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Abstract

We consider single-class classification (SCC) as a two-person game between the
learner and an adversary. In this game the target distribution is completely known
to the learner and the learner’s goal is to construct a classifier capable of guar-
anteeing a given tolerance for the false-positive error while minimizing the false
negative error. We identify both “hard” and “soft” optimal classification strategies
for different types of games and demonstrate that soft classification can provide
a significant advantage. Our optimal strategies and bounds provide worst-case
lower bounddor standard, finite-sample SCC and also motivate new approaches
to solving SCC.

1 Introduction

In Single-Class Classification (SC@)e learner observes a training set of examples sampled from
onetarget class The goal is to create a classifier that can distinguish the target class from other
classes, unknown to the learner during training. This problem is the essence of a great many appli-
cations such as intrusion, fault and novelty detection. SCC has been receiving much research atten-
tion in the machine learning and pattern recognition communities (for example, the survey papers
[7, 8, 4] cite, altogether, over 100 papers). The extensive body of work on SCC, which encompasses
mainly empirical studies of heuristic approaches, suffers from a lack of theoretical contributions and
few principled (empirical) comparative studies of the proposed solutions. Thus, despite the extent
of the existing literature, some of the very basic questions have remained unresolved.

Let P(x) be the underlying distribution of the target class, defined over some Spatle call P the

target distribution Let0 < § < 1 be a given tolerance parameter. The learner observes a training
set sampled fron® and should then construct a classifier capable of distinguishing the target class.
We view the SCC problem as a game between the learner and an adversary. The adversary selects
another distributio over(2 and then a new element 9fis drawn fromy P + (1 — v)Q, wherey

is a switching parameter (unknown to the learner). The goal of the learner is to minimize the false
negative error, while guaranteeing that the false positive error will be atémost

The main consideration in previous SCC studies has besistical how can we guarantee a pre-
scribed false positive rat@) given a finite sample fron®? This question led to many solutions,
almost all revolving around the idealofv-density rejectionThe proposed approaches are typically
generativeor discriminative Generative solutions range from full density estimation [2], to partial
density estimation such as quantile estimation [5], level set estimation [1, 9] or local density esti-
mation [3]. In discriminative methods one attempts to generate a decision boundary appropriately
enclosing the high density regions of the training set [11].

In this paper we abstract away the statistical estimation component of the problem and model a
setting where the learner has a very large sample from the target class. In fact, we assume that the
learner knows the target distributidn precisely. While this assumption would render almost the



entire body of SCC literature superfluous, it turns out that a significetision-theoreticompo-
nent of the SCC problem remains — one that has so far been overlooked. In any case, the results we
obtain here immediately apply to other SCC instancdewsr bounds

The fundamental question arising in our setting is: What are optimal strategies for the learner? In
particular, is the popular low-density rejection strategy optimal? While most or all SCC papers
adopted this strategy, nowhere in the literature could we find a formal justification.

The partially good news is that low-density rejection is worst-case optimal, but only if the learner is
confined to “hard” decision strategies. In general, the worst-case optimal learner strategy should be
“soft”; that is, the learner should play a randomized strategy, which could result in a very significant
gain. We first identify a monotonicity property of optimal SCC strategies and use it to establish
the optimality of low-density rejection in the “hard” case. We then show an equivalence between
low-density rejection and a constrained two-class classification problem where the other class is the
uniform distribution ovef2. This equivalence motivates a new approach to solving SCC problems.

We next turn our attention to the power of the adversary, an issue that has been overlooked in the
literature but has crucial impact on the relevancy of SCC solutions in applications. For example,
when considering an intrusion detection application (see, e.g., [6]), it is necessary to assume that the
“attacking distribution” has some worst-case characteristics and it is important to quantify precisely
what the adversary knows or can do. The simple observation in this setting is thranéstient and
unlimited adversarywho knows all parameters of the game including the learner’s strategy, would
completely demolish the learner who uses hard strategies. By using a soft strategy, however, the
learner can achieve on average the biased coin false negative tatedof

We then analyze the case of an omniscient but limited adversary, who must select a sufficiently
distant@ satisfyingDk1.(Q||P) > A, for some known parametdr. One of our main contributions

is a complete analysis of this game, including identification of the optimal strategy for the learner
and the adversary, as well as the best achievable false negative rate. The optimal learner strategy and
best achievable rate are obtained via a solution of a linear program specified in terms of the problem
parameters. These results are immediately applicalteases bounddor standard (finite-sample)

SCC problems, but may also be used to inspire new types of algorithms for standard SCC. While we
do not have a closed form expression for the best achievable false-negative rate, we provide a few
numerical examples demonstrating and comparing the optimal “hard” and “soft” performance.

