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Abstract

We consider the problem of inferring the structure of a network from co-
occurrence data: observations that indicate which nodes occur in a signaling path-
way but do not directly reveal node order within the pathway. This problem is
motivated by network inference problems arising in computational biology and
communication systems, in which it is difficult or impossible to obtain precise
time ordering information. Without order information, every permutation of the
activated nodes leads to a different feasible solution, resulting in combinatorial
explosion of the feasible set. However, physical principles underlying most net-
worked systems suggest that not all feasible solutions are equally likely. Intu-
itively, nodes that co-occur more frequently are probably more closely connected.
Building on this intuition, we model path co-occurrences as randomly shuffled
samples of a random walk on the network. We derive a computationally efficient
network inference algorithm and, via novel concentration inequalities for impor-
tance sampling estimators, prove that a polynomial complexity Monte Carlo ver-
sion of the algorithm converges with high probability.

1 Introduction

The study of complex networked systems is an emerging field impacting nearly every area of engi-
neering and science, including the important domains of biology, cognitive science, sociology, and
telecommunications. Inferring the structure of signalling networks from experimental data precedes
any such analysis and is thus a basic and fundamental task. Measurements which directly reveal net-
work structure are often beyond experimental capabilities or are excessively expensive. This paper
addresses the problem of inferring the structure of a network from co-occurrence data: observations
which indicate nodes that are activated in each of a set of signaling pathways but do not directly re-
veal the order of nodes within each pathway. Co-occurrence observations arise naturally in a number
of interesting contexts, including biological and communication networks, and networks of neuronal
colonies.

Biological signal transduction networks describe fundamental cell functions and responses to envi-
ronmental stress [1]. Although it is possible to test for individual, localized interactions between
gene pairs, this approach (called genetic epistatic analysis) is expensive and time-consuming. High-
throughput measurement techniques such as microarrays have successfully been used to identify
the components of different signal transduction pathways [2]. However, microarray data only re-
flects order information at a very coarse, unreliable level. Developing computational techniques for
inferring pathway orders is a largely unexplored research area [3].

A similar problem has been studied in telecommunication networks [4]. In this context, each path
corresponds to a transmission between an origin and destination. The origin and destination are ob-
served, in addition to the activated switches/routers carrying the transmission through the network.



However, due to the geographically distributed nature of the measurement infrastructure and the ra-
pidity at which transmissions are completed, it is not possible to obtain precise ordering information.

Another exciting potential application arises in neuroimaging [5,6]. Functional magnetic resonance
imaging provides images of brain activity with high spatial resolution but has relatively poor tempo-
ral resolution. Treating distinct brain regions as nodes in a functional brain network that co-activate
when a subject performs different tasks may lead to a similar network inference problem.

Given a collection of co-occurrences, a feasible network (consistent with the observations) is easily
obtained by assigning an order to the elements of each co-occurrence, thereby specifying a path
through the hypothesized network. Since any arbitrary order of each co-occurrence leads to a feasi-
ble network, the number of feasible solutions is proportional to the number of permutations of all the
co-occurrence observations. Consequently we are faced with combinatorial explosion of the feasible
set, and without additional assumptions or side information there is no reason to prefer one particular
feasible network over the others. See the supplementary document [7] for further discussion.

Despite the apparent intractability of the problem, physical principles governing most networks
suggest that not all feasible solutions are equally plausible. Intuitively, nodes that co-occur more
frequently are more likely to be connected in the underlying network. This intuition has been used
as a stepping stone by recent approaches proposed in the context of telecommunications [4], and in
learning networks of collaborators [8]. However, because of their heuristic nature, these approaches
do not produce easily interpreted results and do not readily lend themselves to analysis or to the
incorporation of side information.

In this paper, we model co-occurrences as randomly permuted samples of a random walk on the
underlying network. The random permutation accounts for lack of observed order. We refer to this
process as the shuffled Markov model. In this framework, network inference amounts to maximum
likelihood estimation of the parameters governing the random walk (initial state distribution and
transition matrix). Direct maximization is intractable due to the highly non-convex log-likelihood
function and exponential feasible set arising from simultaneously considering all permutations of all
co-occurrences. Instead, we derive a computationally efficient EM algorithm, treating the random
permutations as hidden variables. In this framework the likelihood factorizes with respect to each
pathway/observation, so that the computational complexity of the EM algorithm is determined by
the E-step which is only exponential in the longest path. In order to handle networks with long
paths, we propose a Monte Carlo E-step based on a simple, linear complexity importance sampling
scheme. Whereas the exact E-step has computational complexity which is exponential in path length,
we prove that a polynomial number of importance samples suffices to retain desirable convergence
properties of the EM algorithm with high probability. In this sense, our Monte Carlo EM algorithm
breaks the curse of dimensionality using randomness.

