopping re-
gion S ⊂ [0, 1] and a continuation regionC = [0, 1] \S, such thatπ(Pt : Pt ∈ S) = a1 and
π(Pt : Pt ∈ C) = a2. We will state and prove a useful theorem below, which will imply thatC
andS neatly fall into two contiguous blocks, such that the optimal policy requires the termination
action as soon asPt exceeds some fixed thresholdB∗ – ie the optimal policy is afirst-passage
processin Pt!

Before we present the theorem, we first introducethe method of truncation. The difficulty of solving
the dynamic equation forγt lies in its infinite recursiveness. If we can impose afinite horizon
T on τ , then the finitely recursive relationγT

t = min {Ct, 〈γ
T
t+1|xt〉} has a corresponding finite-

horizon optimal policyπ∗
T , whereγT

T =CT . Taking the infinite limitγ∞
t , limT→∞ γT

t , it has been
shown [2] that when the expected loss is finite (which is the case here, since the expression in Eq. 2
is finite for all decision policies that stopa.s. in finite time), γt = γ∞

t , andπ∗
T converges to the

infinite-horizonoptimal policyπ∗. We also note the following self-evident lemma.

Lemma. Suppose{gi(t)}i∈I is a family of decreasing functions int, andh(t) =
∑

i gi(t)wi(t),
where

∑

i wi(t) = 1 ∀t. If gi(t) ≤ gj(t) impliesw′
i(t) ≥ w′

j(t), thenh(t) decreases witht.

Theorem. Ct−〈γT
t+1|xt〉 is a decreasing function ofPt.

Proof. CT−1−〈γT
T |xt−1〉 decreases withPT−1. Assume that the theorem holds fort+1, and note:

Ct − 〈γT
t+1|xt〉 = −(c + q)Pt + q +

∑

i

giwi

wheregi , max(0, li), li , Ct+1−〈γT
t+2|xt, xt+1 = i〉, andwi , P (xt+1 = i|x). gi decreases

with Pt for eachi, sinceli decreases withPt+1 by the inductive hypothesis, andPt+1 increases
with Pt by Eq. 4. Supposei, j are such thatf1(i)−f0(i)>f1(j)−f0(j), thenΦt+1(i)>Φt+1(j),
andPt+1(i) > Pt+1(j), for any givenxt. The inductive hypothesis impliesgi ≤ gj . Also note
dwk/dPt =(f1(k)−f0(k))(1−q), sodwi/dPt≥dwj/dPt. Thus,Ct−〈γT

t+1|xt〉 decreases withPt.

This theorem states that the cost of stopping at timet relative to continuing gets smaller when it is
more certain thatθ≤ t. This is true for any finite stopping timeT and therefore also for the infinite-
horizon limit. If Ct−〈γt+1|xt〉 is negative for some value ofPt, then the optimal policy is to select
actiona1; this is also true for any larger values ofPt. DefineB∗ ∈ [0, 1] as the lower bound of all
suchPt, then the stopping and continuation regions have the form[B∗, 1] and[0, B∗), respectively.

Ideally, we would like to have an exact solution for the optimal policy as a function of the generative
and cost parameters of the change-detection problem as defined in Sec. 1. While the explicit form
of B∗ is not known, the theorem allows us to find the optimal policy numerically by evaluating and
minimizing the empirical loss as a function of the decision thresholdB ∈ [0, 1].

3 Neuronal change-detection

In the following, we focus on the specific case wheref0 andf1 are Bernoulli processes with respec-
tive rate parametersλ0 andλ1. This case resembles the problem faced by neurons, which receive
sequential binary inputs (spike=1, no spike=0) with approximately Poisson statistics. The Bernoulli
process is a discrete-time analog of the Poisson process, and obviates the problematic assumption
(made by the Poisson model) that spikes could be fired infinitely close to one another. For now, we
assume that the generative parametersλ1, λ0, q0, q and the cost parameterc are known. We also
assume, without loss of generality, thatλ1 >λ0 (rate increases), since otherwise we can just redefine
the inputs (0or 1). When the parameters satisfyc ≥ (λ1−λ0−q(1−λ0))/(1−λ1), we have the
explicit solutionB∗ = q/(q = c), or Φ ≥ q/c (proof omitted). This corresponds to theone-step
look-aheadpolicy, and is optimal when the cost of detection is large or when the probability of the
change taking place is very high. This turns out not to be a very interesting case as the detection
process is driven to cross the threshold even in the absence of any input spikes.



