
PG-means: learning the number of clusters in data

Yu Feng Greg Hamerly
Computer Science Department

Baylor University
Waco, Texas 76798

{yu feng, greghamerly}@baylor.edu

Abstract

We present a novel algorithm called PG-means which is able to learn the number
of clusters in a classical Gaussian mixture model. Our method is robust and effi-
cient; it uses statistical hypothesis tests on one-dimensional projections of the data
and model to determine if the examples are well represented by the model. In so
doing, we are applying a statistical test for the entire model at once, not just on a
per-cluster basis. We show that our method works well in difficult cases such as
non-Gaussian data, overlapping clusters, eccentric clusters, high dimension, and
many true clusters. Further, our new method provides a much more stable estimate
of the number of clusters than existing methods.

1 Introduction

The task of data clustering is important in many fields such as artificial intelligence, data mining,
data compression, computer vision, and others. Many different clustering algorithms have been de-
veloped. However, most of them require that the user know the number of clusters (k) beforehand,
while an appropriate value fork is not always clear. It is best to choosek based on prior knowledge
about the data, but this information is often not available. Without prior knowledge it can be es-
pecially difficult to choosek when the data have high dimension, making exploratory data analysis
difficult.

In this paper, we present an algorithm called PG-means (PG stands for projected Gaussian) which
is able to discover an appropriate number of Gaussian clusters and their locations and orientations.
Our method is a wrapper around the standard and widely used Gaussian mixture model. The paper’s
primary contribution is a novel method of determining if a whole mixture model fits its data well,
based on projections and statistical tests. We show that the new approach works well not only in
simple cases in which the clusters are well separated, but also in the situations where the clusters
are overlapped, eccentric, in high dimension, and even non-Gaussian. We show that where some
other methods tend to severely overfit, our method does not, and that our method is comparable to
but much faster than a recent variational Bayes-based approach for learningk.

2 Related work

Several algorithms have been proposed to determinek automatically. Most of these algorithms wrap
around eitherk-means or Expectation-Maximization for fixedk. As they proceed, they use splitting
or merging rules to increase or decreasek until a proper value is reached.

Pelleg and Moore [9] proposed the X-means algorithm, which is a regularization framework for
learningk with k-means. This algorithm tries many values fork and obtains a model for eachk
value. Then X-means uses the Bayesian Information Criterion (BIC) to score each model [5, 12],
and chooses the model with the highest BIC score. Besides the BIC, other scoring criteria could also

be applied such as the Akaike Information Criterion [1], or Minimum Description Length [10]. One
drawback of the X-means algorithm is that the cluster covariances are all assumed to be spherical
and the same width. This can cause X-means to overfit when it encounters data that arise from
non-spherical clusters.

Hamerly and Elkan [4] proposed the G-means algorithm, a wrapper around thek-means algorithm.
G-means uses projection and a statistical test for the hypothesis that the data in a cluster come from
a Gaussian distribution. The algorithm growsk starting with a small number of centers. It applies
a statistical test to each cluster and those which are not accepted as Gaussians are split into two
clusters. Interleaved withk-means, this procedure repeats until every cluster’s data are accepted as
Gaussian. While this method does not assume spherical clusters and works well if true clusters is
well-separated, it has difficulties when true clusters overlap since the hard assignment ofk-means
can clip data into subsets that look non-Gaussian.

Sand and Moore [11] proposed an approach based on repairing faults in a Gaussian mixture model.
Their approach modifies the learned model at the regions where the residual is large between the
model’s predicted density and the empirical density. Each modification adds or removes a cluster
center. They use a hill-climbing algorithm to seek a model which maximizes a model fitness scor-
ing function. However, calculating the empirical density and comparing it to the model density is
difficult, especially in high dimension.

Tibshirani et al. [13] proposed the Gap statistic, which compares the likelihood of a learned model
with the distribution of the likelihood of models trained on data drawn from a null distribution. Our
experience has shown that this method works well for finding a small number of clusters, but has
difficulty as the truek increases.

Welling and Kurihara [15] proposed Bayesiank-means, which uses Maximization-Expectation
(ME) to learn a mixture model. ME maximizes over the hidden variables (assignment of examples
to clusters), and computes an expectation over model parameters (center locations and covariances).
It is a special case of variational Bayesian methods. Bayesiank-means works well but is slower than
our method.

