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Abstract

We consider single-class classification (SCC) as a two-person game between the
learner and an adversary. In this game the target distribution is completely known
to the learner and the learner’s goal is to construct a classifier capable of guar-
anteeing a given tolerance for the false-positive error while minimizing the false
negative error. We identify both “hard” and “soft” optimal classification strategies
for different types of games and demonstrate that soft classification can provide
a significant advantage. Our optimal strategies and bounds provide worst-case
lower boundsfor standard, finite-sample SCC and also motivate new approaches
to solving SCC.

1 Introduction

In Single-Class Classification (SCC)the learner observes a training set of examples sampled from
one target class. The goal is to create a classifier that can distinguish the target class from other
classes, unknown to the learner during training. This problem is the essence of a great many appli-
cations such as intrusion, fault and novelty detection. SCC has been receiving much research atten-
tion in the machine learning and pattern recognition communities (for example, the survey papers
[7, 8, 4] cite, altogether, over 100 papers). The extensive body of work on SCC, which encompasses
mainly empirical studies of heuristic approaches, suffers from a lack of theoretical contributions and
few principled (empirical) comparative studies of the proposed solutions. Thus, despite the extent
of the existing literature, some of the very basic questions have remained unresolved.

LetP (x) be the underlying distribution of the target class, defined over some spaceΩ. We callP the
target distribution. Let 0 < δ < 1 be a given tolerance parameter. The learner observes a training
set sampled fromP and should then construct a classifier capable of distinguishing the target class.
We view the SCC problem as a game between the learner and an adversary. The adversary selects
another distributionQ overΩ and then a new element ofΩ is drawn fromγP + (1 − γ)Q, whereγ
is a switching parameter (unknown to the learner). The goal of the learner is to minimize the false
negative error, while guaranteeing that the false positive error will be at mostδ.

The main consideration in previous SCC studies has beenstatistical: how can we guarantee a pre-
scribed false positive rate (δ) given a finite sample fromP? This question led to many solutions,
almost all revolving around the idea oflow-density rejection. The proposed approaches are typically
generativeor discriminative. Generative solutions range from full density estimation [2], to partial
density estimation such as quantile estimation [5], level set estimation [1, 9] or local density esti-
mation [3]. In discriminative methods one attempts to generate a decision boundary appropriately
enclosing the high density regions of the training set [11].

In this paper we abstract away the statistical estimation component of the problem and model a
setting where the learner has a very large sample from the target class. In fact, we assume that the
learner knows the target distributionP precisely. While this assumption would render almost the



entire body of SCC literature superfluous, it turns out that a significant,decision-theoreticcompo-
nent of the SCC problem remains – one that has so far been overlooked. In any case, the results we
obtain here immediately apply to other SCC instances aslower bounds.

The fundamental question arising in our setting is: What are optimal strategies for the learner? In
particular, is the popular low-density rejection strategy optimal? While most or all SCC papers
adopted this strategy, nowhere in the literature could we find a formal justification.

The partially good news is that low-density rejection is worst-case optimal, but only if the learner is
confined to “hard” decision strategies. In general, the worst-case optimal learner strategy should be
“soft”; that is, the learner should play a randomized strategy, which could result in a very significant
gain. We first identify a monotonicity property of optimal SCC strategies and use it to establish
the optimality of low-density rejection in the “hard” case. We then show an equivalence between
low-density rejection and a constrained two-class classification problem where the other class is the
uniform distribution overΩ. This equivalence motivates a new approach to solving SCC problems.

We next turn our attention to the power of the adversary, an issue that has been overlooked in the
literature but has crucial impact on the relevancy of SCC solutions in applications. For example,
when considering an intrusion detection application (see, e.g., [6]), it is necessary to assume that the
“attacking distribution” has some worst-case characteristics and it is important to quantify precisely
what the adversary knows or can do. The simple observation in this setting is that anomniscient and
unlimited adversary, who knows all parameters of the game including the learner’s strategy, would
completely demolish the learner who uses hard strategies. By using a soft strategy, however, the
learner can achieve on average the biased coin false negative rate of1 − δ.