Although we do not have an explicit solution for the optimal detection thresholdB∗ in general, we
can numerically compare different values ofB for any specific problem. Fig. 1(a) shows the empiri-
cal cost averaged over 1000 trials for different threshold values. For these particular parameters, the
minimum is aroundB = 0.65, although the cost function is quite shallow for a large range of values
of B around the optimum, implying that performance is not particularly sensitive to relatively large
perturbation around the optimal value.

Repeated Change-Detection and Firing Rate
From the problem formulation in sec. 2, it might seem like the framework only applies to detecting
a single change, or multiple unrelated changes. However, the same policy formulation can apply
to the case of repeated detection of changes, one after another, in a temporally contiguous fashion.
As long as each detection event is generated from the same model parameters (q, q0, f1, f0), and
the cost parameter (c) remains constant, the threshold-crossing policy is still optimal in minimizing
the empirical expected loss over these repeated events. The only generative parameter affected by
the repetition isq0, which represents the probability of the inputs already being generated from
f1 before the current observation process began. In this repeated detection scenario,q0 should in
general be high if the detection thresholdB∗ is high, and low ifB∗ is low. However, the strength
of this coupling is tempered by (i) whether each detection termination resets the generative process,
as happens when visual detection leads to saccades and thus the resetting of input statistics, and (ii)
the amount of time elapsed during the refractory period after a detection spike. Fortunately, while
q0 is influenced by the detection policy, the optimization of the policy is not influenced byq0, since
it consists of comparingCt and〈γt+1|xt〉 at every time step. This comparison does not depend on
q0, which simply adds a linear factor to both terms.

In this repeated firing scenario, where the number of spikes is relatively high relative to the frequency
of changes, the loss function of Eq. 2 can be rewritten asLπ = p0r0 + c/r1, whereri is the
mean firing rate when the inputs are generated fromfi, andp0 is the fraction of time whenf0 is
applicable (as opposed tof1). In other words, if the rate of change is slow compared to neuronal
firing rates, then optimal processing amounts to minimizing the “spontaneous” firing rate duringf0

and maximizing the “stimulus-evoked” firing rate duringf1.

Optimality and Dynamics of Leaky Integrate-and-Fire
Fig. 1(b) illustrates this concept of repeated firing. The top panel shows an example tracing of the
dynamical variableΦt in the repeated optimal change-detection process. WheneverΦt reaches the
threshold0.65/(1−0.65) (or equivalently whenPt reaches0.65, the optimal threshold as determined
in the last section), a change is reported and the whole process resets toΦ0. The dynamics ofΦt

is remarkably similar to a leaky integrate-and-fire neuron. The bottom panel shows a raster plot of
input and output spikes over 25 trials, and again the resemblance to spiking neurons is remarkable.
Closer inspection indicates that the update rule for the posterior ratio in Eq. 5 indeed approximates
the dynamics of aleaky integrate-and-fire neuron[3]. Let a,

f1(xt)
(1−q)f0(xt)

, we can rewrite Eq. 5 as

Φt = a(Φt−1 + q) (6)

Whenxt = 1, a = λ1

(1−q)λ0

> 1, Φt increases, and the rate of increase is larger whenΦt itself
is larger. This is reminiscent of the near-threshold dynamics of the Hodgkin-Huxley model, in
which thevoltage-dependentactivation of sodium conductance drives the neuron to fire [4]. When
xt = 0, Φt converges toΦ0

∞ = f1q/(f0(1 − q) − f1) (by Eq. 5), which is greater than0 when
f0(0)/f1(0)≥ 1−q. We can think ofΦ0

∞ as theresting membrane potential. SinceΦ0
∞ increases

with q, it implies that the resting potential should be higher and closer to the firing threshold, making
the neuron more sensitive to synaptic inputs, when there is a stronger expectation that a change is
imminent.