2 Problem Formulation

The single-class classification (SC@yoblem is defined as a game between l#@@ner and an
adversary The learner receives a training sample of examples froanget distributionP defined
over some spade. On the basis of this training sample, the learner should select a rejection function
r: Q — [0,1], where for eaclv € Q, r, = r(w) is the probability with which the learner will
rejectw. On the basis of any knowledge Bfand/orr(-), the adversary selects selectsadacking
distribution@, defined ovef2. Then, a new example is drawn frop?+(1—+)Q, whered < v < 1,

is aswitching probabilityunknown to the learner. Threjection rateof the learner, using a rejection
function », with respect to any distributio® (over ), is p(D) = p(r, D) £ Ep{r(w)}. For
notational convenience whenever we decorate.g.,r’,r*), the corresponding will be decorated
accordingly (e.g.p’,p*). The two main quantities of interest here are fillge positive ratdtype |
error) p(P), and thefalse negative ratéype Il error)1 — p(Q).

Before the start of the game, the learner receives a tolerance pardmetet < 1, giving the
maximally allowed false positive rate. A rejection functiofi) is valid if its false positive rate
p(P) < 4. Avalid rejection function (strategy) is optimal if it guarantees the smallest false negative
rate amongst all valid strategies.

We consider a model where the learner knows the target distribBtexactly, thus focusing on the
decision-theoretic componentin SCC. Clearly, our model approximates a setting where the learner
has a very large training set, but the results we obtain immediately apply, in any cdseeas
boundso other SCC instances.

This SCC game is a two-person zero sum game where the payoff to the leap(€)) isThe set
Rs(P) 2 {r : p(P) < 6} of valid rejection functions is the learner’s strategy space.Q.&e the



strategy space of the adversary, consisting of all allowable distribuothet can be selected by
the adversary. We are concerned with optimal learner strategies for game variants distinguished by
the adversary’s knowledge of the learner’s stratéggnd/or ofd and by other limitations o.

We distinguish a special type of this game, which we callithed setting where the learner must
deterministically reject or accept new events; thatis{) — {0, 1}, and such rejection functions
are termed “hard.” The more general game defined above (with “soft” functions) is callsdfthe
setting As far as we know, only the hard setting has been considered in the SCC literature thus far.

In the soft setting, given any rejection function, the learner can reduce the type Il error by rejecting
more (i.e., by increasing(-)). Therefore, for an optimat(-) we havep(P) = ¢ (rather than

p(P) < 0). It follows that the switching parameteris immaterial to the selection of an optimal
strategy. Specifically, the combined error of an optimal strategy($) + (1 — v)(1 — p(Q)) =

¥5 + (1 —v)(1 = p(Q)), which is minimized by minimizing the type Il error,— p(Q).

We assume throughout this paper a finite support of 8izehat is,Q = {1,...,N} and P £

{p1,...,pn} and@ £ {q1,...,qn} are probability mass functions. Additionally, a “probability
distribution” refers to a distribution over the fixed support 8et Note that this assumption still
leaves us with an infinite game because the learner’s pure strategy Rgdé®, is infinite !

3 Characterizing Monotone Rejection Functions

In this section we characterize the structure of optimal learner strategies. Intuitively, it seems plau-
sible that the learner should not assign higher rejection values to higher probability event®under
That is, one may expect that a reasonable rejection funetiprvould be monotonically decreasing

with probability values (i.e., ib; < pi thenr; > 7). Such monotonicity is a key justification for

a very large body of SCC work, which is based on low density rejection strategies. Surprisingly,
optimal monotone strategies are not always guaranteed as shown in the following example.

Example 3.1 (Non-Monotone Optimality) In the hard setting, takeN = 3, P =
(0.06,0.09,0.85) andd = 0.1. The twod-valid hard rejection functions are’ = (1,0,0) and

" = (0,1,0). LetQ = {Q = (0.01,0.02,0.97)}. Clearly p'(Q) = 0.01 and p”(Q) = 0.02

and thereforer”(-) is optimal despite breaking monotonicity. More generally, this example holds if
Q={Q:q2—q >e}forany0 <e <1.