We then analyze the case of an omniscient but limited adversary, who must select a sufficiently
distantQ satisfyingDKL(Q||P ) ≥ Λ, for some known parameterΛ. One of our main contributions
is a complete analysis of this game, including identification of the optimal strategy for the learner
and the adversary, as well as the best achievable false negative rate. The optimal learner strategy and
best achievable rate are obtained via a solution of a linear program specified in terms of the problem
parameters. These results are immediately applicable aslower boundsfor standard (finite-sample)
SCC problems, but may also be used to inspire new types of algorithms for standard SCC. While we
do not have a closed form expression for the best achievable false-negative rate, we provide a few
numerical examples demonstrating and comparing the optimal “hard” and “soft” performance.

2 Problem Formulation

The single-class classification (SCC)problem is defined as a game between thelearner and an
adversary. The learner receives a training sample of examples from atarget distributionP defined
over some spaceΩ. On the basis of this training sample, the learner should select a rejection function
r : Ω → [0, 1], where for eachω ∈ Ω, rω = r(ω) is the probability with which the learner will
rejectω. On the basis of any knowledge ofP and/orr(·), the adversary selects selects anattacking
distributionQ, defined overΩ. Then, a new example is drawn fromγP+(1−γ)Q, where0 < γ < 1,
is aswitching probabilityunknown to the learner. Therejection rateof the learner, using a rejection
function r, with respect to any distributionD (over Ω), is ρ(D) = ρ(r, D)

△

= ED{r(ω)}. For
notational convenience whenever we decorater (e.g.,r′,r∗), the correspondingρ will be decorated
accordingly (e.g.,ρ′,ρ∗). The two main quantities of interest here are thefalse positive rate(type I
error)ρ(P ), and thefalse negative rate(type II error)1 − ρ(Q).

Before the start of the game, the learner receives a tolerance parameter0 < δ < 1, giving the
maximally allowed false positive rate. A rejection functionr(·) is valid if its false positive rate
ρ(P ) ≤ δ. A valid rejection function (strategy) is optimal if it guarantees the smallest false negative
rate amongst all valid strategies.

We consider a model where the learner knows the target distributionP exactly, thus focusing on the
decision-theoretic component in SCC. Clearly, our model approximates a setting where the learner
has a very large training set, but the results we obtain immediately apply, in any case, aslower
boundsto other SCC instances.

This SCC game is a two-person zero sum game where the payoff to the learner isρ(Q). The set

Rδ(P )
△

= {r : ρ(P ) ≤ δ} of valid rejection functions is the learner’s strategy space. LetQ be the



strategy space of the adversary, consisting of all allowable distributionsQ that can be selected by
the adversary. We are concerned with optimal learner strategies for game variants distinguished by
the adversary’s knowledge of the learner’s strategy,P and/or ofδ and by other limitations onQ.

We distinguish a special type of this game, which we call thehard setting, where the learner must
deterministically reject or accept new events; that is,r : Ω → {0, 1}, and such rejection functions
are termed “hard.” The more general game defined above (with “soft” functions) is called thesoft
setting. As far as we know, only the hard setting has been considered in the SCC literature thus far.

In the soft setting, given any rejection function, the learner can reduce the type II error by rejecting
more (i.e., by increasingr(·)). Therefore, for an optimalr(·) we haveρ(P ) = δ (rather than
ρ(P ) ≤ δ). It follows that the switching parameterγ is immaterial to the selection of an optimal
strategy. Specifically, the combined error of an optimal strategy isγρ(P ) + (1 − γ)(1 − ρ(Q)) =
γδ + (1 − γ)(1 − ρ(Q)), which is minimized by minimizing the type II error,1 − ρ(Q).

We assume throughout this paper a finite support of sizeN ; that is,Ω = {1, . . . , N} andP
△

=

{p1, . . . , pN} andQ
△

= {q1, . . . , qN} are probability mass functions. Additionally, a “probability
distribution” refers to a distribution over the fixed support setΩ. Note that this assumption still
leaves us with an infinite game because the learner’s pure strategy space,Rδ(P ), is infinite.1

3 Characterizing Monotone Rejection Functions

In this section we characterize the structure of optimal learner strategies. Intuitively, it seems plau-
sible that the learner should not assign higher rejection values to higher probability events underP .
That is, one may expect that a reasonable rejection functionr(·) would be monotonically decreasing
with probability values (i.e., ifpj ≤ pk thenrj ≥ rk). Such monotonicity is a key justification for
a very large body of SCC work, which is based on low density rejection strategies. Surprisingly,
optimal monotone strategies are not always guaranteed as shown in the following example.

