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Abstract

We describe a nonnegative variant of the ”Sparse PCA” problem. The goal is to
create a low dimensional representation from a collection of points which on the
one hand maximizes the variance of the projected points and on the other uses
only parts of the original coordinates, and thereby creating a sparse representa-
tion. What distinguishes our problem from other Sparse PCA formulations is that
the projection involves only nonnegative weights of the original coordinates — a
desired quality in various fields, including economics, bioinformatics and com-
puter vision. Adding nonnegativity contributes to sparseness, where it enforces a
partitioning of the original coordinates among the new axes. We describe a sim-
ple yet efficient iterative coordinate-descent type of scheme which converges to a
local optimum of our optimization criteria, giving good results on large real world
datasets.

1 Introduction

Both nonnegative and sparse decompositions of data are desirable in domains where the underly-
ing factors have a physical interpretation: In economics, sparseness increases the efficiency of a
portfolio, while nonnegativity both increases its efficiency and reduces its risk [7]. In biology, each
coordinate axis may correspond to a specific gene, the sparseness is necessary for finding focalized
local patterns hidden in the data, and the nonnegativity is required due to the robustness of biologi-
cal systems – where observed change in the expression level of a specific gene emerges from either
positive or negative influence, rather than a combination of both which partly cancel each other [1].
In computer vision, coordinates may correspond to pixels, and nonnegative sparse decomposition
is related to the extraction of relevant parts from images [10]; and in machine learning sparseness
is closely related to feature selection and to improved generalization in learning algorithms, while
nonnegativity relates to probability distributions.

Principal Component Analysis (PCA) is a popular wide spread method of data decomposition with
applications throughout science and engineering. The decomposition performed by PCA is a linear
combination of the input coordinates where the coefficients of the combination (the principal vec-
tors) form a low-dimensional subspace that corresponds to the direction of maximal variance in the
data. PCA is attractive for a number of reasons. The maximum variance property provides a way to
compress the data with minimal information loss. In fact, the principal vectors provide the closest
(in least squares sense) linear subspace to the data. Second, the representation of the data in the
projected space is uncorrelated, which is a useful property for subsequent statistical analysis. Third,
the PCA decomposition can be achieved via an eigenvalue decomposition of the data covariance
matrix.

Two particular drawbacks of PCA are the lack of sparseness of the principal vectors, i.e., all the data
coordinates participate in the linear combination, and the fact that the linear combination may mix
both positive and negative weights, which might partly cancel each other. The purpose of our work
is to incorporate both nonnegativity and sparseness into PCA, maintaining the maximal variance
property of PCA. In other words, the goal is to find a collection of sparse nonnegative principal
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vectors spanning a low-dimensional space that preserves as much as possible the variance of the
data. We present an efficient and simple algorithm for Nonnegative Sparse PCA, and demonstrate
good results over real world datasets.

1.1 Related Work

The desire of adding a sparseness property to PCA has been a focus of attention in the past decade
starting from the work of [8] who applied axis rotations and component thresholding to the more
recent computational techniques SCoTLASS L1 norm approach [9], elastic net L1 regression SPCA
[14], DSPCA based on relaxing a hard cardinality cap constraint with a convex approximation [2],
and most recently the work of [12] which applies post-processing renormalization steps to improve
any approximate solution, in addition to two different algorithms that search for the active coordi-
nates of the principal component based on spectral bounds. These references above can be divided
into two paradigms: (i) adding L1 norm terms to the PCA formulation as it is known that L1 approx-
imates L0 much better than L2, (ii) relaxing a hard cardinality (L0 norm) constraint on the principal
vectors. In both cases the orthonormality of the principal vector set is severely compromised or even
abandoned and it is left unclear to what degree the resulting principal basis explains most of the
variance present in the data.

While the above methods do not deal with nonnegativity at all, other approaches focus on nonneg-
ativity but are neutral to the variance of the resulting factors, and hence recover parts which are
not necessarily informative. A popular example is the Nonnegative Matrix Factorization (NMF)
[10] and the sparse versions of it [6, 11, 5, 4] that seek the best reconstruction of the input using
nonnegative (sparse) prototypes and weights.