It is worth noting that the approach described here differs considerably from that of learning the
structure of a directed graphical model or Bayesian network [9, 10]. The aim of graphical mod-
elling is to find a graph corresponding to a factorization of a high-dimensional distribution which
predicts the observations well. These probabilistic models do not directly reflect physical structures,
and applying such an approach to co-occurrences would ignore physical constraints inherent to the
observations: co-occurring vertices must lie along a path in the network.

2 Model Formulation and EM Algorithm

2.1 The Shuffled Markov Model

We model a network as a directed graphG = (V,E), whereV = {1, . . . , |V |} is the vertex (node)
set andE ⊆ V 2 is the set of edges (direct connections between vertices). An observation,y ⊂ V ,
is a subset of vertices co-activated when a particular stimulus is applied to the network (e.g., col-
lection of signaling proteins activated in response to an environmental stress). Given a set ofT

observations,Y = {y(1), . . . ,y(T )}, each corresponding to a path, wherey(m) = {y(m)
1 , . . . , y

(m)
Nm
},

we say that a graph(V,E) is feasible w.r.t.Y if for each y(m) ∈ Y there is an ordered path
z(m) = (z(m)

1 , . . . , z
(m)
Nm

) and a permutationτ (m)= (τ (m)
1 , . . . , τ

(m)
Nm

) such thatz(m)
t = y

(m)

τ
(m)
t

, and

(zt−1, zt) ∈ E, for t = 2, ..., Nm.



The (unobserved) ordered paths,Z = {z(1), ..., z(T )}, are modelled asT independent samples of
a first-order Markov chain with state setV . The Markov chain is parameterized by the initial state
distributionπ and the (stochastic) transition matrixA. We assume that the support of the transition
matrix is determined by the adjacency structure of the graph;i.e., Ai,j > 0 ⇔ (i, j) ∈ E. Each
observationy(m) results from shuffling the elements ofz(m) via an unobserved permutationτ (m),
drawn uniformly fromSNm

(the set of all permutations ofNm objects); i.e., z
(m)
t = y

(m)

τ
(m)
t

, for

t = 1, . . . , Nm. All the τ (m) are assumed mutually independent and independent of all thez(m).
Under this model, the log-likelihood of the set of observationsY is

log P [Y|A, π] =
T∑

m=1

log

 ∑
τ∈SNm

P [y(m)|τ ,A, π]

− log(Nm!)

 . (1)

whereP [y|τ ,A, π] = πyτ1

∏N
t=2 Ayτt−1 ,yτt

, and network inference consists in computing the
maximum likelihood (ML) estimates(AML ,πML ) = arg maxA,π log P [Y|A, π]. With the ML
estimates in hand, we may determine the most likely permutation for eachy(m) and obtain a feasi-
ble reconstruction from the ordered paths. In general,log P [Y|A, π] is a non-concave function of
(A, π), so finding(AML ,πML ) is not easy. Next, we derive an EM algorithm for this purpose, by
treating the permutations as missing data.

2.2 EM Algorithm

Let w(m) = (w(m)
1 , ...,w(m)

Nm
) be a binary representation ofz(m), defined byw(m)

t = (w(m)
t,1 ,

..., w
(m)
t,|V |) ∈ {0, 1}|V |, with (w(m)

t,i = 1) ⇔ (z(m)
t = i); let W = {w(1), ...,w(T )}. Let

X = {x(1), . . . ,x(T )} be the binary representation forY, defined in a similar way:x(m) =
(x(m)

1 , ...,x(m)
Nm

), wherex(m)
t = (x(m)

t,1 , ..., x
(m)
t,|V |) ∈ {0, 1}|V |, with (x(m)

t,i = 1) ⇔ (y(m)
t = i).

Finally, let R = {r(1), . . . , r(T )} be the collection of permutation matrices corresponding to
T = {τ (1), . . . , τ (T )}; i.e., (r(m)

t,t′ = 1) ⇔ (τ (m)
t = t′). With this notation in place, the com-

plete log-likelihood can be written aslog P [X ,R|A, π] = log P [X|R,A, π] + log P [R], where

log P [X|R,A, π] =
T∑

m=1

log P [x(m)|r(m),A, π]

=
T∑

m=1

|V |∑
i,j=1

Nm∑
t′,t′′=1

Nm∑
t=2

r
(m)
t,t′ r

(m)
t−1,t′′x

(m)
t′′,ix

(m)
t′,j log Ai,j +

T∑
m=1

|V |∑
i=1

Nm∑
t′=1

r
(m)
1,t′ x

(m)
t′,i log πi, (2)

andP [R] is the probability of the set of permutations, which is constant and thus dropped, since the
permutations are independent and equiprobable.