None of these prior approaches perform well in all situations; they tend to overfit, underfit, or are
too computationally costly. These issues form the motivation for our new approach.

3 Methodology

Our approach is called PG-means, where PG stands for projected Gaussian and refers to the fact
that the method applies projections to the clustering model as well as the data, before performing
each hypothesis test for model fitness. PG-means uses the standard Gaussian mixture model with
Expectation-Maximization training, but any underlying algorithm for training a Gaussian mixture
might be used. Our algorithm starts with a simple model and increasesk by one at each iteration
until it finds a model that fits the data well.

Each iteration of PG-means uses the EM algorithm to learn a model containingk centers. Each time
EM learning converges, PG-means projects both the dataset and the learned model to one dimension,
and then applies the Kolmogorov-Smirnov (KS) test to determine whether the projected model fits
the projected data. PG-means repeats this projection and test step several times for a single learned
model. If any test rejects the null hypothesis that the data follows the model’s distribution, then it
adds one cluster and starts again with EM learning. If every test accepts the null hypothesis for a
given model, then the algorithm terminates. Algorithm 1 describes the algorithm more formally.

When adding a new cluster PG-means preserves thek clusters it has learned and adds a new cluster.
This preservation helps EM converge more quickly on the new model. To find the best new model,
PG-means runs EM 10 times each time it adds a cluster with a different initial location for the new
cluster. The mean of each new cluster is chosen from a set of randomly chosen examples, and also
points with low model-assigned probability density. The initial covariance of the new cluster is based
on the average of the existing clusters’ covariances, and the new cluster prior is assigned1/k and
all priors are re-normalized. More than 10 EM applications could be used, as well as deterministic
annealing [14], to ensure finding the best new model. In our tests, deterministic annealing did not
improve the results of PG-means. As stated earlier, any training algorithm (not just EM) may be

Algorithm 1 PG-means (datasetX, confidenceα, number of projectionsp)
1: Letk ← 1. Initialize the cluster with the mean and covariance ofX.
2: for i = 1 . . . p do
3: ProjectX and the model to one dimension with the same projection.
4: Use the KS test at significance levelα to test if the projected model fits the projected dataset.
5: If the test rejects the null hypothesis, then break out of the loop.
6: end for
7: if any test rejected the null hypothesisthen
8: for i = 1 . . . 10 do
9: Initializek + 1 clusters as thek previously learned plus one new cluster.

10: Run EM on thek + 1 clusters.
11: end for
12: Retain the model ofk + 1 clusters with the best likelihood.
13: Letk ← k + 1, and go to step 2.
14: end if
15: Every test accepts the null hypothesis; stop and return the model.

used to fit a particular set ofk Gaussian models. For example, one might usek-means if more speed
is desired.

3.1 Projection of the model and the dataset

PG-means is novel because it applies projection to the learned model as well as to the dataset prior to
testing for model fitness. There are several reasons to project both the examples and the model. First,
a mixture of Gaussians remains a mixture of Gaussians after being linearly projected. Second, there
are many effective and efficient tests for model fitness in one dimension, but in higher dimensions
such testing is more difficult.

Assume some dataX is sampled from a single Gaussian cluster with distributionX ∼ N(µ,Σ) in
d dimensions. Soµ = E[X] is thed × 1 mean vector andΣ = Cov[X] is thed × d covariance
matrix. Given ad × 1 projection vectorP of unit length (||P || = 1), we can projectX alongP
asX ′ = PT X. ThenX ′ ∼ N(µ′, σ2), whereµ′ = PT µ andσ2 = PT ΣP . We can project each
cluster model to obtain a one-dimensional projection of an entire mixture alongP . Then we wish to
test whether the projected model fits the projected data.

The G-means and X-means algorithms both perform statistical tests for each cluster individually.
This makes sense because each algorithm is a wrapper aroundk-means, andk-means uses hard
assignment (each example has membership in only one cluster). However, this approach is prob-
lematic when clusters overlap, since the hard assignment results in ‘clipped’ clusters, making them
appear very non-Gaussian. PG-means tests all clusters and all data at once. Then if two true clusters
overlap, the additive probability of the learned Gaussians representing those clusters will correctly
model the increased density in the overlapping region.