We start with adding nonnegativity to PCA. An interesting direct byproduct of nonnegativity in PCA
is that the coordinates split among the principal vectors. This makes the principal vectors disjoint,
where each coordinate is non-zero in at most one vector. We can therefore view the principal vectors
as parts. We then relax the disjoint property, as for most applications some overlap among parts is
desired, allowing some overlap among the principal vectors. We further introduce a ”sparseness”
term to the optimization criterion to cover situations where the part (or semi-part) decomposition is
not sufficient to guarantee sparsity (such as when the dimension of the input space far exceeds the
number of principal vectors).

The structure of the paper is as follows: In Sections 2 and 3 we introduce the formulation of Nonneg-
ative Sparse PCA. An efficient coordinate descent algorithm for finding a local optimum is derived
in Section 4. Our experiments in Section 5 demonstrate the effectiveness of the approach on large
real-world datasets, followed by conclusions in Section 6.

2 Nonnegative (Semi-Disjoint) PCA

To the original PCA, which maximizes the variance, we add nonnegativity, showing that this addition
alone ensures some sparseness by turning the principal vectors into a disjoint set of vectors, meaning
that each coordinate is non-zero in at most one principal vector. We will later relax the disjoint
property, as it is too excessive for most applications.

Let x1, ..., xn ∈ Rd form a zero mean collection of data points, arranged as the columns of the matrix
X ∈ Rd×n, and u1, ..., uk ∈ Rd be the desired principal vectors, arranged as the columns of the
matrix U ∈ Rd×k. Adding a nonnegativity constraint to PCA gives us the following optimization
problem:

max
U

1
2
‖UT X‖2F s.t. UT U = I, U ≥ 0 (1)

where ‖A‖2F =
∑

ij a2
ij is the square Frobenius norm. Clearly, the combination of UT U = I

and U ≥ 0 entails that U is disjoint, meaning that each row of U contains at most one non-zero
element. While having disjoint principal component may be considered as a kind of sparseness, it is
too restrictive for most problems. For example, a stock may be a part of more than one sector, genes
are typically involved in several biological processes [1], a pixel may be a shared among several
image parts, and so forth. We therefore wish to allow some overlap among the principal vectors.
The degree of coordinate overlap can be represented by an orthonormality distance measure which



is nonnegative and vanishes iff U is orthonormal. The function ‖I−UT U‖2F is typically used in the
literature (cf. [13], pg. 275–277) as a measure for orthonormality and the relaxed version of eqn. 1
becomes,

max
U

1
2
‖UT X‖2F −

α

4
‖I − UT U‖2F s.t. U ≥ 0 (2)

where α > 0 is a balancing parameter between reconstruction and orthonormality. We see that the
tradeoff for relaxing the disjoint property of Nonnegative PCA is also to relax the maximum vari-
ance property of PCA — the constrained optimization tries to preserve the variance when possible
but allows to tradeoff higher variance with some degree of coordinate overlap among the principal
vectors. Next, we add sparseness to this formulation.

3 Nonnegative Sparse PCA (NSPCA)

While semi-disjoint principal components can be considered sparse when the number of coordi-
nates is small, it may be too dense when the number of coordinates highly exceeds the number
of principal vectors. In such case, the average number of non-zero elements per principal vec-
tor would be high. We therefore consider minimizing the number of non-zero elements directly,
‖U‖L0 =

∑k
i=1

∑n
j=1 δuij

, where δx equals one if x is non-zero and zero otherwise. Adding this
to the criteria of eqn. 2 we have,

max
U

1
2
‖UT X‖2F −

α

4
‖I − UT U‖2F − β‖U‖L0 s.t. U ≥ 0

where β ≥ 0 controls the amount of additional sparseness required. The L0 norm could be relaxed
by replacing it with a L1 term and since U is nonnegative we obtain the relaxed sparseness term:
‖U‖L1 = 1T U1, where 1 is a column vector with all elements equal to one. The relaxed problem
becomes,

max
U

1
2
‖UT X‖2F −

α

4
‖I − UT U‖2F − β1T U1 s.t. U ≥ 0 (3)

4 Algorithm

For certain values of α and β, solving the problem of eqn. 3 is NP-hard. For example, for large
enough values of α and for β = 0 we obtain the original problem of eqn. 1. This is a concave
quadratic programming, which is an NP-hard problem [3]. It is therefore unrealistic to look for a
global solution of eqn. 3, and we have to settle with a local maximum.