In the soft setting, lefV = 2, P = (0.2,0.8), andd = 0.1. We note thatRs(P) = {r° =
(0.1 4+ 4¢,0.1 — )}, fore € [—0.025,0.1]. We takeQ = {Q = (0.1,0.9)}. Thenp(Q) = 0.1 +
0.4e —0.9¢ = 0.1 — 0.5¢. This is clearly maximized when we minimizey takinge = —0.025, and
then the optimal rejection function {§, 0.125), which clearly breaks monotonicity. This example
also holds forQ = {Q : q2 > ¢q: } foranyc > 4.

Fix P andd. For any adversary strategy spagk,let R:(P) be the set of optimal valid rejection

functions,R; 2 {r e Rs(P) : mingeo p(Q) = max, cr,(p)mingeo p'(Q)}.? We note that

Rj; is never empty in the cases we consider. A simple observation is that far anfR; there

existsr’ € R} such that’(i) = r(¢) for all ¢ such thap, > 0 and for zero probabilitieg;; = 0,

r'(j) = 1.

The following property ensures th@; will include a monotone (optimal) hard strategy, which
means that the search space for the learner can be conveniently confined to monotone strategies.
While the set of all distributions satisfies this property, later on we will consider limited strategic
adversary spaces where this property still hdlds.

1The game is conveniently described in extensive form (i.e., game tree) where in the first move the learner
selects a rejection function, followed by a chance move to determine the source {itmep) of the test
example (with probabilityy). In the case wher€) is selected, the adversary chooses (randomly uginthe
test example. In this game the choice(@fiepends on knowledge &f andr(-).

2For certain strategy space8, it may be necessary to consider the infimum rather than the minimum. In
such cases it may be necessary to replgze=* Q' (in definitions, theorems, etc.) with@ € cl(Q)’, where
cl(Q) is the closure oD.

3All properties defined in this paper could be made weaker for the purposes of the proofs, but this would
needlessly complicate them. Indeed, the way they are currently defined is sufficient for most “reas@nable”



Definition 3.2 (Property A) Let P be a distribution. A set of distributiong@ has Property A w.r.t.
Pifforall j,kand@ € Q suchthap; < p, andg; < g, there exists)’ € Q such thatg;, < g;,
q; > qi and for alli # j, k, we havey; = g;.

Theorem 3.3 (Monotone Hard Decisions)When the learner is restricted to hard-decisions ahd
satisfies Property A w.r.t?, then3r € R such thap, < p, = r(j) > r(k).*

Proof: Let us assume by contradiction that no such rejection function existginLetr € Rj.
Let j be such thap; = min,,...)—o Po. Then, there must exidt, such thap; < py andr(k) =1
(otherwiser is monotone). Define* to ber with the values ofj andk swapped; that is;*(j) =
1,r*(k) = 0 and for all otheri, 7* (i) = r(i). We note thap*(P) = p(P) + p; — pr < p(P) <

6. Let@Q* € Q be such thatning p*(Q) = p*(Q*) = p(Q*) + ¢; — g;- Thus, ifg; > g,
p*(Q*) > p(Q*). Otherwise, there exist9*’ as in Property A and in particulag;), < ¢;. As a
result,p*(Q*) = p(Q*') + ¢; — ¢*}, > p(Q*'). Therefore, there always exisfs € Q such that
p*(Q*) > p(Q) (either@Q = Q* or @ = Q*'). Consequentlyning p*(Q) > ming p(Q), and thus,

r* € Rj. As long as there are moygek pairs which need to have their rejection levels fixed, we
labelr = r* and repeat the above procedure. Since the only changes are médg) tandr* (k),
and sincej is the non-rejected event with minimal probability, the procedure will be repeated at
mostN times. The finat* is in R} and satisfiep; < p, = r(j) > r(k). Contradiction. O

Theorem 3.3 provides a formal justification for tlegv-density rejection strategy (LDR$)opular
in the SCC literature. Specifically, assume W.I.(pg.g p2 < --- < pn. The correspondingvalid

low density rejection function places = 1iff >7_, p; < 4.
Our discussion on soft decisions is facilitated by Property B and Theorem 3.5 that follow.