3.2 The Kolmogorov-Smirnov test and critical values

After projection, PG-means uses the univariate Kolmogorov-Smirnov [7] test for model fitness. The
KS test statistic isD = maxX |F (X)−S(X)| – the maximum absolute difference between the true
CDF F (X) with the sample CDFS(X). The KS test is only applicable ifF (X) is fully specified;
however, PG-means estimates the model with EM, soF (X) cannot be specified a priori. The best
we can do is use the parameter estimates, but this will cause us to accept the model too readily. In
other words, the probability of a Type I error will be too low and PG-means will tend to choose
models with too few clusters. Lilliefors [6] gave a table of smaller critical values for the KS test
which correct for estimated parameters of a single univariate Gaussian. These values come from
Monte Carlo calculations. Along this vein, we create our own test critical values for a mixture of
univariate Gaussians.

To generate the critical values for the KS test statistic, we use the projected one-dimensional model
that has been learned to generate many different datasets, and then measure the KS test statistic
for each dataset. Then we find the KS test statistic that is in theα range we desire, which is the
critical value we want. Fortunately, this can be done efficiently and does not dominate the running

time of our algorithm. It is much more efficient than if we were to generate datasets from the
full dimensional data and project these to obtain the statistic distribution, yet they are equivalent
approaches. Further optimization is possible when we follow Lilliefors’ observation that the critical
value decreases as approximately

√
n, for sufficiently largen, which we have also observed in

our simulations with mixtures of Gaussians. Therefore, we can use Monte Carlo simulations with
n′ � n points, and scale the chosen critical value by

√

n′/n. A more accurate scaling given by
Dallal and Wilkinson [2] did not offer additional benefit in our tests. We use at mostn′ = 3/α,
which is 3000 points forα = 0.001. The Monte Carlo simulations can be easily parallelized, and
our implementation uses two computational threads.

3.3 Number of projections

We wish to use a small but sufficient number of projections and tests to discover when a model does
not fit data well. Each projection provides a different view of model fitness along that projection’s
direction. However, a projection can cause the data from two or more true clusters to be collapsed
together, so that the test cannot see that there should be multiple densities used to model them.
Therefore multiple projections are necessary to see these model and data discrepancies.

We can choose the projections in several different ways. Random projection [3] provides a useful
framework, which is what we use in this paper. Other possible methods include using the leading
directions from principal components analysis, which gives a stable set of vectors which can be
re-used, or choosingk − 1 vectors that span the same subspace spanned by thek cluster centers.

Consider two cluster centersµ1 andµ2 in d dimensions and the vector which connects them,m =
µ2−µ1. We assume for simplicity that the two clusters have the same spherical covarianceΣ and are
c-separated, that is,||m|| ≥ c

√

trace(Σ). We follow Dasgupta’s conclusion thatc-separation is the
natural measure for Gaussians [3]. Now consider the projection ofm along some randomly chosen
vectorP ∼ N(0, 1/dI). We use this distribution because in high dimensionP will be approximately
unit-length. The probability thatP is a ‘good’ projection, i.e. that it maintainsc-separation between
the cluster means when projected, is

Pr
(

|PT m| ≥ c
√

PT ΣP
)

> 1 − Erf

(

c

√

dPT ΣP

2c2trace(Σ)

)

= 1 − Erf
(

√

1/2
)

where Erf is the standard Gaussian error function. Here we have used the relationPT ΣP =
trace(Σ)/dwhenΣ is spherical and||P || = 1. If Σ is not spherical, then this is true in an ex-
pected sense, i.e.E[PT ΣP] = trace(Σ)/dwhen||P || = 1. If we performp random projections,
we wish that the probability that allp projections are ‘bad’ to be less than someε:

Pr(p bad projections) = Erf
(

√

1/2
)p

< ε

Therefore we need approximatelyp < log(ε)/ log(Erf(
√

1/2)) ≈ −2.6198 log(ε) projections to
find a projection that keeps the two cluster meansc-separated. Forε = 0.01, this is only 12 projec-
tions, and forε = 0.001, this is only 18 projections.

3.4 Algorithm complexity

PG-means converges as fast as EM on any givenk, and it repeats EM every time it adds a cluster.
Let K be the final learned number of clusters onn data points. PG-means runs inO(K2nd2l +
Kn log(n)) time, wherel is the number of iterations required for EM convergence. Then log(n)
term comes from the sort required for each KS test, and thed2 comes from using full covariance
matrices. PG-means uses a fixed number of projections for each model and each projection is
linear inn, d, andk; therefore the projections do not increase the algorithm’s asymptotic run time.
Note also that EM starts withk learned centers and one new randomly initialized center, so EM
convergence is much faster in practice than if allk + 1 clusters were randomly initialized. We must
also factor in the cost of the Monte Carlo simulations for determining the KS test critical value,
which areO(Kd2n log(n)/α) for each simulation. For fixed alpha, this does not increase the run-
time significantly, and in practice the simulations are a minor part of the running time.

