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Abstract

In this paper, we present a subspace method for learning nonlinear dynamical
systems based on stochastic realization, in which state vectors are chosen using
kernel canonical correlation analysis, and then state-space systems are identified
through regression with the state vectors. We construct the theoretical underpin-
ning and derive a concrete algorithm for nonlinear identification. The obtained
algorithm needs no iterative optimization procedure and can be implemented on
the basis of fast and reliable numerical schemes. The simulation result shows that
our algorithm can express dynamics with a high degree of accuracy.

1 Introduction

Learning dynamical systems is an important problem in several fields including engineering, phys-
ical science and social science. The objectives encompass a spectrum ranging from the control of
target systems to the analysis of dynamic characterization, and for several decades, system identi-
fication for acquiring mathematical models from obtained input-output data has been researched in
numerous fields, such as system control.

Dynamical systems are learned by, basically, two different approaches. The first approach is based
on the principles of minimizing suitable distance functions between data and chosen model classes.
Well-known and widely accepted examples of such functions are likelihod functions [1] and the av-
erage squared prediction-errors of observed data. For multivariate models, however, this approach
is known to have several drawbacks. First, the optimization tends to lead to an ill-conditioned esti-
mation problem because of the over-parameterization, i.e., minimum parameters (called canonical
forms) do not exist in multivariate systems. Second, the minimization, except in trivial cases, can
only be carried out numerically using iterative algorithms. This often leads to there being no guaran-
tee of reaching a global minimum and high computational costs. The second approach is a subspace
method which involves geometric operations on subspaces spanned by the column or row vectors
of certain block Hankel matrices formed by input-output data [2,3]. It is well known that subspace
methods require no a priori choice of identifiable parameterizations and can be implemented by fast
and reliable numerical schemes.

The subspace method has been actively researched throughout the last few decades and several
algorithms have been proposed, which are, for representative examples, based on the orthogonal
decomposition of input-output data [2,4] and on stochastic realization using canonical correlation
analysis [5]. Recently, nonlinear extensions have begun to be discussed for learning systems that
cannot be modeled sufficiently with linear expressions. However, the nonlinear algorithms that
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have been proposed to date include only those in which mod#isspecific nonlinearities are as-
sumed [6] or those which need complicated nonlinear regression [7,8]. In this study, we extend the
stochastic-realization-based subspace method [5] to the nonlinear regime by developing it on repro-
ducing kernel Hilbert spaces [9], and derive a nonlinear subspace identification algorithm which can
be executed by a procedure similar to that in the linear case.

The outline of this paper is as follows. Section 2 gives some theoretical materials for the subspace
identification of dynamical systems with reproducing kernels. In section 3, we give some approx-
imations for deriving a practical algorithm, then describe the algorithm specifically in section 4.
Finally, an empirical result is presented in section 5, and we give conclusions in section 6.

Notation Letx, y andz be random vectors, then denote the covariance mattixasfdy by 3,

and the conditional covariance matrix #fandy conditioned orz by ¥, .. Leta be a vector in
a Hilbert space, angg, ¢ Hilbert spaces. Then, denote the orthogonal projectiom ofito % by

a/% and the oblique projection @f onto.%Z along% by a/+%. Let A be an[m x n] matrix, then
L{A} := {Aa|a € R™} will be referred to as the column space = {Aala € R™}

the row space ofi. e’ denotes the transpose of a mawpandl; € R4*9 is the identity matrix.

2 Rationales

2.1 Problem Description and Some Definitions

Consider two discrete-time wide-sense stationary vector procéa$gsy(t),t = 0, £1, - - - } with
dimensionsn,, andn,, respectively. The first componen{t) models thenput signal while the
second componenj(t) models theoutput of the unknown stochastic system, which we want to
construct from observed input-output data, as a nonlinear state-space system:

z(t+1) =g(z(t),u(t)) +v )
y(t) = h(z(t),u(t)) + w,

wherex(t) € R™ is the state vector, antlandw are the system and observation noises. Throughout
this paper, we shall assume that the joint pro¢ess) is a stationary and purely nondeterministic

full rank process [3,5,10]. It is also assumed that the two processes are zero-mean and have finite
joint covariance matrices. A basic step in solving this realization problem, which is also the core
of the subspace identification algorithm presented later, is the constructiostateaspacef the

system. In this paper, we will derive a practical algorithm for this problem based on stochastic
realization with reproducing kernel Hilbert spaces.