Definition 3.4 (Property B) Let P be a distribution. A set of distribution@ has Property B w.r.t.
Pifforall j,kand@ € Q suchthatd < p; < pg andZ—j’_ < Z—Z, there exist€)’ € Q such that
4

% Lk =
o >k and for alli # j, k, ¢, = ¢;.

The rather technical proof of the following theorem is omitted for lack of space (and appears in the
adjoining, supplementary appendix).

Theorem 3.5 (Monotone Soft Decisions)f Q satisfies Property B w.r.tP, then3r € R} such
that: (Dp; = 0= r(i) = 1; (i) p; < pr = r(5) > r(k); and (iii) p; = px = r(j) = r(k).

4 Low-Density Rejection and Two-Class Classification

In this section we focus on the hard setting. We show that the low-density rejection strategy (LDRS
- defined in Section 3) is optimal. Moreover we show that the optimal hard performance can be ob-
tained by solving a constrained two-class classification problem where the other class is the uniform
distribution over2. The results here consider famili€sthat satisfy the following property.

Definition 4.1 (Property C) Let P be a distribution. A set of distribution@ has Property C w.r.t.
Pifforall j,kand@ € Q such thatp; = p;, there existx)’ € Q such thalg;, = g, ¢; = g and
forall i # j,k, ¢} = ¢.

We state without proof the following lemma (the proof can be found in the appendix).

Lemma 4.2 Letr* be ad-valid low-density rejection function (LDRS). Lebe any monotoné-
valid rejection function. Themingeo p*(Q) > minge o p(Q) for any Q satisfying Property C.

Example 4.3 (Violation of Property C) We illustrate here that violating Property C may result in
a violation of Lemma 4.2. Le¥V = 5, P = (0.02,0.03,0.05,0.05,0.85), andé = 0.1. Then the
two ¢-valid LDRS rejection functions are= (1,1,1,0,0) andr’ = (1,1,0,1,0). LetQ = {Q :

g3 — qa > ¢} forsome0 < e < 1. Then, foranyQ € Q, p(Q) — p'(Q) = g3 — ¢4 > ¢, and
therefore, for the LDRS?, there exists a monotonmesuch thatminge o p/'(Q) < mingeo p(Q).

“Here we must consider a weaker notion of monotonicity for hard strategies to be both valid and optimal.



When Q satisfies Property A, then by Theorem 3.3 there exists a monofatiteal rejection func-
tion. Therefore, the following corollary of Lemma 4.2 establishes the optimality of any LDRS.

Corollary 4.4 Anyé-valid LDRS is optimal iQ satisfies both Property A and Property C.

Thus, any LDRS strategy is indeed worst-case optimal when the learner is willing to be confined
to hard rejection functions and when the adversary’s space satisfies Property A and Property C. We
now show that an (optimal) LDRS solution is equivalent to an optimal solution of the following
constrainedBayesian two-class decision problem. Let the first ctadsave distribution”(z) and

the second clasg;, have the uniform distributiof/ (z) = 1/N. Let0 < ¢ < 1 and0 < € <
(Noc+1—c)/Ndc. The classes have prioPs{c; } = candPr{c2} = 1—c. Theloss function,;,

giving the cost of deciding; instead of; (i, 7 = 1,2),iS A1 = Aoz = 0, A\12 = (Ne+1—c¢)/(1—c)

and)y; = e. The goal is to construct a classifiéfz) € {c1, c2) that minimizes the total Bayesian

risk under the constraint that, for a given}_, -(,)_., P(z) < ¢. We term this problem “the
Bayesian binary problem.”

Theorem 4.5 An optimal binary classifier for the Bayesian binary problem induces an optimal
(hard) solution to the SCC problem (an LDRS) whgsatisfies properties A and C.