Example 3.1 (Non-Monotone Optimality) In the hard setting, takeN = 3, P =
(0.06, 0.09, 0.85) and δ = 0.1. The twoδ-valid hard rejection functions arer′ = (1, 0, 0) and
r′′ = (0, 1, 0). Let Q = {Q = (0.01, 0.02, 0.97)}. Clearly ρ′(Q) = 0.01 and ρ′′(Q) = 0.02
and therefore,r′′(·) is optimal despite breaking monotonicity. More generally, this example holds if
Q = {Q : q2 − q1 ≥ ε} for any0 < ε ≤ 1.

In the soft setting, letN = 2, P = (0.2, 0.8), and δ = 0.1. We note thatRδ(P ) = {rε =
(0.1 + 4ε, 0.1 − ε)}, for ε ∈ [−0.025, 0.1]. We takeQ = {Q = (0.1, 0.9)}. Thenρǫ(Q) = 0.1 +
0.4ε−0.9ε = 0.1−0.5ε. This is clearly maximized when we minimizeε by takingε = −0.025, and
then the optimal rejection function is(0, 0.125), which clearly breaks monotonicity. This example
also holds forQ = {Q : q2 ≥ cq1} for anyc > 4.

Fix P andδ. For any adversary strategy space,Q, let R∗
δ(P ) be the set of optimal valid rejection

functions,R∗
δ

△

= {r ∈ Rδ(P ) : minQ∈Q ρ(Q) = maxr′∈Rδ(P ) minQ∈Q ρ′(Q)}.2 We note that
R∗

δ is never empty in the cases we consider. A simple observation is that for anyr ∈ R∗
δ there

existsr′ ∈ R∗
δ such thatr′(i) = r(i) for all i such thatpi > 0 and for zero probabilities,pj = 0,

r′(j) = 1.

The following property ensures thatR∗
δ will include a monotone (optimal) hard strategy, which

means that the search space for the learner can be conveniently confined to monotone strategies.
While the set of all distributions satisfies this property, later on we will consider limited strategic
adversary spaces where this property still holds.3

1The game is conveniently described in extensive form (i.e., game tree) where in the first move the learner
selects a rejection function, followed by a chance move to determine the source (eitherP or Q) of the test
example (with probabilityγ). In the case whereQ is selected, the adversary chooses (randomly usingQ) the
test example. In this game the choice ofQ depends on knowledge ofP andr(·).

2For certain strategy spaces,Q, it may be necessary to consider the infimum rather than the minimum. In
such cases it may be necessary to replace ‘Q ∈ Q’ (in definitions, theorems, etc.) with ‘Q ∈ cl(Q)’, where
cl(Q) is the closure ofQ.

3All properties defined in this paper could be made weaker for the purposes of the proofs, but this would
needlessly complicate them. Indeed, the way they are currently defined is sufficient for most “reasonable”Q.



Definition 3.2 (Property A) Let P be a distribution. A set of distributionsQ has Property A w.r.t.
P if for all j, k andQ ∈ Q such thatpj < pk andqj < qk, there existsQ′ ∈ Q such thatq′k ≤ qj ,
q′j ≥ qk and for all i 6= j, k, we haveq′i = qi.

Theorem 3.3 (Monotone Hard Decisions)When the learner is restricted to hard-decisions andQ
satisfies Property A w.r.t.P , then∃r ∈ R∗

δ such thatpj < pk ⇒ r(j) ≥ r(k).4

Proof: Let us assume by contradiction that no such rejection function exists inR∗
δ . Let r ∈ R∗