The EM algorithm proceeds by (the E-step) computingQ
(
A, π;Ak,πk

)
=

E
[
log P [X ,R|A, π]

∣∣X ,Ak,πk
]
, the expected value oflog P [X ,R|A, π] w.r.t. the missing

R, conditioned on the observations and on the current model estimate(Ak,πk). Examining
log P [X ,R|A, π] reveals that it is linear w.r.t. simple functions ofR: (a) the first row of each
r(m), i.e., r(m)

1,t′ ; (b) sums of transition indicators,i.e., α(m)
t′,t′′ ≡

∑Nm

t=2 r
(m)
t,t′ r

(m)
t−1,t′′ . Consequently,

the E-step reduces to computing the conditional expectations ofr
(m)
1,t′ and α

(m)
t′,t′′ , denotedr̄

(m)
1,t′

and ᾱ
(m)
t′,t′′ , respectively, and plugging them into the complete log-likelihood (2), which yields

Q
(
A, π;Ak,πk

)
.

Since the permutations are (a priori) equiprobable, we haveP [r(m)] = (Nm!)−1, P
[
r
(m)
1,t′ = 1] =

(Nm − 1)!/Nm! = 1/Nm, andP [r(m)|r(m)
1,t′ = 1] = 1/(Nm − 1)!. Using these facts, the mutual

independence among different observations, and Bayes law, it is not hard to show that

r̄
(m)
1,t′ =

γ
(m)
t′∑Nm

t′=1 γ
(m)
t′

with γ
(m)
t′ =

∑
r: r1,t′=1

P
[
x(m)

∣∣r,Ak,πk
]
, (3)



where each termP
[
x(m)

∣∣r,Ak,πk
]

is easily computed after usingr to “unshuffle”x(m):

P
[
x(m)

∣∣r,Ak,πk
]

= P
[
y(m)

∣∣τ ,Ak,πk
]

= πk

y
(m)
τ1

Nm∏
t=2

Ak

y
(m)
τt−1 ,y

(m)
τt

.

The computation of̄α(m)
t′,t′′ is similar to that of̄r(m)

1,t′ ; the key observations are thatP [r(m)
t,t′ r

(m)
t−1,t′′ =

1] = (Nm − 2)!/Nm! andP [r(m)|r(m)
t,t′ r

(m)
t−1,t′′ = 1] = 1/(Nm − 2)!, leading to

ᾱ
(m)
t′,t′′ =

γ
(m)
t′,t′′∑Nm

t′=1 γ
(m)
t′

, with γ
(m)
t′,t′′ =

∑
r

P [x(m)|r,Ak,πk]
Nm∑
t=2

rt,t′rt−1,t′′ . (4)

Computing{r̄(m)
1,t′ } and{ᾱ(m)

t′,t′′} requiresO
(
Nm!

)
operations. For largeNm, this is a heavy load; in

Section 3, we describe a sampling approach for computing approximations tor̄1,t′ andᾱt′,t′′ .

Maximization ofQ
(
A, π;Ak,πk

)
w.r.t. A andπ, under the normalization constraints, leads to the

M-step:

Ak+1
i,j =

∑T
m=1

∑Nm

t′,t′′=1 ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j∑|S|

j=1

∑T
m=1

∑Nm

t′,t′′=1 ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j

and πk+1
i =

∑T
m=1

∑Nm

t′=1 r̄
(m)
1,t′ x

(m)
t′,i∑|S|

i=1

∑T
m=1

∑Nm

t′=1 r̄
(m)
1,t′ x

(m)
t′,i

.

(5)
Standard convergence results for the EM algorithm due to Boyles and Wu [11,12] guarantee that the
sequence{(Ak,πk)} converges monotonically to a local maximum of the likelihood.