Proof Sketch: Let C*(-) be an optimal classifier for the Bayesian binary problem. Any classifier
C(-) induces a hard rejection functien-) by takingr(z) = 1 < C(x) = co. Therefore, the set of
feasible classifiers (satisfying the constraint) clearly inddegsP). Let M;(C) £ {z : C(z) = i}.
Note that the constraint is equivalentEmeMz(c) P(x) < §. The Bayes risk for classifying

asi is R;(z) = \y Pr{ci|z} + Ai3—i) Pries—ilr} = Aj3_;) Pr{cz_i|x}. The total Bayes risk is

R(C) £ > vern () B1(@) + 2 e, (o) Re(x), which is minimized atC* (-). Itis not difficult to
show thatR; (-) and R»(-) are monotonically decreasing and increasing, respectively. It therefore
follows thatz € M;(C*), y € My(C*) = P(z) > P(y) (otherwise, by swapping™*(z) and
C*(y), the constraint can be maintained aRC"*) decreased). It is also not difficult to show that
Ri(z) = 1 > Ro(x) foranyz. Thus, it follows thaty >, ./, o) P(y) + mingens, o) P(z) > 6
(otherwise, some: could be transferred from/; (C*) to My(C*), reducingR(C*)). Together,
these two properties immediately imply th@t (-) induces &-valid LDRS. O

Theorem 4.5 motivates a different approach to SCC in which we sample from the uniform distribu-
tion over(2 and then attempt to approximate the optimal Bayes solution to the constrained binary
problem. It also justifies certain heuristics found in the literature [10, 11].

5 The Omniscient Adversary: Games, Strategies and Bounds

5.1 Unrestricted Adversary

In the first game we analyze an adversary who is completely unrestricted. This meag@sishat
the set of all distributions. Unsurprisingly, this game leaves little opportunity for the learner. For

any rejection function'(-), definer,i, = min; 7(i) and i () = {i : (i) = rmin}. For any
distribution D, p(D) = SN dir(i) > SN ditmin = Tamin, in particular,d = p(P) > Tmin
andming p(Q) > rmin. By choosing@ such thaty; = 1 for some: € I, (r), the adversary
can achieve)(Q) = r,:n (the same rejection rate is achieved by taking @with ¢; = 0 for alll

i & Inin(r)). In the soft settingming p(Q) is maximized by the rejection functiord (i) £ §for

all p; > 0 (r°(i) £ 1 for all p; = 0) This is equivalent to flipping @-biased coin for non-null
events (undeP). The best achievable Type Il Erroris— ¢. In the hard setting, clearly,,;, = 0
(otherwisel > § > 1), and the best achievable Type Il Error is precisely 1. That is, absolutely
nothing can be achieved.

This simple analysis shows the futility of the SCC game when the adversary is too powerful. In
order to consider SCC problems at all one must consider reasonable restrictions on the adversary
that lead to more useful games. One type of restriction would be to limit the adversary’s knowledge
of r(-), P and/or ofs§. Another type would be to directly limit the strategic choices available to the
adversary. In the next section we focus on the latter type.



5.2 A Constrained Adversary

In seeking a quantifiable constraint ght is helpful to recall that the essence of the SCC problem is

to try to distinguish between two probability distributions (albeit one of them unknown). A natural
constraint is a lower bound on the “distance” between these distributions. Following similar results
in hypothesis testing, we would like to consider games in which the adversary mustgsietdi that
D(P||Q) > A, for some constark > 0, whereD(-||-) is the KL-divergence. Unfortunately, this
constraint is vacuous sinde(P||Q) explodes whemr; < p; (for anyi). In this case the adversary

can optimally play the same strategy as in the unrestricted game while meeting the KL-divergence
constraint. Fortunately, by takinB(Q||P) > A, we can effectively constrain the adversary.

We note, as usual, that the learner can (and should) reject with probability 1 any null events under
P. Thus, an adversary would be foolish to choose a distribufiotihat has any probability for

these events. Therefore, we henceforth assume w.l.o.gQthat(P) 2 {w : p, > 0}. Taking
D(Q||P) £ 2N gilog(qi/pi), we then defin@ = Qx = {Q : D(Q||P) > A}. We note thatd,

possesses propertigs B andC w.r.t. P,> and by Theorems 3.3 and 3.5 there exists a monotone
r € Rj (in both the hard and soft settings) and by Corollary 4.4,&wuglid LDRS is hard-optimal.

If max;p; < 2%, then anyQ which is concentrated on a single event meets the constraint
D(QI||P) > A. Then, the adversary can play the same strategy as in the unrestricted game,
and the learner should select as before. For the game to be non-trivial it is thus required that

A > log(1l/ max; p;). Slmllarly, if the optimalr is such that there exists € I,,:,(r) (that is
r(j) = Tmin) @andp; < 274, then a distribution) that is completely concentrated g‘nhas
D(Q||P) > A and achleve$>(Q) = rmin @s in the unrestricted game. Therefare= 7%, and

SO maximizes.,,;,. We thus assume that the optiméias no such.