We denote the joint input-output proces$t)’ = [y(t)’, u(t)’] € R™ (n,, = n, + n,) and feature
mapse,, : % — Fu € R, ¢, : % — F, € R"v and¢,, : #; — F, € R"w with the

Mercer kernelsku, ky, andk,,, Where@/t, A and% are the Hllbert spaces generated by the second-
order random varlablee( ), y(t) andw(t), andF,, F, andF, are the respective feature spaces.
Moreover, we define the future output, input and the past input-output vectors in the feature spaces

o £ = [, () b, (y(t+ 1)), b, (y(t+1—1))] € RS,
ul (1) = [ (uw(t), b (ult + 1)), by (ult+1—1))] € RI"E, @
PP(t) = [ (w(t — 1)), pu(w(t —2)), -] € R™,

and the Hilbert spaces generated by these random variables as:
2} = span{g(w(7))|r < t}, %°" =span{p(u(r))|r > t}, %°* = span{e(y(r))|7 > t}.

(3)
OZ/t¢_ and %¢_ are defined similarly. These spaces are assumed to be closed with respect to the
root-mean-square norfig|| := [E£{¢2}]'/2, whereE{.} denotes the expectation value, and thus are

thought of as Hilbert subspaces of an ambient Hilbert spéte:= % ¢ v % ¢ containing all linear
functionals of the joint process in the feature spaegs(u), ¢, (y))-

2.2 Optimal Predictor in Kernel Feature Space

First, we require the following technical assumptions [3,5].
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M0 Figure 1: Optimal predicto}¢(t) of future output

in feature space based of? v %, .

2t

ASSUMPTIONL. The inputu is ‘exogenous’, i.e., no feedback from the outptid the inputu.

ASSUMPTIONZ2. The input process is ‘sufficiently rich’. More precisely, at each timhe input
space?; has the direct sum decompositiagn = %, + %" (%, N %' ={0}).

Note that assumption 2 implies that the input process is purely nondeterministic and admits a spectral
density matrix without zeros on the unit circle (i.e., coercive). This is too restrictive in many practical
situations and we can instead assume only a persistently exciting (PE) condition of sufficiently high
order and finite dimensionality for an underlying “true” system from the outset. Then, we can give
the following proposition which enables us to develop a subspace method in feature space, as in the
linear case.

PropPosITIONL. If assumptions 1 and 2 are satisfied, then similar conditions in the feature spaces
described below are fulfilled:

(1) There is no feedback frog, (y) to ¢, (u).

(2) %,° has the direct sum decompositian® = %"~ + #°" (%~ n#%’t = {0})

ProoFR Condition (2) is shown straightforwardly from assumption 2 and the properties of the
reproducing kernel Hilbert spaces. A& 1 %, |%, (derived from assumption 1) and
W)UtV U =%, /% are equivalent, if the orthogonal complementfis denoted by,

we can obtain?,~ = %, + %,-. Now, when representin@/t_¢ using the input space on fea-
ture space%,” and the orthogonal compleme#t-?, we can write?,~* = %, + %,- because

%f = %‘¢+%+¢ from condition (2)%," 1 %,*, and owing to the properties of the reproducing
kernel Hilbert spaces. Thereforg,"® L #,?|%, ¢ can be shown by tracing inversely. [

Using proposition 1, we now obtain the following represdotatesult.

