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Abstract

Multinomial logistic regression provides the standard penalised maximum-
likelihood solution to multi-class pattern recognition problems. More recently,
the development of sparse multinomial logistic regression models has found ap-
plication in text processing and microarray classification, where explicit identifi-
cation of the most informative features is of value. In this paper, we propose a
sparse multinomial logistic regression method, in which the sparsity arises from
the use of a Laplace prior, but where the usual regularisation parameter is inte-
grated out analytically. Evaluation over a range of benchmark datasets reveals
this approach results in similar generalisation performance to that obtained using
cross-validation, but at greatly reduced computational expense.

1 Introduction

Multinomial logistic and probit regression are perhaps the classic statistical methods for multi-class
pattern recognition problems (for a detailed introduction, see e.g. [1, 2]). The output of a multino-
mial logistic regression model can be interpreted as ana-posterioriestimate of the probability that
a pattern belongs to each ofc disjoint classes. The probabilistic nature of the multinomial logistic
regression model affords many practical advantages, such as the ability to set rejection thresholds
[3], to accommodate unequal relative class frequencies in the training set and in operation [4], or
to apply an appropriate loss matrix in making predictions that minimise the expected risk [5]. As
a result, these models have been adopted in a diverse range of applications, including cancer clas-
sification [6, 7], text categorisation [8], analysis of DNA binding sites [9] and call routing. More
recently, the focus of research has been on methods for inducing sparsity in (multinomial) logistic
or probit regression models. In some applications, the identification of salient input features is of
itself a valuable activity; for instance in cancer classification from micro-array gene expression data,
the identification ofbiomarkergenes, the pattern of expression of which is diagnostic of a particular
form of cancer, may provide insight into the ætiology of the condition. In other applications, these
methods are used to select a small number of basis functions to form a compact non-parametric clas-
sifier, from a set that may contain many thousands of candidate functions. In this case the sparsity
is desirable for the purposes of computational expediency, rather than as an aid to understanding the
data.



A variety of methods have been explored that aim to introduce sparsity in non-parametric regression
models through the incorporation of a penalty or regularisation term within the training criterion. In
the context of least-squares regression using Radial Basis Function (RBF) networks, Orr [10], pro-
poses the use of local regularisation, in which a weight-decay regularisation term is used with distinct
regularisation parameters for each weight. The optimisation of the Generalised Cross-Validation
(GCV) score typically leads to the regularisation parameters for redundant basis functions achiev-
ing very high values, allowing them to be identified and pruned from the network (c.f. [11, 12]).
The computational efficiency of this approach can be further improved via the use of Recursive Or-
thogonal Least Squares (ROLS). The relevance vector machine (RVM) [13] implements a form of
Bayesian automatic relevance determination (ARD), using a separable Gaussian prior. In this case,
the regularisation parameter for each weight is adjusted so as to maximise the marginal likelihood,
also known as the Bayesianevidencefor the model. An efficient component-wise training algorithm
is given in [14]. An alternative approach, known as the LASSO [15], seeks to minimise the negative
log-likelihood of the sample, subject to an upper bound on the sum of the absolute value of the
weights (see also [16] for a practical training procedure). This strategy is equivalent to the use of a
Laplace prior over the model parameters [17], which has been demonstrated to control over-fitting
and induce sparsity in the weights of multi-layer perceptron networks [18]. The equivalence of the
Laplace prior and a separable Gaussian prior (with appropriate choice of regularisation parameters)
has been established by Grandvalet [11, 12], unifying these strands of research.

In this paper, we demonstrate that, in the case of the Laplace prior, the regularisation parameters
can be integrated out analytically, obviating the need for a lengthy cross-validation based model
selection stage. The resulting sparse multinomial logistic regression algorithm with Bayesian regu-
larisation (SBMLR) is then fully automated and, having storage requirements that scale only linearly
with the number of model parameters, is well suited to relatively large-scale applications. The re-
mainder of this paper is set out as follows: The sparse multinomial logistic regression procedure
with Bayesian regularisation is presented in Section 2. The proposed algorithm is then evaluated
against competing approaches over a range of benchmark learning problems in Section 3. Finally,
the work is summarised in Section 5 and conclusion drawn.