δ .
Let j be such thatpj = minω:r(ω)=0 pω. Then, there must existk, such thatpj < pk andr(k) = 1
(otherwiser is monotone). Definer∗ to ber with the values ofj andk swapped; that is,r∗(j) =
1, r∗(k) = 0 and for all otheri, r∗(i) = r(i). We note thatρ∗(P ) = ρ(P ) + pj − pk < ρ(P ) ≤
δ. Let Q∗ ∈ Q be such thatminQ ρ∗(Q) = ρ∗(Q∗) = ρ(Q∗) + q∗j − q∗k. Thus, if q∗j ≥ q∗k,
ρ∗(Q∗) ≥ ρ(Q∗). Otherwise, there existsQ∗′ as in Property A and in particular,q∗′k ≤ q∗j . As a
result,ρ∗(Q∗) = ρ(Q∗′) + q∗j − q∗′k ≥ ρ(Q∗′). Therefore, there always existsQ ∈ Q such that
ρ∗(Q∗) ≥ ρ(Q) (eitherQ = Q∗ or Q = Q∗′). Consequently,minQ ρ∗(Q) ≥ minQ ρ(Q), and thus,
r∗ ∈ R∗

δ . As long as there are morej, k pairs which need to have their rejection levels fixed, we
labelr = r∗ and repeat the above procedure. Since the only changes are made tor∗(j) andr∗(k),
and sincej is the non-rejected event with minimal probability, the procedure will be repeated at
mostN times. The finalr∗ is in R∗

δ and satisfiespj < pk ⇒ r(j) ≥ r(k). Contradiction. �

Theorem 3.3 provides a formal justification for thelow-density rejection strategy (LDRS), popular
in the SCC literature. Specifically, assume w.l.o.g.p1 ≤ p2 ≤ · · · ≤ pN . The correspondingδ-valid
low density rejection function placesrj = 1 iff

∑j
i=1 pi ≤ δ.

Our discussion on soft decisions is facilitated by Property B and Theorem 3.5 that follow.

Definition 3.4 (Property B) Let P be a distribution. A set of distributionsQ has Property B w.r.t.
P if for all j, k andQ ∈ Q such that0 < pj ≤ pk and qj

pj
< qk

pk
, there existsQ′ ∈ Q such that

q′

j

pj
≥

q′

k

pk
and for all i 6= j, k, q′i = qi.

The rather technical proof of the following theorem is omitted for lack of space (and appears in the
adjoining, supplementary appendix).

Theorem 3.5 (Monotone Soft Decisions)If Q satisfies Property B w.r.t.P , then∃r ∈ R∗
δ such

that: (i)pi = 0 ⇒ r(i) = 1; (ii) pj < pk ⇒ r(j) ≥ r(k); and (iii) pj = pk ⇒ r(j) = r(k).

4 Low-Density Rejection and Two-Class Classification

In this section we focus on the hard setting. We show that the low-density rejection strategy (LDRS
- defined in Section 3) is optimal. Moreover we show that the optimal hard performance can be ob-
tained by solving a constrained two-class classification problem where the other class is the uniform
distribution overΩ. The results here consider familiesQ that satisfy the following property.

Definition 4.1 (Property C) Let P be a distribution. A set of distributionsQ has Property C w.r.t.
P if for all j, k andQ ∈ Q such thatpj = pk there existsQ′ ∈ Q such thatq′k = qj , q′j = qk and
for all i 6= j, k, q′i = qi.

We state without proof the following lemma (the proof can be found in the appendix).

Lemma 4.2 Let r∗ be aδ-valid low-density rejection function (LDRS). Letr be any monotoneδ-
valid rejection function. ThenminQ∈Q ρ∗(Q) ≥ minQ∈Q ρ(Q) for anyQ satisfying Property C.

Example 4.3 (Violation of Property C) We illustrate here that violating Property C may result in
a violation of Lemma 4.2. LetN = 5, P = (0.02, 0.03, 0.05, 0.05, 0.85), andδ = 0.1. Then the
two δ-valid LDRS rejection functions arer = (1, 1, 1, 0, 0) andr′ = (1, 1, 0, 1, 0). LetQ = {Q :
q3 − q4 > ε} for some0 < ε < 1. Then, for anyQ ∈ Q, ρ(Q) − ρ′(Q) = q3 − q4 > ε, and
therefore, for the LDRS,r′, there exists a monotoner such thatminQ∈Q ρ′(Q) < minQ∈Q ρ(Q).

4Here we must consider a weaker notion of monotonicity for hard strategies to be both valid and optimal.



