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Abstract

In many modern large-scale learning applications, the amount of unlabeled data
far exceeds that of labeled data. A common instance of this problem tisatise
ductivesetting where the unlabeled test points are known to the learning algo-
rithm. This paper presents a study of regression problems in that setting. It
presentexplicit VC-dimension error bounds for transductive regression that hold
for all bounded loss functions and coincide with the tight classification bounds of
Vapnik when applied to classification. It also presents a new transductive regres-
sion algorithm inspired by our bound that admits a primal and kernelized closed-
form solution and deals efficiently with large amounts of unlabeled data. The
algorithm exploits the position of unlabeled points to locally estimate their labels
and then uses a global optimization to ensure robust predictions. Our study also
includes the results of experiments with several publicly available regression data
sets with up t®0,000 unlabeled examples. The comparison with other transduc-
'([jive regression algorithms shows that it performs well and that it can scale to large
ata sets.

1 Introduction

In many modern large-scale learning applications, the amount of unlabeled data far exceeds that of
labeled data. Large amounts of digitized data are widely available but the cost of labeling is often
prohibitive since it typically requires human assistance. Semi-supervised learning or transductive
inference leverage unlabeled data to achieve better predictions and are thus particularly relevant to
modern applications. Semi-supervised learning consists of using both labeled and unlabeled data
to find a hypothesis that accurately labels unseen examples. Transductive inference uses the same
information but only aims at predicting the labels of the known unlabeled examples.

This paper deals with regression problems in the transductive setting, which arise in a variety of
contexts. This may be to predict the real-valued labels of the nodes of a known graph in compu-
tational biology, or the scores associated to known documents in information extraction problems.
The problem of transduction inference was originally formulated and analyzed by Vapnik [1982]
who described it as a simpler task than the traditional induction treated in machine learning. A
number of recent publications have dealt with the topic of transductive inference [Vapnik, 1998,
Joachims, 1999, Bennett and Demiriz, 1998, Chapelle et al., 1999, Graepel et al., 1999, Schuurmans
and Southey, 2002, Corduneanu and Jaakkola, 2003, Zhu et al., 2004, Lanckriet et al., 2004, Der-
beko et al., 2004, Belkin et al., 2004, Zhou et al., 2005]. But, with the exception of [Chapelle et al.,
1999], [Schuurmans and Southey, 2002], and [Belkin et al., 2004], this work has primarily dealt
with classification problems.

We present a specific study of transductive regression. We give new error bounds for transductive
regression that hold for all bounded loss functions and coincide with the tight classification bounds of
Vapnik [1998] when applied to classification. Our results also include explicit VC-dimension bounds
for transductive regression. This contrasts with the original regression bound given by Vapnik [1998]
which assumes a specific condition of global regularity on the class of functions and is based on a
complicated and implicit function of the samples sizes and the confidence parameter. As stated by
Vapnik [1998], this function must be “tabulated by a computer”.



We also present a new algorithm for transductive regressigpiried by our bound which first ex-
ploits the position of unlabeled points to locally estimate their labels, and then uses a global opti-
mization to ensure robust predictions. We show that our algorithm admits both a primal and a ker-
nelized closed-form solution. Existing algorithms for the transductive setting require the inversion
of a matrix whose dimension is either the total number of unlabeled and labeled examples [Belkin
et al., 2004], or the total number of unlabeled examples [Chapelle et al., 1999]. This may be pro-
hibitive for many real-world applications with very large amounts of unlabeled examples. One of the
original motivations for our work was to design algorithms dealing precisely with such situations.
When the dimension of the feature spd¢es not too large, our algorithm provides a very efficient
solution whose cost is dominated by the construction and inversion &f anV-matrix. Similarly,

when the number of training points is small compared to the number of unlabeled points, using
an empirical kernel map, our algorithm requires only constructing and inverting ann-matrix.

Our study also includes the results of our experiments with several publicly available regression data
sets with up t®0,000 unlabeled examples, limited only by the size of the data sets. We compared
our algorithm with those of Belkin et al. [2004] and Chapelle et al. [1999], which are among the
very few algorithms described in the literature dealing specifically with the problem of transductive
regression. The results show that our algorithm performs well in several data sets compared to these
algorithms and that it can scale to large data sets.

The paper is organized as follows. Section 2 describes in more detail the transductive regression
setting we are studying. New generalization error bounds for transductive regression are presented
in Section 3. Section 4 describes and analyzes both the primal and dual versions of our algorithm
and the experimental results of our study are reported in Section 5.

