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Abstract

A key challenge in designing analog-to-digital converters for cortically implanted
prosthesis is to sense and process high-dimensional neural signals recorded by
the micro-electrode arrays. In this paper, we describe a novel architecture for
analog-to-digital (A/D) conversion that combinesΣ∆ conversion with spatial
de-correlation within a single module. The architecture called multiple-input
multiple-output (MIMO)Σ∆ is based on a min-max gradient descent optimiza-
tion of a regularized linear cost function that naturally lends to an A/D formu-
lation. Using an online formulation, the architecture can adapt to slow varia-
tions in cross-channel correlations, observed due to relative motion of the micro-
electrodes with respect to the signal sources. Experimental results with real
recorded multi-channel neural data demonstrate the effectiveness of the proposed
algorithm in alleviating cross-channel redundancy across electrodes and perform-
ing data-compression directly at the A/D converter.

1 Introduction

Design of cortically implanted neural prosthetic sensors (CINPS)is an active area of research in
the rapidly emerging field of brain machine interfaces (BMI) [1, 2]. The core technology used in
these sensors are micro-electrode arrays (MEAs) that facilitate real-time recording from thousands
of neurons simultaneously. These recordings are then actively processed at the sensor (shown in Fig-
ure 1) and transmitted to an off-scalp neural processor which controls the movement of a prosthetic
limb [1]. A key challenge in designing implanted integrated circuits (IC) for CINPS is to efficiently
process high-dimensional signals generated at the interface of micro-electrode arrays [3, 4]. Sen-
sor arrays consisting of more than 1000 recording elements are common [5, 6] which significantly
increase the transmission rate at the sensor. A simple strategy of recording, parallel data conver-
sion and transmitting the recorded neural signals ( at a sampling rate of 10 KHz) can easily exceed
the power dissipation limit of80mW/cm2 determined by local heating of biological tissue [7]. In
addition to increased power dissipation, high-transmission rate also adversely affects the real-time
control of neural prosthesis [3].

One of the solutions that have been proposed by several researchers is to perform compression of
the neural signals directly at the sensor, to reduce its wireless transmission rate and hence its power
dissipation [8, 4]. In this paper we present an approach where de-correlation or redundancy elimina-
tion is performed directly at analog-to-digital converter. It has been shown that neural cross-talk and
common-mode effects introduces unwanted redundancy at the output of the electrode array [4]. As
a result, neural signals typically occupy only a small sub-space within the high-dimensional space
spanned by the micro-electrode signals. An optimal strategy for designing a multi-channel analog-
to-digital converter is to identify and operate within the sub-space spanned by the neural signals
and in the process eliminate cross-channel redundancy. To achieve this goal, in this paper we pro-



Figure 1: Functional architecture of a cortically implantedneural prosthesis illustrating the interface
of the data converter to micro-electrode arrays and signal processing modules

pose to use large margin principles [10], which have been highly successful in high-dimensional
information processing [11, 10]. Our approach will be to formalize a cost function consisting of
L1 norm of the internal state vector whose gradient updates naturally lends to a digital time-series
expansion. Within this framework the correlation distance between the channels will be minimized
which amounts to searching for signal spaces that are maximally separated from each other.

The architecture called multiple-input multiple-output (MIMO)Σ∆ converter is the first reported
data conversion technique to embed large margin principles. The approach, however, is generic and
can be extended to designing higher order ADC. To illustrate the concept of MIMO A/D conversion,
the paper is organized as follows: section 2 introduces a regularization framework for the proposed
MIMO data converter and introduces the min-max gradient descent approach. Section 3 applies the
technique to simulated and recorded neural data. Section 4 concludes with final remarks and future
directions.