WhenQ satisfies Property A, then by Theorem 3.3 there exists a monotoneoptimalrejection func-
tion. Therefore, the following corollary of Lemma 4.2 establishes the optimality of any LDRS.

Corollary 4.4 Anyδ-valid LDRS is optimal ifQ satisfies both Property A and Property C.

Thus, any LDRS strategy is indeed worst-case optimal when the learner is willing to be confined
to hard rejection functions and when the adversary’s space satisfies Property A and Property C. We
now show that an (optimal) LDRS solution is equivalent to an optimal solution of the following
constrainedBayesian two-class decision problem. Let the first classc1 have distributionP (x) and
the second class,c2, have the uniform distributionU(x) = 1/N . Let 0 < c < 1 and0 < ǫ <
(Nδc+1−c)/Nδc. The classes have priorsPr{c1} = c andPr{c2} = 1−c. The loss functionλij ,
giving the cost of decidingci instead ofcj (i, j = 1, 2), isλ11 = λ22 = 0, λ12 = (Nc+1−c)/(1−c)
andλ21 = ǫ. The goal is to construct a classifierC(x) ∈ {c1, c2) that minimizes the total Bayesian
risk under the constraint that, for a givenδ,

∑

x:C(x)=c2
P (x) ≤ δ. We term this problem “the

Bayesian binary problem.”

Theorem 4.5 An optimal binary classifier for the Bayesian binary problem induces an optimal
(hard) solution to the SCC problem (an LDRS) whenQ satisfies properties A and C.

Proof Sketch: Let C∗(·) be an optimal classifier for the Bayesian binary problem. Any classifier
C(·) induces a hard rejection functionr(·) by takingr(x) = 1 ⇔ C(x) = c2. Therefore, the set of

feasible classifiers (satisfying the constraint) clearly inducesRδ(P ). LetMi(C)
△

= {x : C(x) = i}.
Note that the constraint is equivalent to

∑

x∈M2(C) P (x) ≤ δ. The Bayes risk for classifyingx

asi is Ri(x)
△

= λii Pr{ci|x} + λi(3−i) Pr{c3−i|x} = λi(3−i) Pr{c3−i|x}. The total Bayes risk is

R(C)
△

=
∑

x∈M1(C) R1(x) +
∑

x∈M2(C) R2(x), which is minimized atC∗(·). It is not difficult to
show thatR1(·) andR2(·) are monotonically decreasing and increasing, respectively. It therefore
follows thatx ∈ M1(C

∗), y ∈ M2(C
∗) ⇒ P (x) ≥ P (y) (otherwise, by swappingC∗(x) and

C∗(y), the constraint can be maintained andR(C∗) decreased). It is also not difficult to show that
R1(x) ≥ 1 > R2(x) for anyx. Thus, it follows that

∑

y∈M2(C∗) P (y) + minx∈M1(C∗) P (x) > δ

(otherwise, somex could be transferred fromM1(C
∗) to M2(C

∗), reducingR(C∗)). Together,
these two properties immediately imply thatC∗(·) induces aδ-valid LDRS. �

Theorem 4.5 motivates a different approach to SCC in which we sample from the uniform distribu-
tion overΩ and then attempt to approximate the optimal Bayes solution to the constrained binary
problem. It also justifies certain heuristics found in the literature [10, 11].

5 The Omniscient Adversary: Games, Strategies and Bounds

5.1 Unrestricted Adversary

In the first game we analyze an adversary who is completely unrestricted. This means thatQ is
the set of all distributions. Unsurprisingly, this game leaves little opportunity for the learner. For
any rejection functionr(·), definermin

△

= mini r(i) andImin(r)
△

= {i : r(i) = rmin}. For any
distributionD, ρ(D) =

∑N

i=1 dir(i) ≥
∑N

i=1 dirmin = rmin, in particular,δ = ρ(P ) ≥ rmin

andminQ ρ(Q) ≥ rmin. By choosingQ such thatqi = 1 for somei ∈ Imin(r), the adversary
can achieveρ(Q) = rmin (the same rejection rate is achieved by taking anyQ with qi = 0 for all

i 6∈ Imin(r)). In the soft setting,minQ ρ(Q) is maximized by the rejection functionrδ(i)
△

= δ for

all pi > 0 (rδ(i)
△

= 1 for all pi = 0) This is equivalent to flipping aδ-biased coin for non-null
events (underP ). The best achievable Type II Error is1 − δ. In the hard setting, clearlyrmin = 0
(otherwise1 > δ ≥ 1), and the best achievable Type II Error is precisely 1. That is, absolutely
nothing can be achieved.