2 Definition of the Problem

Assume that a full sampl&” of m + » examples is given. The learning algorithm further receives
the labels of a random subset&fof sizem which serves as a training sample:

(xlayl)v""(xmvym)EXXR' (1)

The remainingu unlabeled example$;,,t1,...,Tm+y € X, Serve as test data. The learning
problem that we consider consists of predicting accurately the lahels, . . ., ym4. Of the test
examples. No other test examples will ever be considered. Thisdasduction regressioproblem
[Vapnik, 1998]! It differs from the standardrfduction) regression estimation problem by the fact
that the learning algorithm is given the unlabeled test examples beforehand. Thus, it may exploit
that information and achieve a better result than via the standard induction.

In what follows, we consider a hypothesis spdt®f real-valued functions for regression estima-
tion. For a hypothesid € H, we denote byR () its mean squared error on the full sample, by

~

R(h) its error on the training data, and (/) the error ofh on the test examples:

m-+tu m m-+u
Rolh) = —— >~ (h(a) =) Bk = = S (hw)—ui)® R =1 > (hleo)—u)*
=1 i=1 i=m+1

)

For convenience, we will sometimes denotehy= y; the label of a point: = z; € X.

3 Transductive Regression Generalization Error

This section presents explicit generalization error bounds for transductive regression.

Vapnik [1998] introduced and analyzed the problem of transduction and presented transductive in-
ference bounds for both classification and regression. His regression bound assumes however a
specific regularity condition on the hypothesis functions leading in particular to a surprising bound
where no error on the training data implies zero generalization error. The bound has the multiplica-

tive form: R(h) < Q(m,u,d, §)R(h), whered is the VC-dimension of the class of hypotheses used
ando is the confidence parameter. Furthermore, for certain values of the parameters, for example
largerds or smalleis, €2 becomes infinite and the bound is ineffective [Vapnik, 1998, page 349].

is also based on a complicated and implicit functiomqfu, andd, which makes its interpretation
difficult. For example, it is hard to analyze the asymptotic behavior of the bound fordarge

1This is in fact one of the two transduction settings discussed by [Vapnik, 1998], but, under some general
conditions, the results proved with this setting carry over to the other.



Instead, our bounds simply hold for general bounded losgifumeand, when applied to classifica-

tion, coincide with the tight classification bounds of Vapnik [1998]. Our results also include explicit
VC-dimension bounds for transductive regression. To the best of our knowledge, these are the first
general explicit bounds for transductive regression.

Our first bound uses the functidhdefined as follows. Lel (¢, k) be defined by:

k\ r/m+u—k
Ve > 0,Vk e Nyue <k <m(l—¢)+u, T(ek)= Z %, 3)
rel(m,u,e) m

wherel(m,u,k,e) is the set of integers such that: ’“;’” — = > eandmax(0,k —u) < r <

min(m, k). T'(e, k) represents the probability of observing a difference in error rate of more than
€ between the training and test set when the total number of errérg¢sse [Cortes and Mohri,

2006]). Thenl is defined ad'(e) = max, I'(/—£—¢, k). T is used in the transductive classi-

m-+tu
fication bound of Vapnik [1998] (see [Cortes and Mohri, 2006][Theorem 2]). [Cortes and Mohri,
2006][Corollary 2] gives an upper bound dn

For any subset’ C X, any non-negative real numhel 0, and hypothesié € H, let©(h,t, X’)
denote the fraction of the points € x’,i = 1,...,k, such thath(x;) — y;)? —t > 0. Thus,
O(h,t, X’) represents the error rate over the samplef the classifier that associates to a paint
the value zero ifh(x) — y.,.)? < t, one otherwise.

Two classifiers associated in this way@gh, t, X') and®(h’, ¢, X') can be viewed as equivalent if
they labelX in an identical way. Sincg’ is finite, there is a finite number of equivalence classes of
such classifiers, we will denote that numberXdym + u).