We begin our analysis of the game by identifying some useful characteristics of optimal adversary
strategies in Lemma 5.1. Then Theorem 5.2 shows that the effective support of an d@ptiraal

a size of two at most. Based on these properties, we provide in Theorem 5.3 a linear program that
computes the optimal rejection function. The following lemma is stated without its (technical) proof.

Lemma 5.1 If Q minimizesp(Q) and meets the constraif(Q||P) > A then: (|)D(Q||P
(i) p; < prandgx, > 0 = r(j) > r(k); (i) p; < pr andg; > 0 = g; 1og— + qklog

(¢; + qr)log "J“‘k ; (iv) p; < prandg; > 0= qJ > 2rand (V)gj, qx > 0 = pj # pr.
Theorem 5.2 Any optimal adversarial strategy has an effective support of size at most two.

Proof Sketch: Assume by contradiction that an optin@at has an effective support of size> 3.
W.l.o.g. we rename events such that the fifgivents are the effective support@f (i.e., g > 0,
i =1,. J) From part (i) of Lemma 5.1Q* is a global minimizer ofp(Q) subject to the

constramtszZ 1giloglt = A, g >0(=1,....J) andZiJ:1 ¢; = 1. The Lagrangian of this
problemis

J J
L(Q,N) = (i) + M (Zqzlog——A>+/\2 (Zqz—1> @
i=1 i=1 i=1

It is not hard to show, using parts (iv) and (v) of Lemma 5.1, thatis an extremum point of (1).
Taking the partial derivatives of (1) we hav%L(Q—A) =7r(i)+ M\ (log + 1) + X2 = 0. Solving

aL(a% A — 8L%Qq2 A for Ay, we geth; = (r(2) —r(1))/(log Z—II —log p—2). If we assume (w.l.0.g.)

thatp; < po, then, from parts (i) and (iv) of Lemma 5.2(2) < r(1) andq;/p1 > ¢3/p2. Thus

A1 < 0. Therefore, for alf, £ Lan A) — = 2 <0, and (1) is strictly concave. Therefore, sin@eis

an extremum of the (strictly concave) Lagrang|an function, it is the unique global maximum.

By part (iv) of Lemma 5.1, the smooth functigip o (¢1, g2, - - ., qs—1) = D(Q||P) — A has a root
at@Q* where no partial derivative is zero. Therefore, it has an |nf|n|te number of roots in any convex

SFor any pairj, k such thap; < pi, D(Q||P) does not decrease by transferring all the probability fiom
t0jin Q: ¢;log 2 + gi log 2 < (q; + qi) log L.



domain where)* is an internal point. Thus, there exists another distributipgt Q*, whereg; > 0
fori =1,...,J, which meets the equality criteria of the Lagrangian. Si§¢es the unique global

maximum ofL(Q, \): p(Q) = L(Q, \) < L(Q*, \) = p(Q*). Contradiction. O

We now turn our attention to the learner’s selectiom@f. As already noted, it is sufficient for the
learner to consider only monotone rejection functions. Since for these fungtieag;, = r(j) =
r(k), the learner can partitioft into X = K (P) event subsets, which correspond, by probability,
to “level sets”,S1, 5o, ..., Sk (all events in a level se¥ have probabilityPs). We re-index these
subsets such théit< Ps, < Ps, < --- < Pgs, . DefineK variablesry, 7, ..., rx, representing
the rejection rate assigned to each of fidevel sets{w € S;, r(w) = r;). We group our level sets
by probability: L = {S: Ps < 272}, M = {S: Ps = 27"}, andH = {S : Ps > 27A}.

By Theorem 5.2, the optimd&) which the adversary selects will have an effective support of size

2 at most. If it has an effective support of size 1, then the exefar which ¢, = 1 cannot be

from a level set inl, or H (otherwise, part (i) of Lemma 5.1 would be violated). Therefore it must
belong to the single level set . Thus, if M = {S,,,} (for some indexn), then there are feasible
solutions@ such thatg, = 1 (for w € S,,,), all of which havep(Q) = r,,. If, on the other hand,

Q@ has an effective support of size 2, then it is not hard to show that one of the two events must
be from a level seb; € L, and the other, from a level s}, € H (since all other combinations
result in a violation of either part (i) or part (iii) of Lemma 5.1). Then, there is a single solution to
qlog #- + (1 —q)log 113;5‘}1; = A, wheregq; and1 — ¢; are the probabilities thap assigns to the
events fromS; andS},, respectively. For such a distribution(@Q) = ¢, + (1 — q)7p.