This simple analysis shows the futility of the SCC game when the adversary is too powerful. In
order to consider SCC problems at all one must consider reasonable restrictions on the adversary
that lead to more useful games. One type of restriction would be to limit the adversary’s knowledge
of r(·), P and/or ofδ. Another type would be to directly limit the strategic choices available to the
adversary. In the next section we focus on the latter type.



5.2 A Constrained Adversary

In seeking a quantifiable constraint onQ it is helpful to recall that the essence of the SCC problem is
to try to distinguish between two probability distributions (albeit one of them unknown). A natural
constraint is a lower bound on the “distance” between these distributions. Following similar results
in hypothesis testing, we would like to consider games in which the adversary must selectQ such that
D(P ||Q) ≥ Λ, for some constantΛ > 0, whereD(·||·) is the KL-divergence. Unfortunately, this
constraint is vacuous sinceD(P ||Q) explodes whenqi ≪ pi (for anyi). In this case the adversary
can optimally play the same strategy as in the unrestricted game while meeting the KL-divergence
constraint. Fortunately, by takingD(Q||P ) ≥ Λ, we can effectively constrain the adversary.

We note, as usual, that the learner can (and should) reject with probability 1 any null events under
P . Thus, an adversary would be foolish to choose a distributionQ that has any probability for
these events. Therefore, we henceforth assume w.l.o.g. thatΩ = Ω(P )

△

= {ω : pω > 0}. Taking

D(Q||P )
△

=
∑N

i=1 qi log(qi/pi), we then defineQ = QΛ
△

= {Q : D(Q||P ) ≥ Λ}. We note thatQΛ

possesses propertiesA, B andC w.r.t. P ,5 and by Theorems 3.3 and 3.5 there exists a monotone
r ∈ R∗

δ (in both the hard and soft settings) and by Corollary 4.4, anyδ-valid LDRS is hard-optimal.

If maxi pi ≤ 2−Λ, then anyQ which is concentrated on a single event meets the constraint
D(Q||P ) ≥ Λ. Then, the adversary can play the same strategy as in the unrestricted game,
and the learner should selectrδ as before. For the game to be non-trivial it is thus required that
Λ > log(1/ maxi pi). Similarly, if the optimalr is such that there existsj ∈ Imin(r) (that is
r(j) = rmin) and pj ≤ 2−Λ, then a distributionQ that is completely concentrated onj has
D(Q||P ) ≥ Λ and achievesρ(Q) = rmin as in the unrestricted game. Therefore,r = rδ, and
so maximizesrmin. We thus assume that the optimalr has no suchj.

We begin our analysis of the game by identifying some useful characteristics of optimal adversary
strategies in Lemma 5.1. Then Theorem 5.2 shows that the effective support of an optimalQ has
a size of two at most. Based on these properties, we provide in Theorem 5.3 a linear program that
computes the optimal rejection function. The following lemma is stated without its (technical) proof.

Lemma 5.1 If Q minimizesρ(Q) and meets the constraintD(Q||P ) ≥ Λ then: (i)D(Q||P ) = Λ;
(ii) pj < pk and qk > 0 ⇒ r(j) > r(k); (iii) pj < pk and qj > 0 ⇒ qj log

qj

pj
+ qk log qk

pk
>

(qj + qk) log
qj+qk

pk
; (iv) pj < pk andqj > 0 ⇒

qj

pj
> qk

pk
; and (v)qj , qk > 0 ⇒ pj 6= pk.

Theorem 5.2 Any optimal adversarial strategyQ has an effective support of size at most two.