Theorem 1 Letd > 0, and letep > 0 be the minimum value efsuch that\V'(m + u)T'(e) < §, and
assume that the loss function is bounded: forralt H andz € X, (h(z) — y.)* < B?, where
B € R,. Then, with probability at least — ¢, for all h € H,
~ ue2 B? ~ uegB 2
< — 0 — .
R(R) < Bb) + 50025+ eoB\/Rw) + (2<m - u)) (@)

Proof. Foranyh € H, let R;(h) be defined by:

Ri(h) = " VO(h,t, X) dt. (5)

0
By the Cauchy-Schwarz inequality,

B2 1/2 B2 1/2 B2 1/2
Rl(h)§</0 @(h,t,X)dt) (/0 1dt> :B<O @(h,t,X)dt) . (6)

Let D denote the uniform probability distribution associated to the saripl€hus,D(z) = —

m-+tu
forallz € X. Let PrmND[gmt] denote the probability of everfl, whenz is randomly drawn
according toD. By definition of Ry and the Lebesgue integral, for &lle H,

oS B?
= xXr)— 2 x Xr = Iy xXr)— 2 = .
Ro(h) = [ () =9 D@)ds = [ Prl(h@) =9 > 0= [ eex)de @)
Similarly, settingX,,, = {z; € X :i € [1,m]} andX,, = {z; € X : i € [m + 1, m + u|}, we have

B2 B2
R(h) = O(h,t, Xm) dt and R(h)= O(h,t, X,) dt. (8)
0 0

In view of Equation 7, Inequality 6 can be rewritten &5:(h) < B+/Ro(h). By [Cortes and Mohri,
2006][Theorem 2], for alt > 0 and for anyt > 0,

pr{sup QU f &) — O 1, )
heH O(h,t, X)

> ¢ <N(m+u)l(e). 9)



Fix ¢ > 0. Then, with probability at least — A/ (m + u)T'(e), for all integers: > 1 andi > 0,
O(h, B x,)—0(h, 2 x,)
<e

Y 0 Y 0 < (10)
O(h, B2 x)
Then, the convergence of the Riemann sums to the integral ensures that
R(h)—R(h) = lim — Z O(h —— Z o(h (11)

IN

zB
enlingo - Z \/©(h, — = eRy(h) < eBy/Ry(h). (12)

Let§ > 0 and select = ¢, as the minimum value of such that\'(m + u)T'(¢) < 6, then with
probability at least — ¢,

R(h) — R(h) < eoB~\/Ro(h). (13)
Plugging in the following expression @, (%) with respect taR(h) andf{(h)
m -~ u
Ro(h) = m—MR(h) + m—+uR(h)’ (14)

and solving the second-degree equatioRih) yields directly the statement of the theorem. [

Theorem 1 provides a general bound on the regression erroinvtite transduction setting. The
theorem can also be used to derive a bound in the classification case by simply Betting The
resulting bound coincides with the tight classification bound given by Vapnik [1998]. The bound
given by Theorem 1 depends on the functioand is implicit. The following provides a general and
explicit error bound for transduction regression directly expressed in terms of the empirical error,
the number of equivalenc®(m + w) or the VC-dimensiow/, and the sample sizes andu.

Corollary 1 Let H be a set of hypotheses with VC-dimensiorAssume that the loss function is

bounded: for allh € H andx € X, (h(z) — y.)? < B?, whereB € R, . Then, with probability at
leastl — o, forall h € H,

=)

R(h) <

ua?B? ~ uaB 2
(h) + m + OéB\/R(h) + (m) ; (15)

with o = \/W (log N (m +u) +log 3) < \/% (dlog (m+u)€ + 1og%).

Proof. By Theorem 1, Inequality 15 holds for all > 0 such that\V'(m +u)I(«) < §. By [Cortes
and Mohri, 2006][Corollary 2Jlog (N (m + u) T(e)) < logN'(m + u) — 3 2% a?. Settinglog d
to match this upper bound yields the expression given above. Sincd/(m + u) is bounded by
the shattering coefficient off of orderm + u, by Sauer’'s lemmdpg N/ (m + u) < dlog (m“)e
This gives the upper bound @nin terms of the VC-dimension.

1
(m

The bound is explicit and can be readily used within the Stma¢Risk Minimization (SRM) frame-

work, either by using the expression @fin terms of the VC-dimension, or the tighter expression
with respect to the number of equivalence clas§eslin the latter case, a structure of increasing
number of equivalence classes can be constructed as in [Vapnik, 1998 page 360]. A more practical
algorithm inspired by these concepts is described in the next section.

4 Transductive Regression Algorithm

This section presents an algorithm for the transductive regression problem.