2 Method

LetD = {(xn, tn)}ℓn=1 represent the training sample, wherex
n ∈ X ⊂ R

d is the vector of input
features for theith example, andtn ∈ T = {t | t ∈ {0, 1}c, ‖t‖1 = 1} is the corresponding vector
of desired outputs, using the usual 1-of-c coding scheme. Multinomial logistic regression constructs
a generalised linear model [1] with asoftmaxinverse link function [19], allowing the outputs to be
interpreted asa-posterioriestimates of the probabilities of class membership,

p(tni |xn) = yn
i =

exp{an
i }

∑c
j=1 exp{an

j }
where an

i =
d

∑

j=1

wijx
n
j (1)

Assuming thatD represents an i.i.d. sample from a conditional multinomial distribution, then the
negative log-likelihood, used as a measure of the data-misfit, can be written as,

ED =

ℓ
∑

n=1

En
D = −

ℓ
∑

n=1

c
∑

i=1

tni log {yn
i }

The parameters,w of the multinomial logistic regression model are given by the minimiser of a
penalised maximum-likelihood training criterion,

L = ED + αEW where EW =
c

∑

i=1

d
∑

j=1

|wij | (2)

andα is a regularisation parameter [20] controlling the bias-variance trade-off [21]. At a minima of
L, the partial derivatives ofL with respect to the model parameters will be uniformly zero, giving
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This implies that if the sensitivity of the negative log-likelihood with respect to a model parameter,
wij , falls belowα, then the value of that parameter will be set exactly to zero and the corresponding
input feature can be pruned from the model.

2.1 Eliminating the Regularisation Parameters

Minimisation of (2) has a straight-forward Bayesian interpretation; the posterior distribution forw,
the parameters of the model given by (1), can be written as

p(w|D) ∝ P (D|w)P (w).

L is then, up to an additive constant, the negative logarithm of the posterior density. The prior over
model parameters,w, is then given by a separable Laplace distribution

P (w) =
(α

2

)W

exp{−αEW} =

W
∏

i=1

α

2
exp {−α|wi|} , (3)

whereW is the number of active (non-zero) model parameters. A good value for the regularisation
parameterα can be estimated, within a Bayesian framework, by maximising theevidence[22] or
alternatively it may be integrated out analytically [17, 23]. Here we take the latter approach, where
the prior distribution over model parameters is given by marginalising overα,

p(w) =

∫

p(w|α)p(α)dα.

As α is a scale parameter, an appropriate ignorance prior is given by the improper Jeffrey’s prior,
p(α) ∝ 1/α, corresponding to a uniform prior overlog α. Substituting equation (3) and noting that
α is strictly positive,

p(w) =
1

2W

∫ ∞

0

αW−1 exp{−αEW}dα.

Using the Gamma integral,
∫ ∞

0
xν−1e−µxdx = Γ(ν)

µν [24, equation 3.384], we obtain

p(w) =
1

2W

Γ(W )

EW
W

=⇒ − log p(w) ∝W log EW ,

giving a revised optimisation criterion for sparse logistic regression with Bayesian regularisation,

M = ED + W log EW , (4)

in which the regularisation parameter has been eliminated, for further details and theoretical justi-
fication, see [17]. Note that we integrate out the regularisation parameter and optimise the model
parameters, which is unusual in that most Bayesian approaches, such as the relevance vector ma-
chine [13] optimise the regularisation parameters and integrate over the weights.

2.1.1 Practical Implementation

The training criterion incorporating a fully Bayesian regularisation term can be minimised via a
simple modification of existing cyclic co-ordinate descent algorithms for sparse regression using a
Laplace prior (e.g. [25, 26]). Differentiating the original and modified training criteria, (2) and (4)
respectively, we have that

∇L = ∇ED + α∇EW and ∇M = ∇ED + α̃∇EW

where

1/α̃ =
1

W

W
∑

i=1

|wi|. (5)

From a gradient descent perspective, minimisingM effectively becomes equivalent to minimising
L, assuming that the regularisation parameter,α, is continuously updated according to (5) following
every change in the vector of model parameters,w [17]. This requires only a very minor modifica-
tion of the existing training algorithm, whilst eliminating the only training parameter and hence the
need for a model selection procedure in fitting the model.