Therefore, the adversary’s choice of an optimal distribut@nmust have one ofL||H| + | M| <

[KTZW (possibly different) rejection rates. Each of these ratesps, . .., p|| m|+| M|, 1S @ linear
combination of at most two variablesg,andr;. We introduce an additional variable,to represent
the max-min rejection rate. We thus have:

Theorem 5.3 An optimal soft rejection function and the lower-bound on the Type Il Etrer,z, is
obtained by solving the following linear prografmaximize, ,, . ... 2z, subjectto:

K
ZT1|51|P51:67 127‘1 ZTQZZTKZOa pzZZa 26{11277|L||H|+|M|}
i=1

5.2.1 Numerical Examples

We now compare the performance of hard and soft rejection strategies for this constrained game
(D(Q]|P) > A) for various values of\, and two different families of target distributionB, over
supportN = 50. The families are arbitrary probability mass functions ofemrvents and dis-
cretized Gaussians (ovéf bins). For each\ we generated 50 random distributioRsor each of

the families’! For each suchP we solved the optimal hard and soft strategies and computed the
corresponding worst-case optimal type Il erfof; p(Q).

The results fov = 0.05 are shown in Figure 5.2.1. Other results (not presented) for a wide variety
of the problem parameters (e.g/, ¢) are qualitatively the same. It is evident that both the soft and
hard strategies are ineffective for small Clearly, the soft approach has significantly lower error
than the hard approach (untilbecomes “sufficiently large”).

SLet r* be the solution to the linear program. Our derivation of the linear program is dependent on the
assumption that there is no evene Im:n(r*) such thap; < 2~ (see discussion preceding Lemma 5.1). If
r* contradicts this assumption then, as discussed, the optimal stratelgynikich is optimal. It is not hard to
prove that in this case® = r° anyway, and thus the solution to the linear program is always optimal.

"Sincemaxg D(Q||P) = log(1/ min; p;), it is necessary thanin; p; < 2~* when generating® (to
ensure that a\-distant@ exists). Distributions in the first family of arbitrarily random distributions (a) are
generated by sampling a point§ uniformly in (0, 27*]. The otherN — 1 points are drawn i.i.d~ U(0, 1],
and then normalized so that their sumlis- p;. The second family (b) are Gaussians centered and
discretized overV evenly spaced bins in the range10, 10]. A (discretized) random Gaussia(0, o) is
selected by choosing uniformly in some rang@ min, Omaz|. Tmin iS set to the minimuna ensuring that the
first/last bin will not have “zero” probability (due to limited precisiony,... was set so that the cumulative
probability in the first/last bin will b@ =, if possible (otherwise ... is arbitrarily set tol0 * opin).
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Figure 1: Type Il Error vsA, for N = 50 andé = 0.05. 50 distributions were generated for each
value ofA (A = 0.5,0.1,--- ,12.5). Error bars depict standard error of the mean (SEM).

6 Concluding Remarks

We have introduced a game-theoretic approach to the SCC problem. This approach lends itself well
to analysis, allowing us to prove under what conditions low-density rejection is hard-optimal and if
an optimal monotone rejection function is guaranteed to exist. Our analysis introduces soft decision
strategies, which allow for significantly better performance. Observing the learner’s futility when
facing an omniscient and unlimited adversary, we considered restricted adversaries and provided
full analysis of an interesting family of constrained games. This work opens up many new avenues
for future research. We believe that our results could be useful for inspiring new algorithms for
finite-sample SCC problems. For example, the equivalence of low-density rejection to the Bayesian
binary problem as shown in Section 3.3 obviously motivates a new approach. Clearly, the utilization
of randomized strategies should be carried over to the finite sample case as well. Our approach can
be extended and developed in several ways. A very interesting setting to consider is one in which the
adversary has partial knowledge of the problem parameters and the learner’s strategy. For example,
the adversary may only know th&t is in some subspace. Additionally, it is desirable to extend

our analysis to infinite and continuous event spaces. Finally, it would be very nice to determine an
explicit expression for the lower bound obtained by the linear program of Theorem 5.3.
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