Before presenting this algorithm, let us first emphasize that the algorithms introduced for transduc-
tive classification problems, e.g., transductive SVMs [Vapnik, 1998, Joachims, 1999], cannot be
readily used for regression. These algorithms typically select the hypothesis of a hypothesis
spaceH, that minimizes the following optimization function

mln h)+C— ZL (i), y3) +Cl ZL xm-ﬁ-i)ay:z—ﬁ-i)v (16)
’ i=1

y7n+1



whereQ(h) is a capacity measure terth|s the loss function used; > 0 andC’ > 0 regularization
parameters, and where the minimum is taken over all possible lapels. ...,y ., for the test
points. In regression, this scheme would lead to a trivial solution not exploiting the transduction
setting. Indeed, leky be the hypothesis minimizing the first two terms, that is the solution of
the induction problem. For the particular choigg ,; = ho(zm4i), @ = 1,...,u, the third term
vanishes. Thushg is also minimizing the sum of all three terms. In two-group classification,
the trivial solution is typically not the solution of the minimization problem because in general
ho(@m+4) is notin{0, 1}.

The main idea behind the design of our algorithm is to exploit the additional information provided in
transduction, that is the position of the unlabeled examples. Our algorithm has two stages. The first
stage is based on the position of unlabeled points. For each unlabeledpoiatm+1, ..., m+u,

a local estimate labej; is determined using the labeled points in the neighborhoad .oin the
second stage, a global hypothekis found that best matches all labels, those of the training data
and the estimate labels.

This second stage is critical and distinguishes our method from other suggested ones. While using
local information to determine labels is important (see for example the discussion of Vapnik [1998]),

it is not sufficient for a robust prediction. A global estimate of all labels is needed to make predictions
less vulnerable to noise.

4.1 Local Estimates

Let ® be a feature mapping fro¥’ to a vector spacé’ provided with a norm. We fix a radius
r > 0 and consider for alt’ € X,,, the ball of radius- centered inb(z’), denoted b)B(fI)(x’f), ).
This defines the neighborhood of the image of each unlabeled point. A single rasliused for all
neighborhoods to limit the number of parameters for the algorithm. Labeled poit&,,, whose
images®(z) fall within the neighborhood o®(2'), 2’ € X,,, help determine an estimate labehof

With a very large radius, the labels of all training examples contribute to the definition of the local
estimates. But, with smaller radii, only a limited number of computations are needed. When no such
labeled point exists in the neighborhoodidfe X, which depends on the radiuselectedy’ is
disregarded in both training stages of the algorithm.

There are many possible ways to define the estimate label of X, based on the neigh-
borhood points. One simple way consists of defining it as the weighted average of the neigh-
borhood labelsy,., where the weights may be defined as the inverse of distancéga9f to

®(2'), or as similarity measurek (z, ') when a positive definite kerndl” is associated t@.
Thus, when the set of labeled points with images in the neighborhode(:0f) is not empty,
I'={ie[l,m]: ®(x;) € B(®(z'),r)} # 0, the estimate label,, of 2’ € X, can be given by:

_ W;Ys . _
e s Wit v Lo ||@() — ®(z)|| <+ or w=K(,z). (17)
icl g

The estimate labels can also be obtained as the solution of a local linear or kernel ridge regression,
which is what we used in most of our experiments.

In practice, with a relatively small radius the computation of an estimated lageldepends only
on a limited number of labeled points and their labels, and is quite efficient.

4.2 Global Optimization

The second stage of our algorithm consists of selecting a hypothékeat fits best the labels of

the training points and the estimate labels provided in the first stage. As suggested by Corollary 1,
hypothesis spaces with a smaller number of equivalence classes guarantee a better generalization
error. The bound also suggests reducing the empirical error. This leads us to consider the following
objective function

m m—4u
G = lwl[>+C> (h(z:) —y)* +C" > (hlxs) — 5:)°, (18)
=1 1=m-+1

whereh is as a linear function with weight vectar € F: Vx € X, h(z) = w - ®(z), and where

C > 0andC’ > 0 are regularization parameters. The first two terms of the objective function
coincide with those used in standard (kernel) ridge regression. The third term, which restricts the
estimate error, can be viewed as imposing a smaller number of equivalence classes on the hypothesis
space as suggested by the error bound of Corollary 1. The constraint explicitly exploits knowledge



about the location of all the test points, and limits the raaofythe hypothesis at these locations,
thereby reducing the number of equivalence classes. Our algorithm can be viewed as a generalization
of (kernel) ridge regression to the transductive setting. In the following, we will show that this
generalized optimization problem admits a closed-form solution and a natural kernel-based solution.