Relationship Between Input and Output Firing Rates
We can also look at the input-output relationship at the firing-rate level. The state-dependent rate
parametera has the expected values:

a0 ,〈a|f0〉 =
1

1−q
a1 ,〈a|f1〉 =

1

1−q

λ2
1+λ0−2λ0λ1

λ0−λ2
0

.

Given Eqs. 5 and 6, we can write down an approximate, explicit expression for〈Φt|fi〉:

〈Φt|fi〉≈ai(〈Φt−1〉+q)=at
i〈Φ0〉 + aiq

t−1
∑

k=0

ak
i =at

i〈Φ0〉 +
aiq(1−at

i)

1−ai
≈at

i

(

Φ0 +
q

ai−1

)

. (7)



0 100 200 300 400 500

0

10

20

0 100 200 300 400 500
0

0.5

1

−200 −100 0 100 200
0

0.1

0.2

Distribution of input spikes

F
re

qu
en

cy

−200 −100 0 100 200
0

0.02

0.04

Distribution of output spikes

F
re

qu
en

cy

Time
0.6 0.65 0.7 0.75 0.8 0.85 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Cost as a function of thresholds

Threshold

C
os

t

(a) (b) (c)Dynamics of Φ

Input and output spikes

Time (samples)

Figure 1: Optimal change-detection and dynamics. (a) The empirical average cost (over 1000 trials)
has a single shallow minimum atB = 0.65. λ0 = 0.13, λ1 = 0.17, q = 0.0125, q0 = 0.05,
c = 0.0005; these parameters apply for the remainder of the paper unless otherwise specified. (b)
Top panel: a typical example of the dynamics ofΦt over time. Superimposed onΦt are the spikes,
which are arbitrarily set to a fixed high value. Black bars near the bottom indicate input spikes.
Green line indicates time of actual change. In this example, a chance flurry of input spikes near
the start causes the optimal change-detector to fire; after the change, the increased input firing rate
induces the change-detector fire much more frequently. Note thatΦt decreases whenever there
is a lull in input spikes. Bottom panel: Raster plot of input (blue) and output (red) spikes; both
more frequent after the the change indicated by the green line. (c) Output spikes (bottom) increase
frequency quickly after the increase in input spikes (top).

Given the decision thresholdB, 〈Φt0 |f0〉 = 〈Φt1 |f0〉 = B, whereti is the average number of time
steps it takes to reach the threshold for forxt = fi, and can be assumed to be� 1 (it takes many
time steps of input integration to reach the threshold). We therefore have

at0
0

(

Φ0 +
q

a0−1

)

= at1
1

(

Φ1 +
q

a1−1

)

=⇒ a1 = a
t0/t1
0

(

q/(a0−1) + Φ0

q/(a1−1) + Φ0

)
1

t1

≈ a
t0/t1
0 . (8)

And therefore the ratio of the output firing rates,ri ,1/ti for i=1, 2, is

r1

r0
=

t0
t1

=
log a1

log a0
=

log 1
1−q + log

λ2

1
+λ0−2λ0λ1

λ0−λ2

0

log 1
1−q

= 1 +
log

λ2

1
+λ0−2λ0λ1

λ0−λ2

0

log 1
1−q

. (9)

Since the arguments oflog in both the denominator and numerator are greater than1, r1/r0 > 1.
Therefore, when the input rates are such thatλ1 >λ0, then the respective output rates are also such
thatr1 >r0. To see exactly how the output firing rate ratio changes as a function of the input rates,

we define the functiong(λ0, λ1) ,
λ2

1
+λ0−2λ0λ1

λ0−λ2

0

, and take its partial derivatives with respect toλ0

andλ1. Then we see that theoutput firing ratioEq. 9 also increases withλ1 and decreases with
λ0, consistent with intuitions. Fig. 1(c) shows the average detection/firing rate over time: the rise in
output firing rate closely follows that in the input, despite the small change in the input firing rates.