THEOREM 1. Under assumptions 1 and 2, the optimal predicj”&(t) of the future output vector
in feature spacq‘¢(t) based on@,ﬁ25 \/Z/{f”r is uniquely given by the sum of the oblique projections:

~¢
Py =12 @) /2! v =Tip (1) + bul (1), 4)
in whichII and ¥ satisfy the discrete Wiener-Hopf-type equations

X616 = Zoroplon:  Ybubuldy = 26 éuldp- (6)

PROOF From proposition 1, the proof can be carried out as in the linear case (cf. [3,5]). O

2.3 Construction of State Vector

LetLy, L, be the square root matrices®df , ;4. + X6,6, 6. €456, 65 160 = L L X016, =
L,L;, and assume that the SVD of the normalized conditional covariance is given by

L' 00,000 (Ly ) = USV, (6)

whereS e R!™sv*"» is the matrix with all entries being zero, except the leading diagonal, which
has the entrieg; satisfyingp; > --- > p, > 0 for n = min(lng,,ng,), andU, V are square
orthogonal.



We define the extended observability and controllabilitynneas
0= L;USY?, C:=SYV2V'L, ™

whererank(OQ) = rank(R) = n. Then, from the SVD of Eq. (6), the block Hankel matrix
Y, 6,16. Nas the classical rank factorizatidn,, 4,4, = OC. If a 'state vector’ is now defined to
be then-dimensional vector

z(t)=Cx,t, |, pP(t) = SV2V'L, p(b), ®)

itis readily seen that(¢) is a basis for the stationary oblique predictor spage= @t¢+/%¢+ P2,

which, on the basis of general geometric principles, can be shown to be a minimal state space for the
processp, (y), as in the linear case [3,5]. This is also assured by the fact that the oblique projection

of fq’(t) onto%f* anngBZf5 can be expressed, using Egs. (5), (7) and (8), as
FOO ) g+ P8 =T (1) = 16,16, 55 15,15, P° (1) = O (1) ©)
andrank(Q) = n, and the variance matrix a(t) is nonsingular. In terms of(t), the optimal
predictor}” (¢) in Eq. (4) has the form
7' = 0x(t) + wul (1). (10)

It is seen thate(¢) is a conditional minimal sufficient statistic carrying exactly all the information
contained ir@f5 that is necessary for estimating the future outputs, given the future inputs.

In analogy with the linear case [3,5], the output process in feature spaegt)) now admits a
minimal stochastic realization with the state veectdt) of the form

x(t+1) = A%x(t) + B¢, (u(t)) + K?e(t),
¢, (y(t) = C?x(t) + D?¢, (u(t)) + e(t),

where A? € R™™", B? € R"™"eu, 0% € R"v*", D? € R™v " and K¢ € R"*"¢v are
constant matrices anelt) := ¢(y(t)) — (o(y(t))| 27 v %,°) is the prediction error.

11)

2.4 Preimage

In this section, we describe the state-space model for the oytputvhile the state-space model
(11), derived in the previous section, represents the output in feature ¢pagé)). At first, we
define the feature mas, : Z; — F. € R, ¢, := % — Fz € R"= and the linear spac@f‘i’,
% generated by, ((t)), ¢, (u(t)). Then, the product of?;” and%,” satisfies2,” N %" = 0
becauseZ; N %, = 0 and¢,, ¢, are bijective. Therefore, the outpyft) is represented as the
direct sum of the oblique projections as

y(t)/ 2V U = CP¢,(x(t)) + D¢y (u(t)). (12
As a result, we can obtain the following theorem.

THEOREM 2. Under assumptions 1 and 2rifnk X, 4 |4, = n, then the outpuy can be repre-
sented in the following state-space model: '

z(t+1) = A%(t) + B, (u(t)) + K ¢, (&(t)),
y(t) = C%, (x(t)) + Dy (u(t)) + e(t),

wheree(t) := y(t) — y(t)/ 2;° v % is the prediction error anfl® := K¢ A, in which A is the
coefficient matrix of the nonlinear regression frait) to e(t) *.