4.2.1 Primal solution

Let N be the dimension of the feature space andietc RY*! denote the column matrix whose
components are the coordinatesugf Y € R™*! the column matrix whose components are the
labelsy; of the training examples, and’ € R“*! the column-matrix whose components are the

estimated labelg; of the test examples. L& = [®(x1), ..., ®(z,,)] € RY*™ denote the matrix
whose columns are the components of the image® of the training examples, and similarly

X' = [®@ms1)s- -, P(Timtu)] € RV*¥ the matrix corresponding to the test exampléscan
then be rewritten as:
G=[W|P+CIX W -Y|? +C|X""W - Y| (19)
G is convex and differentiable and its gradient is given by
VG =2W +20X(X"TW - Y) + 20’ X' (X'"W - Y'). (20)

The matrixW minimizing G is the unique solution 07G = 0. Since(Iy +C XX T +C’' X'X'T)
is invertible, it is given by the following expression

W= (Iy+CXX" + ' X'X'T)"H(CXY +C'X'Y). (21)
This gives a closed-form solution in the primal space based on the inversion of a ma&ix<iN.
LetT(N) be the time complexity of computing the inverse of a matriRiN*N. T(N) = O(N?)
using standard methods®(N) = O(N?-37%) with the method of Coppersmith and Winograd. The
time complexity of the computation 3 from X, X', Y, andY” is thus inO(T(N) + (m+u) N?).
When the dimensiotV of the feature space is small compared to the number of examples:,
which is typical in modern learning applications wheris large, this method remains practical and

leads to a very efficient computation. The use of the so-calhegirical kernel mapScholkopfand
Smola, 2002] also makes this method very attractive. Given a k&rnsle empirical kernel feature

vector associated te is them-dimensional vecto®(z) = [K(z, 1), ..., K(z,7,)]". Thus, the
dimension of the feature space is th&€n= m. For relatively smalin, even for very large values of
u with respect tan, the solution is efficiently computable and yet benefits from the use of kernels.

This computational advantage is not shared by other methods such as the manifold regularization
techniques [Belkin et al., 2004], or even by the regression technique described by [Chapelle et al.,
1999], despite it is based on a primal method (we have derived a dual version of that method as well,

see Section 5) since it requires among other things the inversion of a makXtn

OnceW is computed, prediction can be done by compulig W in time O(uN).

4.2.2 Dual solution

The computation can also be done in the dual space, which is useful in the case of very high-
dimensional feature spaces. ety € RV*(m+4) gndMy € R(m+T4)x1 pe the matrices defined
by:

CY
M= (VX VX)) my=(VEY ). 22)
Then, Equation 21 can be rewritten 8& = (Ix + MXM;)‘lMXMy. To determine the dual
solution, observe that
My (MxMy +9Ix) "' = (MxMx +7Lnia) " "My, (23)

wherel,, ., denotes the identity matrix d&("+%*(m+v)  This can be derived without difficulty
from a series expansion M xM | + 1)~ 1. Thus,W can also be computed via:

W =Mx (Lo + K) "My, (24)
where K is the Gram matrixK = M}MX. Let Ko1 € R**™ and Koy € R¥X% be

XU, LTS

(K (Zmtis Tmj)1<i j<u) and letKy € RUX(m+4) pe the matrix defined by:
Kr = (VOKy VO Ky)=X"Mx. (25)



No. of unlab. Relative improvement in MSE (%)

Dataset points Our algorithm] Chapelle et al. [I999] Belkin et al. [Z004]
Boston Housing [13] 25 20.2E14.7 4.3£11.3 2.4+t54
500 8.4£6.9 2.7£30 3.9£123
California Housing [8] 2,500 25.9+8.3 0.2+0.3 0.0+0.0
5,000 17.2+8.7 0.0+£0.0 0.0+0.0
20,000 22.0+11.0 — —
kin-32th [32] 2,500 9.4£37 2.2X26 2.7E31
8,000 18.4+5.9 0.5+0.5 0.9+0.7
500 14.4+10.4 1.5£27 2677
Elevators [18] 2500 9.0+6.9 22429 0.0+0.0
15,000 9.7+5.8 — —

Table 1: Transductive regression experiments. The number in brackets after the name indicates the input
dimensionality of the data set. The number of training examplesmvas 481 for the Boston Housing data
set,m = 25 for the other tasks. The number of unlabeled exampleswas25 for the Boston Housing data

set and varied fromu = 500 to the maximum o20,000 examples for the California Housing data set. For

u > 10,000, the algorithms of Chapelle et al. [1999] and Belkin et al. [2004] did not terminate within the time
period of our experiments.