2 Regularization Framework and Generalized Σ∆ Converters

In this section we introduce an optimization framework for deriving MIMOΣ∆ converters. For the
sake of simplicity we will first assume that the input to converter is aM dimensional vectorx ∈ RM

where each dimension represents a single channel in the multi-electrode array. It is also assumed
that the vectorx is stationary with respect to discrete time instancesn. The validity and limitation
of this assumption is explained briefly at the end of this section. Also denote a linear transformation
matrixA ∈ RM×M and an regression weight vectorw ∈ RM . Consider the following optimization
problem

min
w

f(w,A) (1)

where

f(w,A) = |w|T 1 − w
T
Ax (2)

and1 represents a column vector whose elements are unity. The cost function in equation 2 consists
of two factors: the first factor is anL1 regularizer which constrains the norm of the vectorw and the
second factor that maximizes the correlation between vectorw and an input vectorx transformed
using a linear projection denoted by matrixA. The choice ofL1 norm and the form of cost function
in equation (2) will become clear when we present its corresponding gradient update rule. To ensure
that the optimization problem in equation 1 is well defined, the norm of the input vector||x||∞ ≤ 1
will be assumed to be bounded.

Under bounded condition, the closed form solution to optimization problem in equation 1 can be
found to bew∗ = 0. From the perspective of A/D conversion we will show that the iterative steps
leading towards solution to the optimization problem in equation 1 are more important than the final
solution itself. Given an initial estimate of the state vectorw[0] the online gradient descent step for



Figure 2: Architecture of the proposed first-order MIMOΣ∆ converter.

minimizing 1 at iterationn is given by

w[n] = w[n − 1] − η
∂f

∂w
(3)

whereη > 0 is defined as the learning rate. The choice ofL1 norm in optimization function in
equation 1 ensures that forη > 0 the iteration 3 exhibits oscillatory behavior around the solution
w

∗. Combining equation (3) with equation (2) the following recursion is obtained:

w[n] = w[n − 1] + η(Ax − d[n]) (4)

where
d[n] = sgn(w[n − 1]) (5)

andsgn(u) denotes an element-wise signum operation such thatd[n] ∈ {+1,−1}M represents a
digital time-series. The iterations in 3 represents the recursion step forM first-orderΣ∆ convert-
ers [9] coupled together by the linear transformA. If we assume that the norm of matrix||A||∞ ≤ 1
is bounded, it can be shown that||w∞|| < 1 + η. Following N update steps the recursion given by
equation 4 yields

Ax −
1

N

N∑

n=1

d[n] =
1

ηN
(w[N ] − w[0]) (6)

which using the bounded property ofw asymptotically leads to

1

N

N∑

n=1

d[n] −→ Ax (7)

asN → ∞.

Therefore consistent with the theory ofΣ∆ conversion [9] the moving average of vector digital
sequenced[n] converges to the transformed input vectorAx as the number of update stepsN
increases. It can also be shown thatN update steps yields a digital representation which islog2(N)
bits accurate.

2.1 Online adaptation and compression

The next step is to determine the form of the matrixA which parameterize the family of linear
transformations spanning the signal space. The aim of optimizing forA is to find multi-channel
signal configuration that is maximally separated from each other. For this purposes we denote one
channel as a reference relative to which all distances/correlations will be measured. This is unlike
independent component analysis (ICA) based approaches [12], where the objective is to search for
maximally independent signal space including the reference channel. Even though several forms of
the matrixA = [aij ] can be chosen, for reasons which will discussed later in this paper the matrix
A is chosen to be a lower triangular matrix such thataij = 0; i < j andaij = 1; i = j. The
choice of a lower triangular matrix ensures that the matrixA is always invertible. It also implies



that the first channel is unaffected by the proposed transformA and will be the reference channel.
The problem of compression or redundancy elimination is therefore to optimize the cross-elements
aij , i 6= j such that the cross-correlation terms in optimization function given by equation 1 are
minimized. This can be written as a min-max optimization criterion where an inner optimization
performs analog-to-digital conversion, where as the outer loop adapts the linear transform matrix
A such as to maximize the margin of separation between the respective signal spaces. This can be
denoted by the following equation:

max
aiji6=j

(min
w

f(w,A)) (8)