(13)

!Letf be amap frong(t) to e and minimize aregularized rigk(e1, e1, f(€1)), - - - , (Em, €m, f(&m)))+
Q(|| f|l#), whereQ : [0,00) — R is a strictly monotonically increasing function and (& x R*)™ —
R U {oc} (& € span{e}) is an arbitrary loss function; then, from the representer theorenf[8htisfies
f € span{¢,.(e(t))}, whereg, is a feature map with the associated Mercer keknel Therefore, we can
represent nonlinear regression fr@tt) to e(t) asAz ¢, (e(t)).



3 Approximations

3.1 Realization with Finite Data

In practice, the state vector and associated state-space model should be constructed with avail-
able finite data. Let the past vectpf (t) be truncated to finite length, i.epr’(t) = [, (w(t —

1Y, ¢, (w(t —2)), -, ¢, (w(t —T))) € Ry +m6u) whereT > 0, and define?),_r ) =
span{p?(f)h < t}. Then, the following theorem describes the construction of the state vec-
tor and the corresponding state-space system which form the finite-memory prejﬁﬁcﬁt{)r::
f¢(t)/02/t¢+ N '@[quT,t)'

THEOREM 3. Under assumptions 1 and 2,r#nk(¥y, 4 4,) = n, then the procesg,(y) is
expressed by the following nonstationary state-space model:

&r(t+1) = A%27(t) + B¢, (u(t)) + K®(t)er(t),
¢, (y(t)) = C%&r(t) + D¢, (u(t)) + er(t).
where the state vectary(t) is a basis on the finite-memory predictor sp@@*/%ﬂm@
ander(t) = o, (y(1)) — (&, (y()| P}, v %) is the prediction error.

(14)

[
[t—T,t)"

The proof can be carried out as in the linear case (cf. [3,5]). In other words, we can obtain the
approximated state vectar- by applying the facts in Section 2 to finite data. This state vector differs
from x(¢) in Eq. (8); however, wheffm — oo, the difference betweenr(t) andx(t) converges to

zero and the covariance matrix of the estimation eR6ralso converges to the stabilizing solution

of the following Algebra Riccati Equation (ARE):

P = A9P?AY 15058 (A0 PPC? 4 xd nd ) (O PPt 42050 ) L (AP 42058
(15)

Moreover, the Kalman gaik ® converges to
K% = (A2P?C? 4+ 5058 ) (coPPC?’ 4+ n05") 1, (16)

where©¢ and ©¢ are the covariance matrices of errors in the state and observation equations,
respectively.

3.2 Using Kernel Principal Components

Let z be a random variabld;, a Mercer kernel with a feature maf, and a feature spacg., and
denote®, := [¢,(z1), -, ®,(zx)] and the associated Gram maték := ®,P.. The firstith
principal components, ; € L{®.}(i = 1,--- ,d.) combined in a matriX/, = [u, 1, - ,U,q,]
form an orthonormal basis of& -dimensional subspac®{U.} C £{®’}, and can therefore also
be described as the linear combinatidn = @, A,, where the matrixAd, € R™*? holds the
expansion coefficientsA, is found by, for example, the eigendecomposit@n = T',A.T"_2’
such thatA, consists of the firstl, columns ofFZAz_l/Q. Then,®, with respect to the principal
components is given by, := ®,U, = &,9_ A, = G, A, [11]. From the orthogonality dof', (i.e.,
r.r, =r.r. = I,,), we can derive the following equation:

(ALG.G.A,) ! = ((r AZY2Y(DLALD)(DLALD)(D 1\*1/2))71 = ALGTIGTIA,, (17)
2Tz z4Az) zidz2d zidzd » zdiizLl » z2d — AUy Uy Az
whereA. 4 is the matrix which consists of the firgt columns ofA ., andA, = FZA;/; satisfying
ALA, =AA, =1, andA A, = A A" =1,,.
This property of kernel principal components enables us to approximate matters described in the
previous sections in computable forms. First, using Eq. (17), the conditional covariance matrix
34,6516, CaAN be expressed as
E¢’f¢f|¢u = Z<25f<25f - Ewm%f%xmw
~ AGpGrAp — (AGpGuAL) (AL GGy AL) H (A,GuGrAf) (18)
= A (GyGy — GyGu(GuGy) 'GuGy) Ap(:= A4S 11, Af),



Whereimu may be called the empirical conditional covariance operators, and the regularized vari-
ant can be obtained by replaci6y G ¢, G, G, With (G +e€l,,,)?, (Gy+€l)? (e > 0) (cf.[12,13]).