2.3 Handling Known Endpoints

In some applications, (one or both of) the endpoints of each path are known and only the internal
nodes are shuffled. For example, in telecommunications problems, the origin and destination of
each transmission are known, but not the network connectivity. In estimating biological signal
transduction pathways, a physical stimulus (e.g., hypotonic shock) causes a sequence of protein
interactions, resulting in another observable physical response (e.g., a change in cell wall structure);
in this case, the stimulus and response act as fixed endpoints, the goal is to infer the order of the
sequence of protein interactions. Knowledge of the endpoints of each path imposes the constraints
r
(m)
1,1 = 1 andr

(m)
Nm,Nm

= 1. Under the first constraint, estimates of the initial state probabilities

are simply given byπi = 1
T

∑T
m=1 x

(m)
1,i . Thus, EM only needs to be used to estimateA. In this

setup, the E-step has a similar form as (4) but with sums overr replaced by sums over permutation
matrices satisfyingr1,1 = 1 andrN,N = 1. The M-step update forAk+1 remains unchanged.

3 Large Scale Inference via Importance Sampling

For long paths, the combinatorial nature of the exact E-step – summing over all permutations of
each sequence in (3) and (4) – may render exact computation intractable. This section presents a
Monte Carlo importance sampling (see,e.g., [13]) version of the E-step, along with finite sample
bounds guaranteeing that a polynomial complexity Monte Carlo EM algorithm retains desirable
convergence properties of the EM algorithm;i.e., monotonic convergence to a local maximum.

3.1 Monte Carlo E-Step by Importance Sampling

To lighten notation in this section we drop the superscripts from(Ak,πk), using simply(A, π)
for the current parameter estimates. Moreover, since the statisticsᾱ

(m)
t′,t′′ and r̄

(m)
1,t′ depend only

on themth co-activation observation,y(m), we focus on a particular length-Npath observation
y = (y1, y2, . . . , yN ) and drop the superscript(m).

A näıve Monte Carlo approximation would be based on random permutations sampled from the
uniform distribution onSN . However, the reason we resort to approximation techniques in the first



place is thatSN is large, but typically only a small fraction of its elements have non-negligible
posterior probability,P [τ |y,A, π]. Although we would ideally sample directly from the poste-
rior, this would require determining its value for allN ! permutations. Instead, we propose the
following sequential scheme for sampling a permutation using the current parameter estimates,
(A, π). To ensure the same element is not sampled twice we introduce a vector of binary flags,
f = (f1, f2, . . . , f|V |) ∈ {0, 1}|V |. Given a probability distributionp = (p1, p2, . . . , p|V |) on the
vertex set,V , denote byp|f the restriction ofp to those elementsi ∈ V for whichfi = 1; i.e.,

(p|f)i =
pifi∑|V |

j=1 pjfj

, for i = 1, 2, . . . , |V |. (6)

Our sampling scheme proceeds as follows:

Step 1: Initialize f so thatfi = 1 if yt = i for somet = 1, . . . , N , andfi = 0 otherwise.
Sample an elementv from V according to the distributionπ|f onV .
Find t such thatyt = v. Setτ1 = t.
Setfv = 0 to preventyt from being sampled again (ensureτ is a permutation). Seti = 2.

Step 2: Let Av denote thevth row of the transition matrix.
Sample an elementv′ from V according to the distributionAv|f onV .
Find t such thatyt = v′. Setτi = t. Setfv′ = 0.

Step 3: While i < N , updatev ← v′ andi← i + 1 and repeat Step 2; otherwise, stop.

Repeating this sampling procedureL times yields a collection of iid permutationsτ 1, τ 2, . . . , τL,
where the superscript now identifies the sample number; the corresponding permutation matrices
arer1, r2, . . . , rL. Samples generated according to the scheme described above are drawn from a
distributionR[τ |x,A, π] on SN which is different from the posteriorP [τ |x,A, π]. Importance
sample estimates correct for this disparity and are given by the expressions

r̂1,t′ =

∑L
`=1 u`r

`
1,t′∑L

`=1 u`

and α̂t′,t′′ =

∑L
`=1 u`

∑N
t=2 r`

t,t′r
`
t−1,t′′∑L

`=1 u`

, (7)

where the correction factor (or weight) for sampler` is given by

u` =
P [r`|x,A, π]
R[r`|x,A, π]

=
P [τ `|y,A, π]
R[τ `|y,A, π]

=
N∏

t=2

N∑
t′=t

Ay
τ`

t−1
,y

τ`
t′

. (8)

A detailed derivation of the exact form of the induced distribution,R, and the correction factor,u`,
based on the sequential nature of the sampling scheme, along with further discussion and comparison
with alternative sampling schemes can be found in the supplementary document [7]. In fact, terms
in the product (8) are readily available as a byproduct of Step 2 (denominator ofAv|f ).