Multi-source change-detection
So far, we have only considered the case of the Bernoulli inputs uniformly changing from one
rate to another. However, sometimes the problem at hand is one of multi-source change-detection.
For instance, a visual neuron detecting the onset of a stimulus might get inputs from up-stream
neurons sensitive to stimuli with different properties (different colors, orientations, depth of view,
etc.). Here, we extend our framework to the case of two independent sources of inputs, using an
approach similar to that taken in [5]. The sourcef i, i∈{1, 2} emits observationsxi

1, x
i
2, . . . from a

Bernoulli process that changes from rateλi
0 to λi

1 at an unknown timeθi, whereθi is generated by
a geometric distribution with parameterqi, and the prior probabilityP (θi =0) is qi

0. The objective
is to detectθ,min(θ1, θ2) with the cost function specified as before (Eqs. 1-2).

Defining the individual posteriorsP i
t ,P (θi ≤ t|xi

t), wherexi
t , xi

1, . . . , x
i
t, we have the following

Pt , P (min(θ1, θ2) ≤ t|x1
t ,x

2
t ) = 1 − (1 − P 1

t )(1 − P 2
t ) = P 1

t + P 2
t − P 1

t P 2
t . (10)

We can also define the corresponding overall posterior ratio

Φt , Pt/(1 − Pt) = Φ1
t + Φ2

t + Φ1
t Φ

2
t (11)



(a) (b) (c)

Figure 2: Effect of cueing on change-detection. (a) Distribution of first spikes for the optimal
stopping policy; spikes aligned to time0 when the actual change takes place. (b) This distribution is
significantly tightened with mean brought closer to the actual change, when there is extra temporal
information about an imminent change (q= .02). (c) The distribution of spikes is also slightly
tightened and brought closer to the actual change time, when there is stronger prior probability of
a stimulus appearing (q0 = .1), as during special cueing. The effect is smaller because the higher
prior leads to false alarms as well as reducing detection delay.

as a function of the individual posterior ratiosΦi
t , P i

t /(1 − P i
t ). Following reasoning very close

to that of Sec. 2, we can show that if the generative and cost parameters are such thatΦt is lower-
bounded byΦ0

∞ for t � 1, then the optimal stopping/detection policy is to terminate at the smallest
t, such thatΦt = Φ1

t +Φ2
t +Φ1

t Φ
2
t ≥ (q1+q2−q1q2)/c. Despite the generative independence of

the two Bernoulli processes, we note that the optimal policy isdifferentfrom the näıve strategy of
running two single-source change-detectors, and report a change as soon as one of them reports a
change. To see this, consider the case whenΦ1

t = q1/c, but Φ2
t ≈ 0, so thatΦt ≈ Φ1

t = q1/c <
(q1+q2(1 − q1))/c. Therefore, the individual detector for process1 would have reported a change,
but the overall detector would not.

4 Optimal Change-Detection and Neuromodulation

A sizeable body of behavioral studies suggest that stimulus processing is influenced by cognitive
factors such as knowledge about the timing of stimulus onset, or whether or not a stimulus would
appear in a particular location. There is evidence that the neuromodulators norepinephrine [6], and
acetylcholine [7] are respectively involved in those two aspects of stimulus processing. Separately,
there is a rich literature on the effects of these various neuromodulators at the single-cell level [8].
Since we have here an explicit model of neuronal dynamics as a function of the statistical properties
associated with the stimulus, we are ideally positioned to examine how these propertiesshould
affect the cellular properties, and whether the known behavioral consequences of neuromodulation
are consistent with their observed effects at the cellular level.

If the system has some prior knowledge about the onset time of a stimulus, we can model the infor-
mation accumulation process as starting shortly before the mean change-time, with a tight distribu-
tion over the random variableθ. Makingq larger achieves both effects in our model. Fig. 2A shows
the distribution of first spikes for1000 trials; Fig. 2B shows that this distribution is more tightly clus-
tered immediately after the actual change timeθ for largerq. Experimentally, it has been observed
that norepinephrine makes sensory neurons fire more vigorously to bottom-up sensory inputs [8]. It
is also known from behavioral studies that a temporal cue improves detection performance, and that
noradrenergic depletion diminishes this advantage [6].