2.1.2 Equivalence of Marginalisation and Optimisation under the Evidence Framework

Williams [17] notes that, at least in the case of the Laplace prior, integrating out the regularisation pa-
rameter analytically is equivalent to its optimisation under the evidence framework of MacKay [22].
The argument provided by Williams can be summarised as follows: The evidence framework sets
the value of the regularisation parameter so as to optimise the marginal likelihood,

P (D) =

∫

P (D|w)P (w)dw,

also known as theevidencefor the model. The Bayesian interpretation of the regularised objective
function gives,

P (D) =
1

ZW

∫

exp {−L} dw,

whereZW is a normalising constant for the prior over the model parameters, for the Laplace prior,
ZW = (2/α)W . In the case of multinomial logistic regression,ED represents the negative logarithm
of a normalised distribution, and so the corresponding normalising constant for the data misfit term
is redundant. Unfortunately this integral is analytically intractable, and so we adopt the Laplace
approximation, corresponding to a Gaussian posterior distribution for the model parameters, centred
on their most probable value,w

MP,

L(w) = L(wMP) +
1

2
(w −w

MP)T
A(w −w

MP)

whereA = ∇∇L is the Hessian of the regularised objective function. The regulariser corresponding
to the Laplace prior is locally a hyper-plane, and so does not contribute to the Hessian and so
A = ∇∇ED. The negative logarithm of the evidence can then be written as,

− log P (D) = ED + αEW +
1

2
log |A|+ log ZW + constant.

Setting the derivative of the evidence with respect toα to zero, gives rise to a simple update rule for
the regularisation parameter,

1

α̃
=

1

W

W
∑

j=1

|wj |,

which is equivalent to the update rule obtained using the integrate-out approach. Maximising the
evidence for the model also provides a convenient means for model selection. Using the Laplace
approximation, evidence for a multinomial logistic regression model under the proposed Bayesian
regularisation scheme is given by

− log {D} = ED + W log EW − log

{

Γ (W )

2W

}

+
1

2
log |A|+ constant

whereA = ∇∇L.

2.2 A Simple but Efficient Training Algorithm

In this study, we adopt a simplified version of the efficient component-wise training algorithm of
Shevade and Keerthi [25], adapted for multinomial, rather than binomial, logistic regression. The
principal advantage of a component-wise optimisation algorithm is that the Hessian matrix is not
required, but only the first and second partial derivatives of the regularised training criterion. The
first partial derivatives of the data mis-fit term are given by,

∂En
D

∂an
j

=
c

∑

i=1

∂En
D

∂yn
i

∂yn
i

∂an
j

where
∂En

D

∂yn
i

= − tni
yn

i

,
∂yn

i

∂an
j

= yiδij − yiyj

andδij = 1 if i = j and otherwiseδij = 0. Substituting, we obtain,
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ℓ
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Similarly, the second partial derivatives are given by,

∂2ED

∂wij

=

ℓ
∑

n=1

xn
j

∂yn
i

∂wij

=

ℓ
∑

n=1

yn
i (1− yn

i )
[

xn
j

]2
.

The Laplace regulariser is locally a hyperplane, with the magnitude of the gradient given by the
regularisation parameter,α,

∂αEW

∂wij

= sign {wij}α and
∂2αEW

∂w2
ij

= 0.

The partial derivatives of the regularisation term are not defined at the origin, and so we define the
effectivegradient of the regularised loss function as follows:

∂L

∂wij

=



























∂ED

∂wij
+ α if wij > 0

∂ED

∂wij
− α if wij < 0

∂ED

∂wij
+ α if wij = 0 and ∂ED

∂wij
+ α < 0

∂ED

∂wij
− α if wij = 0 and ∂ED

∂wij
− α > 0

0 otherwise

Note that the value of a weight may be stable at zero if the derivative of the regularisation term
dominates the derivative of the data misfit. The parameters of the model may then be optimised,
using Newton’s method, i.e.

wij ← wij −
∂ED

∂wij

[

∂2ED

∂w2
ij

]−1

.