In conjunction with the gradient descent steps in equation 4 the update rule for elements ofA follows
a gradient ascent step given by

aij [n] = aij [n − 1] − εui[n]xj ;∀i > j (9)

whereε is a learning rate parameter. The update rule in equation 9 can be made amenable to
hardware implementation by considering only the sign of the regression vectorw[n] and the input
vectorx as

aij [n] = aij [n − 1] − εdi[n] sign(xj);∀i > j. (10)

The update rule in equation 10 bears strong resemblance to online update rules used in independent
component analysis (ICA) [12, 13]. The difference with the proposed technique however is the
integrated data conversion coupled with spatial decorrelation/compression. The output of the MIMO
Σ∆ converter is a digital stream whose pulse density is proportional to the transformed input data
vector as

1

N

N∑

n=1

d[n] −→ A[n]x (11)

By construction the MIMO converter produces a digital stream whose pulse-density contains only
non-redundant information. To achieve compression some of the digital channels can be discarded
(based on their relative energy criterion ) and can also be shut down to conserve power. The original
signal can be reconstructed from the compressed digital stream by applying an inverse transforma-
tion A

−1 as

x̂ =
1

N
A[n]−1(

N∑

n=1

d[n]). (12)

An advantage of using a lower triangular form for the linear transformation matrixA with its diag-
onal elements as unity, is that its inverse always well-defined. Thus signal reconstruction using the
output of the analog-to-digital converter is also always well defined. Since the transformation ma-
trix A is continually being updated, the information related to the linear transform also needs to be
periodically transmitted to ensure faithful reconstruction at the external prosthetic controller. How-
ever, analogous to many naturally occurring signal the underlying statistics of multi-dimensional
signal changes slowly as the signal itself. Therefore the transmission of the matrixA needs to be
performed at a relatively slower rate than the transmission of the compressed neural signals.

Similar to conventionalΣ∆ conversion [9], the framework for MIMOΣ∆ can be extended to time-
varying input vector under the assumption of high oversampling criterion [9]. For a MIMO A/D
converter oversampling ratio (OSR) is defined by the ratio of the update frequencyfs and the max-
imum Nyquist rate amongst all elements of the input vectorx[n]. The resolution of the MIMO
Σ∆ is also determined by the OSR aslog

2
(OSR) and during the oversampling period the in-

put signal vector can be assumed to be approximately stationary. For time-varying input vector



(a) (b)

Figure 3: Functional verification of MIMOΣ∆ converter on artificially generated multi-channel
data (a) Data presented to the MIMOΣ∆ converter (b) Analog representation of digital output
produced by MIMO converter

x[n] = {xj [n]}, j = 1, ..,M the matrix update equation in equation 10 can be generalized afterN
steps as

1

N
aij [N ] = ε

1

N

N∑

n=1

di[n]sgn(xj [n]);∀i > j. (13)

Thus if the norm of the matrixA is bounded, then asymptoticallyN → ∞ the equation 13 imply
that the cross-channel correlation between the digital output and the sign of the input signal ap-
proaches zero. This is similar to formulations in ICA where higher-order de-correlation is achieved
using non-linear functions of random variables [12].

The architecture for the MIMOΣ∆ converter illustrating recursions (4) and (11) is shown in Figure
2. As shown in the Figure 2 the regression vectorsw[n] within the framework of MIMOΣ∆
represents the output of theΣ∆ integrator. All the adaptation and linear transformation steps can
be implemented using analog VLSI with adaptation steps implemented either using multiplying
digital-to-analog converters or floating gates synapses. Even though any channel can be chosen as
a reference channel, our experiments indicate that the channel with maximum cross-correlation and
maximum signal power serves as the best choice.