The objective of eqn. 3 as a function of urs (the s row of the ur column vector) is,

f(urs) = −α

4
u4

rs +
c2

2
u2

rs + c1urs + const (4)

where const stands for terms that do not depend on urs and,

c1 =
d∑

i=1,i6=s

asiuri − α ·
k∑

i=1,i6=r

d∑
j=1,j 6=s

urjuijuis − β,

c2 = ass + α− α ·
d∑

i=1,i6=s

u2
ri − α ·

k∑
i=1,i6=r

u2
is

where A = XXT . Setting the derivative with respect to urs to zero we obtain a cubic equation,

∂f

∂urs
= −αu3

rs + c2urs + c1 = 0 (5)

Evaluating eqn. 4 for the nonnegative roots of eqn. 5 and zero, the nonnegative global maximum
of f(urs) can be found (see Fig. 1). Note that as urs approaches ∞ the criteria goes to −∞, and
since the function is continues a nonnegative maximum must exist. A coordinate-descent scheme
for updating each entry of U one following the other would converge to a local maximum of the



−10 −5 0 5 10
−2000

−1500

−1000

−500

0

500

1000

u
rs

f(
u rs

)

−10 −5 0 5 10
−500

0

500

1000

1500

u
rs

∂ 
f /

 ∂
 u

rs

Figure 1: A 4th order polynomial (left) and its derivative (right). In order to find the global nonnegative
maximum, the function has to be inspected at all nonnegative extrema (where the derivative is zero) and at
urs = 0.

constrained objective function, as summarized bellow:

Algorithm 1 Nonnegative Sparse PCA (NSPCA)
• Start with an initial guess for U .
• Iterate over entries (r, s) of U until convergence:

– Set the value of urs to the global nonnegative maximizer of eqn. 4 by evaluating
it over all nonnegative roots of eqn. 5 and zero.

Caching some calculation results from the update of one element of U to the other, each update is
done in O(d), and the entire matrix U is updated in O(d2k).

It is easy to see that the gradient at the convergence point of Alg. 1 is orthogonal to the constraints
in eqn. 3, and therefore Alg. 1 converges to a local maximum of the problem. It is also worthwhile
to compare this nonnegative coordinate-descent scheme with the nonnegative coordinate-descent
scheme of Lee and Seung [10]. The update rule of [10] is multiplicative, which holds two inherent
drawbacks. First, it cannot turn positive values into zero or vise versa, and therefore the solution
will never be on the boundary itself, a drawback that does not exist in our scheme. Second, since it
is multiplicative, the perseverance of nonnegativity is built upon the nonnegativity of the input, and
therefore it cannot be applied to our problem while our scheme can be also applied to NMF. In other
words, a practical aspect our the NSPCA algorithm is that it can handle general (not necessarily
non-negative) input matrices — such as zero-mean covariance matrices.

5 Experiments

We start by demonstrating the role of the α and β parameters in the task of extracting face parts. We
use the MIT CBCL Face Dataset #1 of 2429 aligned face images, 19 by 19 pixels each, a dataset
that was extensively used to demonstrate the ability of Nonnegative Matrix Factorization (NMF)
[10] methods. We start with α = 2× 107 and β = 0 to extract the 10 principal vectors in Fig. 2(a),
and then increase α to 5 × 108 to get the principal vectors in Fig. 2(b). Note that as α increases
the overlap among the principal vectors decreases and the holistic nature of some of the vectors
in Fig. 2(a) vanishes. The vectors also become sparser, but this is only a byproduct of their non-
overlapping nature. Fig. 3(a) shows the amount of overlap ‖I − UT U‖ as a function of α, showing
a consistence drop in the overlap as α increases. We now set α back to 2 × 107 as in Fig. 2(a),
but set the value of β to be 2 × 106 to get the factors in Fig. 2(d). The vectors become sparser as
β increases, but this time the sparseness emerges from a drop of less informative pixels within the
original vectors of Fig. 2(a), rather than a replacement of the holistic principal vectors with ones
that are part based in nature. The amount of non-zero elements in the principal vectors, ‖U‖L0 , is
plotted as a function of β in Fig. 3(b), showing the increment in sparseness as β increases.
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Figure 2: The role of α and β is demonstrated in the task of extracting ten image features using the MIT-CBCL
Face Dataset #1. At the top row (a), we use α = 2× 107 and β = 0. In (b) we increase α to 5× 108 while β
stays zero, to get more localized parts that has lower amount of overlap. In (c) we reset α to be 2 × 107 as in
(a), but increase β to be 2 × 106. While we increase β, pixels that explain less variance are dropped from the
factors, but the overlapping nature of the factors remains. (See Fig. 3 for a detailed study.) In (d) we show the
ten leading principal components of PCA, in (e) the ten factors of NMF, and in (f) the leading principal vectors
of GSPCA when allowing 55 active pixels per principal vector.