Any step that causes a change of sign in a model parameter is truncated and that parameter set to
zero. All that remains is to decide on a heuristic used to select the parameter to be optimised in each
step. In this study, we adopt the heuristic chosen by Shevade and Keerthi, in which the parameter
having the steepest gradient is selected in each iteration. The optimisation proceeds using two nested
loops, in the inner loop, only active parameters are considered. If no further progress can be made
by optimising active parameters, the search is extended to parameters that are currently set to zero.
An optimisation strategy based on scaled conjugate gradient descent [27] has also be found to be
effective.

3 Results

The proposed sparse multinomial logistic regression method incorporating Bayesian regularisation
using a Laplace prior (SBMLR) was evaluated over a suite of well-known benchmark datasets,
against sparse multinomial logistic regression with five-fold cross-validation based optimisation of
the regularisation parameter using a simple line search (SMLR). Table 1 shows the test error rate
and cross-entropy statistics for SMLR and SBMLR methods over these datasets. Clearly, there is
little reason to prefer either model over the other in terms of generalisation performance, as neither
consistently dominates the other, either in terms of error rate or cross-entropy. Table 1 also shows
that the Bayesian regularisation scheme results in models with a slightly higher degree of sparsity
(i.e. the proportion of weights pruned from the model). However, the most striking aspect of the
comparison is that the Bayesian regularisation scheme is typically around two orders of magnitude
faster than the cross-validation based approach, with SBMLR being approximately five times faster
in the worst case (COVTYPE).

3.1 The Value of Probabilistic Classification

Probabilistic classifiers, i.e. those that providing ana-posterioriestimate of the probability of class
membership, can be used in minimum risk classification, using an appropriate loss matrix to account
for the relative costs of different types of error. Probabilistic classifiers allow rejection thresholds
to be set in a straight-forward manner. This is particularly useful in a medical setting, where it may
be prudent to refer a patient for further tests if the diagnosis is uncertain. Finally, the output of



Table 1: Evaluation of linear sparse multinomial logistic regression methods over a set of nine
benchmark datasets. The best results for each statistic are shown in bold. The final column shows
the logarithm of the ratio of the training times for the SMLR and SBMLR, such that a value of 2
would indicate that SBMLR is 100 times faster than SMLR for a given benchmark dataset.

Benchmark
Error Rate Cross Entropy Sparsity

log
10

TSMLR

TSBMLRSBMLR SMLR SBMLR SMLR SBMLR SMLR

Covtype 0.4051 0.4041 0.9590 0.9733 0.4312 0.3069 0.6965
Crabs 0.0350 0.0500 0.1075 0.0891 0.2708 0.0635 2.7949
Glass 0.3318 0.3224 0.9398 0.9912 0.4400 0.4700 1.9445
Iris 0.0267 0.0267 0.0792 0.0867 0.4067 0.4067 1.9802
Isolet 0.0475 0.0513 0.1858 0.2641 0.9311 0.8598 1.3110
Satimage 0.1610 0.1600 0.3717 0.3708 0.3694 0.2747 1.3083
Viruses 0.0328 0.0328 0.1670 0.1168 0.8118 0.7632 2.1118
Waveform 0.1290 0.1302 0.3124 0.3131 0.3712 0.3939 1.8133
Wine 0.0225 0.0281 0.0827 0.0825 0.6071 0.5524 2.5541

a probabilistic classifier can be adjustedafter training to compensate for a difference between the
relative class frequencies in the training set and those observed in operation. Saerens [4] provides
a simple expectation-maximisation (EM) based procedure for estimating unknown operationala-
priori probabilities from the output of a probabilistic classifier (c.f. [28]). Letpt (Ci) represent the
a-priori probability of classCi in the training set andpt (Ci|xn) represent the raw output of the
classifier for thenth pattern of the test data (representing operational conditions). The operational
a-priori probabilities,po (Ci) can then be updated iteratively via

p(s)
o (ωi|xn) =

p(s)
o (ωi)
pt(ωi)

pt(ωi|xn)