If there is some prior knowledge about the stimulus being in a particular location, we can model this
with a higher prior probabilityq0 of the stimulus being present. This also has the effect of increasing
the responsiveness of the change-detection process to input spikes (Fig. 2C), as well as making the
detection (spiking) process more sensitive. It has been shown experimentally that a (correct) spatial
cue improves stimulus detection, and that acetylcholine is implicated in this process [7], and that
acetylcholine potentiates neurons and increases their responsiveness to sensory inputs [8].

5 Discussion

Responding accurately and rapidly to changes in the environment is a problem confronted by the
brain at every level, from single neurons to behavior. In this work, we have presented a formal treat-
ment of the change-detection problem and obtained important properties of the optimal policy – for a
broad class of problems, the optimal detection algorithm is a threshold-crossing process based on the
posterior probability of the change having taken place, which can be iteratively updated using Bayes’



Rule. Applying these ideas to the case of neurons that must rapidly and accurately detect changes
in input spike statistics, we saw that the optimal algorithm yields dynamics remarkably similar to
the intracellular dynamics of spiking neurons. This suggests that neurons are optimized for tracking
discrete, abrupt changes in the inputs. The model yields insight into the computational import of
cellular properties such as resting membrane potential, post-spike reset potential, voltage-dependent
conductances, and the input-output spiking relationship. The basic framework was extended to ex-
amine the case of multi-source change-detection, a problem faced by a neuron tasked with detecting
a stimulus when it could be one of two possible sub-categories. We also explored the computational
consequences of spatial and temporal cueing on stimulus detection, and saw that thebehavioral
andbiophysicaleffects of neuromodulation (egby acetylcholine and norepinephrine) are consistent
within the framework.

This novel framework for modeling single-neuron computations is attractive, as it suggests explicit
design principlesunderlying neuronal dynamics, and not merely provides a descriptive model. Since
the computational objects are well-specified at the outset, it provides a natural theoretica link be-
tween cellular properties and behavioral constraints. It is also appealing as a self-consistent and
elegantly simple model of the computations taking place in single neurons. Every neuron in this
scheme simply detects changes in its synaptic inputs, on a spike-to-spike time scale, and propagates
its knowledge according to its own speed-accuracy trade-off. All that a down-stream neuron needs
from this neuron for its own change-detection computations are this neuron’s average firing rate in
different states, the rate of change among these states, and the prior probability of of this neuron
being in one of those states – all of these quantities can be learned over a longer time-scale. In
particular, the down-stream neuron does not need to know about this neuron’s inputs, its internal dy-
namics, its decision policy, its objective function, its model of the world, etc. In this scheme, more
sophisticated computations can be achieved by pooling together the outputs of different neurons in
various configurations – we explored this briefly with the example of multi-source change-detection.
Another advantage of this framework is that it eliminates the boundary betweeninferenceanddeci-
sion. In this scheme, neurons make inferences about their inputs and make decisions ateverylevel
of processing. It therefore obviates the problem of where in a hierarchical nervous system does the
nature of the computation change from input-processing to decision-making.

While the incorporation of formal tools from controlled stochastic processes into the modeling of
single-cell computations is a novel approach, this work is related to several other theoretical works.
The idea of neurons processing and representing probabilistic information has received much atten-
tion in recent years, with most work focusing on the level of neuronal populations [9–12]. Theo-
retical work on the representation and processing of probabilistic information in single neurons are
comparatively more rare. It has been suggested [13] that certain decision-making neurons may accu-
mulate probabilistic information and spike when the evidence exceeds a certain threshold. However,
it was typically assumed that the neurons already receive continuously-valued inputs that represent
probabilistic information. Moreover, the tasks considered in these earlier works involvedstationary
discrimination, such that there was no explicit non-stationarity in the state of the world/inputs. We
note that our framework is ageneralizationof the commonly studied 2AFC task, which is equiva-
lent to setting the change probabilityq to 0 in our model. Consistent with this characterization, our
optimal policy is a generalization of the SPRT algorithm which is known to be optimal for stationary
2AFC discrimination [14].