S énl6. ANAE4, 4. |4, Can be approximated as well. Moreover, using' = L; ' A, whereL, is

the square root matrix dﬁqw*m (x = p, f) 2, we can represent Egs. (6) and (8) approximately as

L7 g 0,000 (L") ~ (L7 AN (A5 S ) (ALY ) = L7 S = USV, (29)
@ (t) = SY2V' L 'pl (1) = SRV (L Ay (AL k(p(1) = SY2VLk(p(t),  (20)
wherek(p(t)) := ©,p?(t) = [kp(pl(t)m(t)),- © 3 kp (P (8), (1))

In addition, we can apply this approximation with the kernel PCA to the state-space models derived
in the previous sections. First, Eq. (11) can be approximated as

x(t+1) = A%x(t) + B* Al k,(u(t)) + K?e(t),
Aky(y(t) = CP2(t) + D? ALk (u(h)) + e(t),

where A, and 4, are the expansion coefficient matrices found by the eigendecompositi@p of
andG,, respectively. Also, using the coefficient matricés A. and A, Eq.(13) can be written as

x(t+1) = A%z(t) + B° A k,(u(t)) + K®Alk.(e(t)),
y(t) = CP ALk, (2(1)) + D? Ak, (u(t)) + e(t).

(21)

(22)

4 Algorithm

In this section, we give a subspace identification algorithm based on the discussions in the previous
sections. Denote the finite input-output datq at), y(¢),t = 1,2,--- , N + 20 — 1}, wherel > 0

is an integer larger than the dimension of systeandV is thesufficientlarge integer, and assume

that all data is centered. First, using the Gram matri€gsG, andG,, associated with the input,

the output, and the input-output, repectively, we must to calculate the Gram méatces, and

Gw corresponding to the past input, the future output, and the past input-output defined as

2 21 21 7
> Guii > Guiti+ o >0 Guigien—1)
=131 =l =Tt
2 21
> Gu ity Z Gu(i+1)(i+1) 0 Gy (4N —1)
Gy = | i=1+1 i=l+1 ,
I 21 21
Y. Guen-1i 2 Guirn-D@+1) 2 Gu (i N-1)(+N-1)
| 2t =1 =11 i
(23)
- I I q
;Gw,ii Z: w,i(i+1) ;G w,i(i+N—1)
1 l !
Gw i i w, (1 7 G 3 7
Gy 1= 2 Guyiivy 2 G Gr1)(i+1) 2 GG iN-1) o
N
Z:G (i+N—1)i ZG (+N-1)(i+1) " ;Gw,(i-i-N—l)(i-i-N—l)

andGy is defined analogously t6;. Now the procedure is given as follows.

Step 1 Calculate the regularized empirical covariance operators and their square root matrices as
i:fﬂu = (Gy + GIN)2 — GyGU(GU + GIN)_2GUGY = i/fi//f,

pr|u = (GW + GIN)Q — GwGU(GU + €IN)_2GUGW = i/pi/;, (25)
if:DW =Gy Gw — GyGU(GU + EIN)72GUG[/V.

*Thisis given by(L: ') Lyt = 57, |~ (AL, AL = ALST) AL = ALY LA



Step 2 Calculate the SVD of the normalized covariance matrix (cf. Eq. (19))
Ly pr|u( YW =USV' ~ Uy 81 VA, (26)

where.S; is obtained by neglectlng the small singular values so that the dimension of the
state vecton equals the dimension ¢f;.