Then, predictions can be made using kernel functions alone &ht8 can be computed by:
X' TW = X""Mx(Lniw + K) "My = Ko(I 10 + K) " 'My-. (26)

When the dimension of the feature spa¢es very large with respect to the total number of exam-

ples, this can lead to a faster computation of the solutidp..., + K)~'My can be computed in

O(T(m + u) + (m + u)?*tx) and predictions are computed in ti@u (m + u)), wheret x is the

time complexity of the computation df (z, x), z, 2’ € X. As already pointed in the description of

the local estimates, in practice, some unlabeled points are disregarded in the training phases because
no labeled point falls in their neighborhood. Thus, instead.,0é smaller number of unlabeled
examples, < u determines the computational cost.

5 Experimental Results

This section reports the results of our experiments with the transductive regression algorithm just
presented with several data sets. For comparison, we also implemented the algorithm of Chapelle
et al. [1999] and that of Belkin et al. [2004], which are among the very few algorithms described
in the literature dealing specifically with the problem of transductive regression. For the algorithm
of Chapelle et al. [1999], we in fact derived and implemented a dual solution not described in the
original paper. With the notation used in that paper, it can be shown that

C=I-KK'(KK" +~I)"".. (27)

Our comparisons were made using several publicly available regression daastts1 Housing
kin-32fha data set in thKinematicsamily with high unpredictability or noiseCalifornia Housing
andElevatorg[Torgo, 2006]. For the Boston Housing data set, we used the same partitioning of the
training and test sets as in [Chapelle et al., 1998]: training examples angb test examples. The

input variables were normalized to have mean zero and a variance one. For the kin-32fh, California
Housing, and Elevators data sel§,training examples were used with varying (large) amounts of
test examples2,500 and 8,000 for kin-32fh; from 500 up to 20,000 for California Housing; and

from 500 to 15,000 for Elevators. The experiments were repeated for 100 random partitions of
training and test sets.

The kernels used with all algorithms were Gaussian kernels. To measure the improvement produced
by the transductive inference algorithms, we used kernel ridge regression as a baseline. The optimal
values for the width of the Gaussianand the ridge% were determined using cross-validation.
These parameters were then fixed at these values. The remaining parameters for our algorithm,
andC’, were determined using a grid search and cross-validation. The parameters of the algorithms
of Chapelle et al. [1999] and Belkin et al. [2004] were determined in the same way. Alternatively, the
parameters could be selected using the explicit VC-dimension generalization bound of Corollary 1.
For our algorithm, we found the best values-db be typically among the.5% smallest distances
between training and test points. Thus, each estimate label was determined by only a small number
of labeled points.

For our algorithm, we experimented both with the dual solution using Gaussian kernels, and the
primal solution with an empirical Gaussian kernel map as described in Section 4.2.1. The results



obtained were very similar, however the primal method wamdteally faster since it required the
inversion of relatively small-dimensional matrices even for a large number of unlabeled examples.
For consistency, all the results reported for our method relate to the dual solution, except from those
with very largeu, e.g.u < 10,000, where the dual method was too time-consuming.

Table 1 shows the results of our experiments. For each data set and each algorithm, the relative
improvement in mean squared error (MSE) with respect to the baseline averaged over the random
partitions is indicated, followed by its standard deviation. Some improvements were small or not
statistically significant. In general, we observed no significant performance improvement over the
baseline on any of these data sets using the Laplacian regularized least squares method of Belkin
et al. [2004]. We note that, while positive classification results have been previously reported for this
algorithm, no transductive regression experimental result seems to have been published for it. Our
results for the method of Chapelle et al. [1999] match those reported by the authors for the Boston
Housing data set (both absolute and relative MSE).

Our algorithm achieved a significant improvement of the MSE in all data sets and for different
amounts of unlabeled data and was shown to be practical for large data 2@06ftest examples.

This matches many real-world situations where amount of unlabeled data is orders of magnitude
larger than that of labeled data.

6 Conclusion

We presented a general study of transductive regression. We gave new and general explicit error
bounds for transductive regression and described a simple and general algorithm inspired by our
bound that can scale to relatively large data sets. The results of experiments show that our algorithm
achieves a smaller error in several tasks compared to other previously published algorithms for
transductive regression.

The problem of transductive regression arises in a variety of learning contexts, in particular for
learning node labels of a very large graphs such as the web graph. This leads to computational
problems that may require approximations or new algorithms. We hope that our study will be useful
for dealing with these and other similar transduction regression problems.
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