One closely related piece of work proposed that single neurons track thelog posterior ratio of the
state of an underlying binary variable, and spike when the new inputs imply a value for this log
posterior ratio that is sufficiently different from the neuron’s current estimate based on previous
inputs [15]. The key difference at the conceptual level is that this previous work focused on the
explicit propagation of probabilistic information across neurons, thus introducing complications into
processing and learning that are necessary to make this probabilistic knowledge consistent across
neurons. Also, there was no explicit analysis of the optimality of the output spike generation process:
how much of a discrepancy merits a spike, and how this depends on the relevant statistical and cost
parameters. At the mechanistic level, having the membrane potential represent thelog posterior
ratio, as opposed to the posterior ratio, requires the dynamical update rule to involve exponentiation.
While it was shown in that work that the dynamics is approximately leaky integrate-and-fire during
steady state, it does not help the most interesting case, when the world is rapidly changing and the
linear approximation is most detrimental. We showed in this work that there are good reasons for
neuronsnot to integrate inputs linearly. The amount of new evidence provided by each input (spike



or not spike) at every time step is state-dependent, andshouldbe so according to optimal information
integration. This work suggests that the particular types of nonlinearity we see in neuronal dynamics
aredesirablefrom a computational point of view.

One important assumption we made in our model is that the cost of detection delay is linear in
time, parameterized by the constantc. Without this assumption, the controlled dynamic process
framework would not apply, as the decision policy would not only depend on a state variable, but on
time in an explicit way. However, in general, there might not be a fixedc that relates the trade-off
between false alarms and detection delay. Intuitively,c should be related to how much rewardcould
be obtained per unit of time if the system werenot engaged in prolonging the current observation
process. In particular, if a new “trial” begins as soon as the current “trial” terminates, regardless of
detection accuracy, thenc should be set toP (θ ≤ τ)/〈τ〉, which also places the two cost terms in the
same dimension. If we had analytical expressions forP (θ ≤ τ) and〈τ〉 as a function of the decision
thresholdB, then we could solve the optimization problem through the self-consistency constraint
placed on the optimal thresholdB∗ through its dependence onc. Unfortunately, there is no known
analytical expressions forP (θ ≤ τ ;B) and〈τ ;B〉. Alternatively, one might still numerically obtain
a value for a fixed detection threshold that incurs the lowest cost among all thresholds. There is no
guarantee, however, that the optimal policy lives in this parameterized family of policies. It may be
that the best fixed threshold policy is still far from optimal detection.

There are several important and exciting directions in which we plan to extend the current work.
One is the consideration of more complex state transitions. In this work, we assumed that the state
transition is always fromf0 to f1. But in more general scenarios, the inputs are likely to revert back
tof0 before another transition intof1, and so on. Thus, we need at least two populations of detectors,
one that detects the onset (f0 to f1), and one that detects the offset (f1 to f0). Intuitively, there ought
to be recurrent connections between them, to propagate and aggregate the total information about
what states the inputs are in. A related problem is when the inputs can be in multiple (>2) possible
states, or even a continuous range of states, with complex transitions among these states. Another
interesting question is what happens when we have a different or more complex distribution for the
change variableθ. We know, for instance, that animals are capable of utilizing independent temporal
information about the mean and variance of the stimulus onset. In the geometric model we assumed,
these two variables are coupled. Finally, we note that the formal framework we presented, that of
optimal detection of changes in input statistics, is not only applicable to the level of single neuron,
but also to systems and cognitive level problems. For example, certain problems in reinforcement
learning, such as reversal learning and exploration versus exploitation in general, are also amenable
to analysis by a similar approach. We intend to explore some of these problems in the future using
similar formal tools from controlled dynamic processes.
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