Proof Sketch: Assume by contradiction that an optimalQ∗ has an effective support of sizeJ ≥ 3.
W.l.o.g. we rename events such that the firstJ events are the effective support ofQ∗ (i.e., q∗i > 0,
i = 1, . . . , J). From part (i) of Lemma 5.1,Q∗ is a global minimizer ofρ(Q) subject to the
constraints

∑J

i=1 qi log qi

pi
= Λ, qi > 0 (i = 1, . . . , J) and

∑J

i=1 qi = 1. The Lagrangian of this
problem is

L(Q, λ) =

J
∑

i=1

r(i)qi + λ1

(

J
∑

i=1

qi log
qi

pi

− Λ

)

+ λ2

(

J
∑

i=1

qi − 1

)

. (1)

It is not hard to show, using parts (iv) and (v) of Lemma 5.1, thatQ∗ is an extremum point of (1).

Taking the partial derivatives of (1) we have:∂L(Q∗,λ)
∂qi

= r(i)+λ1

(

log
q∗

i

pi
+ 1
)

+λ2 = 0. Solving
∂L(Q∗,λ)

∂q1

= ∂L(Q∗,λ)
∂q2

for λ1, we getλ1 = (r(2) − r(1))/(log
q∗

1

p1

− log
q∗

2

p2

). If we assume (w.l.o.g.)
thatp1 < p2, then, from parts (ii) and (iv) of Lemma 5.1,r(2) < r(1) andq∗1/p1 > q∗2/p2. Thus

λ1 < 0. Therefore, for alli, ∂2L(Q,λ)
∂q2

i

= λ1

qi
< 0, and (1) is strictly concave. Therefore, sinceQ∗ is

an extremum of the (strictly concave) Lagrangian function, it is the unique global maximum.

By part (iv) of Lemma 5.1, the smooth functionfP,Λ(q1, q2, . . . , qJ−1)
△

= D(Q||P ) − Λ has a root
atQ∗ where no partial derivative is zero. Therefore, it has an infinite number of roots in any convex

5For any pairj, k such thatpj ≤ pk, D(Q||P ) does not decrease by transferring all the probability fromk

to j in Q: qj log
qj

pj
+ qk log qk

pk
≤ (qj + qk) log

qj+qk

pj
.



domain whereQ∗ is an internal point. Thus, there exists another distribution,Q̃ 6= Q∗, whereq̃i > 0
for i = 1, . . . , J , which meets the equality criteria of the Lagrangian. SinceQ∗ is the unique global
maximum ofL(Q, λ): ρ(Q̃) = L(Q̃, λ) < L(Q∗, λ) = ρ(Q∗). Contradiction. �

We now turn our attention to the learner’s selection ofr(·). As already noted, it is sufficient for the
learner to consider only monotone rejection functions. Since for these functionspj = pk ⇒ r(j) =
r(k), the learner can partitionΩ into K = K(P ) event subsets, which correspond, by probability,
to “level sets”,S1, S2, . . . , SK (all events in a level setS have probabilityPS). We re-index these
subsets such that0 < PS1

< PS2
< · · · < PSK

. DefineK variablesr1, r2, . . . , rK , representing
the rejection rate assigned to each of theK level sets (∀ω ∈ Si, r(ω) = ri). We group our level sets
by probability:L = {S : PS < 2−Λ}, M = {S : PS = 2−Λ}, andH = {S : PS > 2−Λ}.

By Theorem 5.2, the optimalQ which the adversary selects will have an effective support of size
2 at most. If it has an effective support of size 1, then the eventω for which qω = 1 cannot be
from a level set inL or H (otherwise, part (i) of Lemma 5.1 would be violated). Therefore it must
belong to the single level set inM . Thus, ifM = {Sm} (for some indexm), then there are feasible
solutionsQ such thatqω = 1 (for ω ∈ Sm), all of which haveρ(Q) = rm. If, on the other hand,
Q has an effective support of size 2, then it is not hard to show that one of the two events must
be from a level setSl ∈ L, and the other, from a level setSh ∈ H (since all other combinations
result in a violation of either part (i) or part (iii) of Lemma 5.1). Then, there is a single solution to
ql log ql

PSl

+ (1 − ql) log 1−ql

PSh

= Λ, whereql and1 − ql are the probabilities thatQ assigns to the

events fromSl andSh, respectively. For such a distribution,ρ(Q) = qlrl + (1 − ql)rh.