Figure 4: Reconstruction performance in terms of mean squareerror computed using artificial data
for different OSR



3 Results

The functionality of the proposed MIMO sigma-delta converter was verified using artificially gen-
erated data and with real multi-channel recorded neural data. The first set of experiments simulated
an artificially generated 8 channel data. Figure 3(a) illustrates the multi-channel data where each
channel was obtained by random linear mixing of two sinusoids with frequency 20Hz and 40Hz.
The multi-channel data was presented to a MIMO sigma delta converter implemented in software.
The equivalent analog representation of the pulse density encoded digital stream was obtained using
a moving window averaging technique with window size equal to the oversampling ratio (OSR).
The resultant analog representation of the ADC output is shown in 3(b). It can be seen in the
figure that after initial adaptation steps the output corresponding to first two channels converges to
the fundamental sinusoids, where as the rest of the digital streams converged to an equivalent zero
output. This simple experiment demonstrates the functionality of MIMO sigma-delta in eliminat-
ing cross-channel redundancy. The first two digital streams were used to reconstruct the original
recording using equation 12. Figure 4 shows the reconstruction error averaged over a time window
of 2048 samples showing that the error indeed converges to zero, as the MIMO converter adapts.
The Figure 4 also shows the error curves for different OSR. It can be seen that even though better
reconstruction error can be achieved by using higher OSR, the adaptation procedure compensates
for errors introduced due to low resolution. In fact the reconstruction performance is optimal for
intermediate OSR.

Figure 5: Functional verification of the MIMO sigma-delta converter for multi-channel neural data:
(a) Original multichannel data (b) analog representation of digital output produced by the converter

The multi-channel experiments were repeated with an eight channel neural data recorded from dor-
sal cochlear nucleus of adult guinea pigs. The data was recorded at a sampling rate of 20KHz and
at a resolution of 16 bits. Figure 5(a) shows a clip of multi-channel recording for duration of 0.5
seconds. It can be seen from highlighted portion of Figure 5(a) that the data exhibits high degree of
cross-channel correlation. Similar to the first set of experiments the MIMO converter eliminates spa-
tial redundancy between channels as shown by the analog representation of the reconstructed output



Figure 6: Reconstruction performance in terms of mean squareerror computed using neural data for
different OSR

in Figure 5(b). An interesting observation in this experiment is that even though the statistics of the
input signals varies in time as shown in Figure 5 (a) and (b), the transformation matrixA remains
relatively stationary during the duration of the conversion, which is illustrated through the recon-
struction error graph in Figure 6. This validates the principle of operation of the MIMO conversion
where the multi-channel neural recording lie on a low-dimensional manifold whose parameters are
relatively stationary with respect to the signal statistics.

Figure 7: Demonstration of common-mode rejection performedby MIMO Σ∆: (a) Original multi-
channel signal at the input of converter (b) analog representation of the converter output (c) a mag-
nified clip of the output produced by the converter illustrating preservation of neural information.

The last set of experiments demonstrate the ability of the proposed MIMO converter to reject com-
mon mode disturbance across all the channels. Rejection of common-mode signal is one of the most
important requirement for processing neural signals whose amplitude range from50µV - 500µV ,
where as the common-mode interference resulting from EMG or electrical coupling could be as high
as10mV [14]. Therefore most of the micro-electrode arrays use bio-potential amplifiers for enhanc-
ing signal-to-noise ratio and common-mode rejection. For this set of experiments, the recorded neu-
ral data obtained from the previous experiment was contaminated by an additive 60Hz sinusoidal
interference of amplitude1mV . The results are shown in Figure 7 illustrating that the reference
channel absorbs all the common-mode disturbance where as the neural information is preserved in
other channels. In fact theoretically it can be shown that the common-mode rejection ratio for the
proposed MIMO ADC is dependent only on the OSR and is given by20 log

10
OSR.



4 Conclusion

In this paper we presented a novel MIMO analog-to-digital conversion algorithm with application to
multi-channel neural prosthesis. The roots of the algorithm lie within the framework of large margin
principles, where the data converter maximizes the relative distance between signal space corre-
sponding to different channels. Experimental results with real multi-channel neural data demon-
strate the effectiveness of the proposed method in eliminating cross-channel redundancy and hence
reducing data throughput and power dissipation requirements of a multi-channel biotelemetry sen-
sor. There are several open questions that needs to be addressed as a continuation of this research
which includes extension of the algorithm second-orderΣ∆ architectures, embedding of kernels
into the ADC formulation and reformulation of the update rule to perform ICA directly on the ADC.
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