2 4 8 16
10

15

20

25

E
cc

en
tr

ic
ity

=
1

Le
ar

ne
d

k

c=2

2 4 8 16
16

18

20

22
c=4

2 4 8 16
16

18

20

22
c=6

2 4 8 16
0

20

40

60

E
cc

en
tr

ic
ity

=
4

Le
ar

ne
d

k

dimension
2 4 8 16

10

20

30

40

dimension
2 4 8 16

10

20

30

40

dimension

PG−means
G−means
X−means
BKM

Figure 1: Each point represents the average number of clusters learned for various types of syn-
thetic datasets. The true number of clusters is 20. The error bars denote the standard errors for the
experiments (except for BKM, which was run once for each dataset type).

0 10 20
0

0.5

1

E
cc

en
tr

ic
ity

=
1

V
I m

et
ric

 s
co

re

c=2

0 10 20
0

0.2

0.4
c=4

0 10 20
0

0.2

0.4
c=6

0 10 20
0

0.5

1

1.5

E
cc

en
tr

ic
ity

=
4

V
I m

et
ric

 s
co

re

dimension
0 10 20

0

0.5

1

dimension
0 10 20

0

0.5

1

dimension

PG−means
G−means
X−means
BKM

Figure 2: Each point represents the average VI metric comparing the learned clustering to the correct
labels for various types of synthetic datasets. Lower values are better. For each algorithm except
BKM we provide standard error bars (BKM was run once for each dataset type).

4 Experimental evaluation

We perform several experiments on synthetic and real-world datasets to illustrate the utility of
PG-means and compare it with G-means, X-means, and Bayesiank-means (BKM). For synthetic
datasets, we experiment with Gaussian and non-Gaussian data. We useα = 0.001 for both PG-
means and G-means. For each model, PG-means uses 12 projections and tests, corresponding to an
error rate ofε < 0.01 that it incorrectly accepts. All our experiments use MATLAB on Linux 2.4 on
a dual-processor dual-hyperthreaded Intel Xeon 3.06 GHz computer with 2 gigabytes of memory.

Figure 1 shows the number of clusters found by running PG-means, G-means, X-means and BKM
on many synthetic datasets. Each of these datasets has 4000 points ind = 2, 4, 8 and 16 dimensions.

PG−means G−means X−means

Figure 3: The leftmost dataset has 10 true clusters with significant overlap (c= 1). Though PG-
means finds only 4 clusters, the model is very reasonable. On the right are the results for PG-means,
G-means, and X-means on a dataset with 5 true eccentric and overlapping clusters. PG-means finds
the correct model, while the others overfit with 15 and 19 clusters.

All of the data are drawn from a mixture of 20 true Gaussians. The centers of the clusters in each
dataset are chosen randomly, and each cluster generates the same number of points. Each Gaussian
mixture dataset is specified by the averagec-separation between each cluster center and its nearest
neighbor (either 2, 4 or 6) and each cluster’s eccentricity (either 1 or 4). The eccentricity of is defined
as Ecc=

√

λmax/λmin whereλmax andλmin are the maximum and minimum eigenvalues of the
cluster covariance. An eccentricity of 1 indicates a spherical Gaussian. We generate 10 datasets
of each type and run PG-means, G-means and X-means on each, and we run BKM on only one of
them due to the running time of BKM. Each algorithm starts with one center, and we do not place
an upper-bound on the number of clusters.

It is clear that PG-means performs better than G-means and X-means when the data are eccentric
(Ecc=4), especially when the clusters overlap (c= 2). In this situation G-means and X-means
tend to overestimate the number of clusters. The rightmost plots in Figure 3 further illustrate this
overfitting. PG-means is much more stable in its estimate of the number of clusters, unlike G-
means and X-means which can dramatically overfit depending on the type of data. BKM generally
does very well, but is less efficient than PG-means. For example, on a set of 24 different datasets
each having 4000 points from 10 clusters, 2-16 dimensions and varying separations/eccentricities,
PG-means was three times faster than BKM.