Therefore, the adversary’s choice of an optimal distribution,Q, must have one of|L||H | + |M | ≤

⌈K2

4 ⌉ (possibly different) rejection rates. Each of these rates,ρ1, ρ2, . . . , ρ|L||H|+|M|, is a linear
combination of at most two variables,ri andrj . We introduce an additional variable,z, to represent
the max-min rejection rate. We thus have:

Theorem 5.3 An optimal soft rejection function and the lower-bound on the Type II Error,1− z, is
obtained by solving the following linear program:6 maximizer1,r2,...,rK ,z z, subject to:

K
∑

i=1

ri|Si|PSi
= δ, 1 ≥ r1 ≥ r2 ≥ · · · ≥ rK ≥ 0, ρi ≥ z, i ∈ {1, 2, . . . , |L||H | + |M |}.

5.2.1 Numerical Examples

We now compare the performance of hard and soft rejection strategies for this constrained game
(D(Q||P ) ≥ Λ) for various values ofΛ, and two different families of target distributions,P over
supportN = 50. The families are arbitrary probability mass functions overN events and dis-
cretized Gaussians (overN bins). For eachΛ we generated 50 random distributionsP for each of
the families.7 For each suchP we solved the optimal hard and soft strategies and computed the
corresponding worst-case optimal type II error,1 − ρ(Q).

The results forδ = 0.05 are shown in Figure 5.2.1. Other results (not presented) for a wide variety
of the problem parameters (e.g.,N , δ) are qualitatively the same. It is evident that both the soft and
hard strategies are ineffective for smallΛ. Clearly, the soft approach has significantly lower error
than the hard approach (untilΛ becomes “sufficiently large”).

6Let r∗ be the solution to the linear program. Our derivation of the linear program is dependent on the
assumption that there is no eventj ∈ Imin(r∗) such thatpj ≤ 2−Λ (see discussion preceding Lemma 5.1). If
r∗ contradicts this assumption then, as discussed, the optimal strategy isrδ, which is optimal. It is not hard to
prove that in this caser∗ = rδ anyway, and thus the solution to the linear program is always optimal.

7SincemaxQ D(Q||P ) = log(1/ mini pi), it is necessary thatmini pi ≤ 2−Λ when generatingP (to
ensure that aΛ-distantQ exists). Distributions in the first family of arbitrarily random distributions (a) are
generated by sampling a point (p1) uniformly in (0, 2−Λ]. The otherN − 1 points are drawn i.i.d.∼ U(0, 1],
and then normalized so that their sum is1 − p1. The second family (b) are Gaussians centered at0 and
discretized overN evenly spaced bins in the range[−10, 10]. A (discretized) random GaussianN(0, σ) is
selected by choosingσ uniformly in some range[σmin, σmax]. σmin is set to the minimumσ ensuring that the
first/last bin will not have “zero” probability (due to limited precision).σmax was set so that the cumulative
probability in the first/last bin will be2−Λ, if possible (otherwiseσmax is arbitrarily set to10 ∗ σmin).
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Figure 1: Type II Error vs.Λ, for N = 50 andδ = 0.05. 50 distributions were generated for each
value ofΛ (Λ = 0.5, 0.1, · · · , 12.5). Error bars depict standard error of the mean (SEM).

6 Concluding Remarks

We have introduced a game-theoretic approach to the SCC problem. This approach lends itself well
to analysis, allowing us to prove under what conditions low-density rejection is hard-optimal and if
an optimal monotone rejection function is guaranteed to exist. Our analysis introduces soft decision
strategies, which allow for significantly better performance. Observing the learner’s futility when
facing an omniscient and unlimited adversary, we considered restricted adversaries and provided
full analysis of an interesting family of constrained games. This work opens up many new avenues
for future research. We believe that our results could be useful for inspiring new algorithms for
finite-sample SCC problems. For example, the equivalence of low-density rejection to the Bayesian
binary problem as shown in Section 3.3 obviously motivates a new approach. Clearly, the utilization
of randomized strategies should be carried over to the finite sample case as well. Our approach can
be extended and developed in several ways. A very interesting setting to consider is one in which the
adversary has partial knowledge of the problem parameters and the learner’s strategy. For example,
the adversary may only know thatP is in some subspace. Additionally, it is desirable to extend
our analysis to infinite and continuous event spaces. Finally, it would be very nice to determine an
explicit expression for the lower bound obtained by the linear program of Theorem 5.3.
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