∑c
j=1

p
(s)
o (ωj)
pt(ωj)

pt(ωj |xn)
and p(s+1)

o (ωi) =
1

ℓ

N
∑

n=1

p(s)
o (ωi|xn), (6)

beginning withp
(0)
o (Ci) = pt (Ci). Note that the labels of the test examples are not required for

this procedure. The adjusted estimates ofa-posterioriprobability are then given by the first part
of equation (6). The training and validation sets of theCOVTYPE benchmark have been artificially
balanced, by random sampling, so that each class is represented by the same number of examples.
The test set consists of the unused patterns, and so the test seta-priori probabilities are both highly
disparate and very different from the training seta-priori probabilities. Figure 1 and Table 2 sum-
marise the results obtained using the raw and corrected outputs of a linear SBMLR model on this
dataset, clearly demonstrating a key advantage of probabilistic classifiers over purely discriminative
methods, for example the support vector machine (note the same procedure could be applied to the
SMLR model with similar results).

Table 2: Error rate and average cross-
entropy score for linear SBMLR models of the
COVTYPE benchmark, using the raw and cor-
rected outputs.

Statistic Raw Corrected
Error Rate 40.51% 28.57%

Cross-Entropy 0.9590 0.6567
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4 Relationship to Existing Work

The sparsity inducing Laplace density has been utilized previously in [15, 25, 26, 29–31] and
emerges as the marginal of a scale-mixture-of-Gaussians where the corresponding prior is an Expo-
nential such that

∫

Nw(0, τ)Eτ (γ)dτ =
α

2
exp(−α|w|)

whereEτ (γ) is an Exponential distribution overτ with parameterγ andα =
√

γ. In [29] this
hierarchical representation of the Laplace prior is utilized to develop an EM style sparse binomial
probit regression algorithm. The hyper-parameterα is selected via cross-validation but in an attempt
to circumvent this requirement a Jeffreys prior is placed onτ and is used to replace the exponential
distribution in the above integral. This yields an improper parameter free prior distribution over
w which removes the explicit requirement to perform any cross-validation. However, the method
developed in [29] is restricted to binary classification and has compute scalingO(d3) which prohibits
its use on moderately high-dimensional problems.

Likewise in [13] the RVM employs a similar scale-mixture for the prior where now the Exponential
distribution is replaced by a Gamma distribution whose marginal yields a Student prior distribution.
No attempt is made to estimate the associated hyper-parameters and these are typically set to zero
producing, as in [29], a sparsity inducing improper prior. As with [29] the original scaling of [13] is,
at worst,O(d3), though more efficient methods have been developed in [14]. However the analysis
holds only for a binary classifier and it would be non-trivial to extend this to the multi-class domain.

A similar multinomial logistic regression model to the one proposed in this paper is employed in
[26] where the algorithm is applied to large scale classification problems and yet they, as with [25],
have to resort to cross-validation in obtaining a value for the hyper-parameters of the Laplace prior.

5 Summary

In this paper we have demonstrated that the regularisation parameter used in sparse multinomial lo-
gistic regression using a Laplace prior can be integrated out analytically, giving similar performance
in terms of generalisation as is obtained using extensive cross-validation based model selection, but
at a greatly reduced computational expense. It is interesting to note that the SBMLR implements a
strategy that is exactly the opposite of the relevance vector machine (RVM) [13], in that it integrates
over the hyper-parameter and optimises the weights, rather than marginalising the model parameters
and optimising the hyper-parameters. It seems reasonable to suggest that this approach is feasible
in the case of the Laplace prior as the pruning action of this prior ensures that values of all of the
weights are strongly determined by the data misfit term. A similar strategy has already proved ef-
fective in cancer classification based on gene expression microarray data in a binomial setting [32],
and we plan to extend this work to multi-class cancer classification in the near future.
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