Figure 1 only gives the information regarding the learned number of clusters, which is not enough to
measure the true quality of learned models. In order to better evaluate the approaches, we use Meila’s
VI (Variation of Information) metric [8] to compare the induced clustering to the true labels. The
VI metric is non-negative and lower values are better. It is zero when the two compared clusterings
are identical (modulo clusters being relabeled). Figure 2 shows the average VI metric obtained by
running PG-means, G-means, X-means, and BKM on the same synthetic datasets as in Figure 1.
PG-means does about as well as the other algorithms when the data are spherical and well-separated
(see the top-right plot). However, the top-left plot shows that PG-means does not perform as well as
G-means, X-means and BKM for spherical and overlapping data. The reason is that two spherical
clusters overlap, they can look like a single eccentric cluster. Since PG-means can capture eccentric
clusters effectively, it will accept these two overlapped spherical clusters as one cluster. But for the
same case, G-means and X-means will probably recognize them as two different clusters. Therefore,
although PG-means gives fewer clusters for spherical and overlapping data, the models it learns are
reasonable. Figure 3 shows how 10 true overlapping clusters may look like far fewer clusters, and
that PG-means can find an appropriate model with only 4 clusters.

High dimensional data of any finite-variance distribution looks more Gaussian when linearly pro-
jected to a randomly chosen lower-dimensional space. Projection is a weighted sum of the original
dimensions, and the sum of many random variables with finite variance tends to be Gaussian, ac-
cording to the central limit theorem. Thus PG-means should be useful for high-dimensional data
which are not Gaussian. To test this, we perform experiments on high-dimensional non-Gaussian
synthetic datasets. These datasets are generated in a similar way of generating our synthetic Gaus-
sian datasets, except that each true cluster has a uniform distribution. Each cluster is not necessarily
axis-aligned or square; it is scaled for eccentricity and rotated. Each dataset has 4000 points in 8
dimensions equally distributed among 20 clusters. The eccentricity andc-separation values for the
datasets are both 4. We run PG-means, G-means and X-means on 10 different datasets and BKM

Table 1: Results for synthetic non-Gaussian data and the handwritten digits dataset. Each non-
Gaussian dataset contains 4000 points in 8 dimensions sampled from 20 true clusters each having
uniform distribution. The eccentricity andc-separation are both 4. We run each algorithm except
BKM on ten such datasets, and BKM on one. The digits dataset consists of 10 classes and 9298
examples.

Non-Gaussian datasets (20 true clusters)Handwritten digits dataset (10 true classes)
Algorithm Learnedk VI metric Learnedk VI metric
PG-means 20± 0 0± 0 14 2.045
G-means 42.2± 3.67 0.673± 0.071 48 3.174
X-means 27.7± 1.28 0.355± 0.059 29 2.921
BKM 20 0 15 1.980

on one of them. The results are shown in the left part of Table 1.G-means and X-means overfit
the non-Gaussian datasets, while PG-means and BKM both perform excellently in the number of
clusters learned and in learning the true labels according to the VI metric.

We tested all of these algorithms on the U.S. Postal Service handwritten digits dataset (both the train
and test portions, obtained from http://www-stat.stanford.edu/˜tibs/ElemStatLearn/data.html). Each
example is a grayscale image of a handwritten digit. There are 9298 examples in the dataset, and
each example has 256 pixels (16 pixels on a side). The dataset has 10 true classes (digits 0-9). Our
goal is to cluster the dataset without knowing the true labels and analyze the result to find out how
well PG-means captures the true classes.

We use random linear projection to project the dataset to 16 dimensions and run PG-means, G-
means, X-means, and BKM on it. The results are shown in the right side of Table 1. PG-means
gives 14 centers, which is closest to the true value. It also obtains nearly the best VI metric score.
On the other hand, G-means and X-means find many more classes than the truth, which do not help
them score well on the VI metric, and BKM takes over twice as long as PG-means.

5 Conclusions and future work

We presented a new algorithm called PG-means for learning the number of Gaussian clustersk in
data. Starting with one center, it growsk gradually. For eachk, it learns a model using Expectation-
Maximization. Then it projects both the model and the dataset to one dimension and tests for model
fitness with the Kolmogorov-Smirnov test and its own critical values. It performs multiple projec-
tions and tests per model, to avoid being fooled by a poorly chosen projection. If the model does not
fit well, PG-means adds an additional cluster. This procedure repeats until one model is accepted
by all tests. We proved that only a small number of these fast tests are required to have good per-
formance at finding model differences. In the future we will investigate methods of finding better
projections for our task. We also hope to develop approximations to the critical values of the KS test
on Gaussian mixtures, to avoid the cost of Monte Carlo simulations.