Next we study how the different dimensional reduction methods aid the generalization ability of
SVM in the task of face detection. To measure the generalization ability we use the Receiver Op-
erating Characteristics (ROC) curve, a two dimensional graph measuring the classification ability
of an algorithm over a dataset, showing the amount of true-positives as a function of the amount of
false-positives. The wider the area under this curve is, the better the generalization is. Again, we use
the MIT CBCL Face Dataset #1, where 1000 face images and 2000 non-face images were used as a
training set, and the rest of the dataset used as a test set. The dimensional reduction was performed
over the 1000 face images of the training set. We run linear SVM on the ten features extracted by
NSPCA when using different values of α and β, showing in Fig. 4(a) that as the principal factors
become less overlapping (higher α) and sparser (higher β), the ROC curve is higher, meaning that
SVM is able to generalize better. Next, we compare the ROC curve produced by linear SVM when
using the NSPCA extracted features (with α = 5 × 108 and β = 2 × 106) to the ones produced
when using PCA and NMF (the principal vectors are displayed in Fig. 2(d) and Fig. 2(e), corre-
spondingly). As a representative of the Sparse PCA methods we use the recent Greedy Sparse PCA
(GSPCA) of [12] that shows comparable or better results to all other Sparse PCA methods (see the
principal vectors in Fig. 2(f)). Fig. 4(b) shows that better generalization is achieved when using the
NSPCA extracted features, and hence a more reliable face detection.

Since NSPCA is limited to nonnegative entries of the principal vectors, it can inherently explain less
variance than Sparse PCA algorithms which are not constrained in that way, similarly to the fact that
Sparse PCA algorithms can explain less variance than PCA. While this limitation holds, NSPCA still
manages to explain a large amount of the variance. We demonstrate that in Fig. 5, where we compare
the amount of cumulative explained variance and cumulative cardinality of different Sparse PCA
algorithms over the Pit Props dataset, a classic dataset used throughout the Sparse PCA literature. In
domains where nonnegativity is intrinsic to the problem, however, using NSPCA extracted features
improves the generalization ability of learning algorithms, as we have demonstrated above for the
face detection problem.

6 Summary

Our method differs substantially from previous approaches to sparse PCA — a difference that begins
with the definition of the problem itself. Other sparse PCA methods try to limit the cardinality (num-
ber of non-zero elements) of each principal vector, and therefore accept as input a (soft) limitation on
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Figure 3: (a) The amount of overlap and orthogonality as a function of α, where higher values of α decrease
the overlap and increase the orthogonality, and (b) the amount of non-zero elements as a function of β, where
higher values of β enforce sparseness.
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Figure 4: The ROC curve of SVM in the task of face detection over the MIT CBCL Face Dataset #1 (a)
when using different values of α and β, showing improved generalization when using principal vectors that has
less overlap (higher α) and that are sparser (higher β); and (b) when using NMF, PCA, GSPCA and NSPCA
extracted features, showing better generalization when using NSPCA.
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Figure 5: (a) Cumulative explained variance and (b) cumulative cardinality as a function of the number of
principal components on the Pit Props dataset, a classic dataset that is typically used to evaluate Sparse PCA
algorithms. Although NSPCA is more constrained than other Sparse PCA algorithms, and therefore can explain
less variance just like Sparse PCA algorithms can explain less variance than PCA, and although the dataset is not
nonnegative in nature, NSPCA shows competitive results when the number of principal components increases.



that cardinality. In addition, most sparse PCA methods focus on the task of finding a single principal
vector. Our method, on the other hand, splits the coordinates among the different principal vectors,
and therefore its input is the number of principal vectors, or parts, rather than the size of each part.
As a consequence, the natural way to use our algorithm is to search for all principal vectors together.
In that sense, it bears resemblance to the Nonnegative Matrix Factorization problem, from which
our method departs significantly in the sense that it focus on informative parts, as it maximizes the
variance. Furthermore, the non-negativity of the output does not rely on having non-negative input
matrices to the process thereby permitting zero-mean covariance matrices to be fed into the process
just as being done with PCA.
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