Step 3 Estimate the state sequence as (cf. Eq. (20))

Xp = [e(l),x(+1), &+ N - 1)] =5V LG, (27)
and define the following matrices consisting/éf— 1 columns:
X1 =X(:2:N), X;=X,(:;1: N—1). (28)

Step 4 Calculate the eigendecomposition of the Gram matri€gsG;, G, andG, and the corre-
sponding expansion coefficient matricés, A;, A, andA,. Then, determine the system

matricesA?, B, C?, D?, C® and D¢ by applying regularized least square regressions to
the following equations (cf. Egs. (21) and (22)):

Lnatto ][ o[ madivon [ [3] @
ALGy(:,2,N) c? D¢ Al Gu(:,1,N — 1) pe |’
Y = C?(ALGa (5,2, N)) + D?(A,Gu(:,2, N)) + pe, (30)
where the matrices,,, p. andp,. are the residuals.
Step 5 Calculate the covariance matrices of the residuals

Tw Zwe 1 Puwly Pl
=— w £ 31
[ Yew De ] N-1 [ PPy PePle |’ (31)
solve ARE (15), and, using the stabilizing solution, calculate the Kalmang&imn Eq.

(16).

5 Simulation Result

In this section, we illustrate the proposed algorithm for learning nonlinear dynamical systems with
synthetic data. The data was generated by simulating the following system [8] using the 4th- and
5th-order Runge-Kutta method with a sampling time of 0.05 seconds:

@1(t) = 22(t) — 0.1 cos(x1 (1)) (5xy (t) — 4a3(t) + 25(t)) — 0.5 cos(z 1 ())u(t),
#o(t) = —6521(t) + 5023 (t) — 1525 (t) — z2(t) — 100u(t), (32)
y(t) = z1(t),

where the input was a zero-order-hold white noise signal uniformly distributed betw@érand
0.5. We applied our algorithm on a set of 600 data points, and then validated the obtained model
using a fresh data set of 400 points. As a kernel function, we used the RBF Gaussian kernel
k(zi,zj) = exp(—||z; — z]|*/20,). The parameters to be tuned for our method are thus the
widths of the kernelg for u, y, w andx, the regularization degree and the row-block numbér
of the Hankel matrix. In addition, we must select the order of the system and the number of kernel
principal componenta?® for u, y ande. Figure 2 shows free-run simulation results of the model
acquired by our algorithm, in which the parameters were set,as 2.5, o, = 3.5, 0, = 4.5,

o, = 1.0, nh¢ = np¢ = 4, nb® = 9 ande = 0.05, and, for comparison, by the linear subspace
identification [5]. The row-block numberwas set ado0 in both identifications. The simulation

errors [2]
> i 1 ( Yi)e)?
Ny c= 1\/ ) 7 (33)

wherey? are simulated values and the used |n|t|al state is a least square estimation with the initial
few points, were improved 0.2 for our algorithm, fromd4.1 for the linear method. The accuracy

was improved by about 10 percent. The system orderss &e our algorithm, whlel0 for the

linear method, in this case. We can see that our method can estimate the state sequence with more
information and yield the model capturing the dynamics more precisely. However, the parameters
involved much time and effort for tuning.
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Figure 2: Comparison of simulated outputs. Left: Kernel palse identification method (proposed
method). Right: Linear subspace identification method [5]. The broken lines represent the observa-
tions and the solid lines represent the simulated values.

6 Conclusion

A new subspace method for learning nonlinear dynamical systems using reproducing kernel Hilbert
spaces has been proposed. This approach is based on approximated solutions of two discrete Wiener-
Hopf equations by covariance factorization in kernel feature spaces. The algorithm needs no iterative
optimization procedures, and hence, solutions can be obtained in a fast and reliable manner. The
comparative empirical results showed the high performance of our method. However, the parameters
involved much time and effort for tuning. In future work, we will develop the idea for closed-loop
systems for the identification of more realistic applications. Moreover, it should be possible to
extend other established subspace identification methods to nonlinear frameworks as well.
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