PG-means finds better models than G-means and X-means when the true clusters are eccentric or
overlap, especially in low-dimension. On high-dimensional data PG-means also performs very well.
PG-means gives far more stable estimates of the number of clusters than the other two methods
over many different types of data. Compared with Bayesiank-means, we showed that PG-means
performs comparably, though PG-means is several times faster in our tests and uses less memory.

Though PG-means looks for general Gaussian clusters, we showed that PG-means works well on
high-dimensional non-Gaussian data, due to the central limit theorem and our use of projection. Our
techniques would also be applicable as a wrapper around thek-means algorithm, which is really
just a mixture of spherical Gaussians, or any other mixture of Gaussians with limited covariance.
On the real-world handwritten digits dataset PG-means finds a very good clustering with nearly the
correct number of classes, and PG-means and BKM are equally close to identifying the original
labels among the algorithms we tested.

We believe that the project-and-test procedure that PG-means uses is a useful method for deter-
mining fitness of a given mixture of Gaussians. However, the underlying standard EM clustering
algorithm dominates the runtime and is difficult to initialize well, which are well-known problems.

The project-and-test framework of PG-means does not depend on EM in any way, and could be
wrapped around any other better method of finding a Gaussian mixture.

Acknowledgements: We thank Dennis Johnston, Sanjoy Dasgupta, Charles Elkan, and the anony-
mous reviewers for helpful suggestions. We also thank Dan Pelleg and Ken Kurihara for sending us
their source code.

References

[1] Hirotugu Akaike. A new look at the statistical model identification.IEEE Transactions on Automatic
Control, 19:716–723, 1974.

[2] Gerard E. Dallal and Leland Wilkinson. An analytic approximation to the distribution of Lilliefors’ test
for normality. The American Statistician, 40:294–296, 1986.

[3] Sanjoy Dasgupta. Experiments with random projection. InProceedings of the Sixteenth Conference on
Uncertainty in Artificial Intelligence (UAI-2000), pages 143–151. Morgan Kaufmann Publishers, 2000.

[4] Greg Hamerly and Charles Elkan. Learning thek in k-means. InProceedings of the seventeenth annual
conference on neural information processing systems (NIPS), pages 281–288, 2003.

[5] Robert E. Kass and Larry Wasserman. A reference Bayesian test for nested hypotheses and its relationship
to the schwarz criterion.Journal of the American Statistical Association, 90(431):928–934, 1995.

[6] Hubert W. Lilliefors. On the Kolmogorov-Smirnov test of normality with mean and variance unknown.
Journal of the American Statistical Association, 62(318):399–402, 1967.

[7] Frank J. Massey, Jr. The Kolmogorov-Smirnov test for goodness of fit.Journal of the American Statistical
Association, 46(253):68–78, 1951.

[8] Marina Meila. Comparing clusterings by the variation of information. InCOLT, pages 173–187, 2003.

[9] Dan Pelleg and Andrew Moore. X-means: Extending k-means with efficient estimation of the number of
clusters. InProceedings of the 17th International Conf. on Machine Learning, pages 727–734. Morgan
Kaufmann, 2000.

[10] Jorma Rissanen. Modeling by shortest data description.Automatica, 14:465–471, 1978.

[11] Peter Sand and Andrew W. Moore. Repairing faulty mixture models using density estimation. InPro-
ceedings of the 18th International Conf. on Machine Learning, pages 457–464, 2001.

[12] Gideon Schwarz. Estimating the dimension of a model.The Annnals of Statistics, 6(2):461–464, 1978.

[13] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clusters in a dataset
via the Gap statistic.Journal of the Royal Statistical Society B, 63:411–423, 2001.

[14] Naonori Ueda and Ryohei Nakano. Deterministic annealing em algorithm.Neural Networks, 11(2):271–
282, 1998.

[15] Max Welling and Kenichi Kurihara. Bayesian k-means as a ’maximization-expectation’ algorithm. In
SIAM conference on Data Mining SDM06, 2006.