3.2 Monotonicity and Convergence

Standard EM convergence results directly apply when the exact E-step is used [11, 12]. Let
θk = (Ak,πk). By choosingθk+1 according to (5) we haveθk+1 = arg maxθ Q(θ;θk), and
themonotonicity property,Q(θk+1;θk) ≥ Q(θk;θk), is satisfied. Together with the fact that the
marginal log-likelihood (1) is continuous inθ and bounded above, the monotonicity property guar-
antees that the exact EM iterates converge monotonically to a local maximum oflog P [Y|θ].

When the Monte Carlo E-step is used, we no longer have monotonicity since now the M-step solves

θ̂
k+1

= arg maxθ Q̂(θ; θ̂
k
), whereQ̂ is defined analogously toQ but withᾱ

(m)
t′,t′′ andr̄

(m)
1,t′ replaced

by α̂
(m)
t′,t′′ andr̂

(m)
1,t′ ; for monotonicity we needQ(θ̂

k+1
; θ̂

k
) ≥ Q(θ̂

k
; θ̂

k
). To assure theMonte Carlo

EM algorithm(MCEM) converges, the number of importance samples,L, must be chosen carefully
so thatQ̂ approximatesQ well enough; otherwise the MCEM may be swamped with error.

Recently, Caffo et al. [14] have proposed a method, based on central limit theorem-like arguments,
for automatically adapting the number of Monte Carlo samples used at each EM iteration. They



guarantee what we refer to as an(ε, δ)-probably approximately monotonic(PAM) update, stating

thatQ(θ̂
k+1

; θ̂
k
) ≥ Q(θ̂

k
; θ̂

k
)− ε, with probability at least1− δ.

Rather than resorting to asymptotic approximations, we take advantage of the specific form ofQ

in our problem to obtain the finite-sample PAM result below. BecauseQ̂(θ̂
k+1

; θ̂
k
) involves terms

log Âk
i,j and log π̂k

i , in practice we bound̂Ak
i,j and π̂k

i away from zero to ensure that̂Q does not

blow up. Specifically, we assume a small positive constantθmin so thatÂk
i,j ≥ θmin andπ̂k

i ≥ θmin.

Theorem 1 Let ε, δ > 0 be given. There exist finite constantsbm > 0, independent ofNm, so that
if

Lm =
2b2

mT 2N4
m | log θmin|2

ε2
log

(
2N2

m

1− (1− δ)1/T

)
(9)

importance samples are used for themth observation, thenQ(θ̂
k+1

; θ̂
k
) ≥ Q(θ̂

k
; θ̂

k
) − ε, with

probability greater than1− δ.

The proof involves two key steps. First, we derive finite sample concentration-style bounds for
the importance sample estimates showing,e.g., thatα̂(m)

t′,t′′ converges tōα(m)
t′,t′′ at a rate which is

exponential in the number of importance samples used. These bounds are based on rather novel
concentration inequalities for importance sampling estimators, which may be of interest in their
own right (see the supplementary document [7] for details). Then, accounting for the explicit form
of Q in our problem, the result follows from application of the union bound and the assumptions that
Âk

i,j , π̂
k
i ≥ θmin. In fact, by making a slightly stronger assumption it can be shown that the MCEM

update isprobably monotonic(i.e., (0, δ)-PAM, not approximatelymonotonic) ifL′
m importance

samples are used for themth observation, whereL′
m also depends polynomially onNm andT . See

the supplementary document [7] for further discussion and for the full proof of Theorem 1.

Recall that exact E-step computation requiresNm! operations for themth observation (enumerating
all permutations). The bound above stipulates that the number of importance samples required for a
PAM update is on the order ofN4

m log N2
m. Generating one importance sample using the sequential

procedure described above requiresNm operations. In contrast to the (exponential complexity) exact
EM algorithm, this clearly demonstrates that the MCEM converges with high probability while only
having polynomial computational complexity, and, in this sense, the MCEM meaningfully breaks
the curse of dimensionality by using randomness to preserve the monotonic convergence property.

4 Experimental Results

The performance of our algorithm fornetwork inference from co-occurrences(NICO, pronounced
“nee-koh”) has been evaluated on both simulated data and on a biological data set. In these ex-
periments, network structure is inferred by first executing the EM algorithm to infer the parameters
(A, π) of a Markov chain. Then, inserting edges in the inferred graph based on the most likely order
of each path according to(A, π) ensures the resulting graph is feasible with respect to the obser-
vations. Because the EM algorithm is only guaranteed to converge to a local maximum, we rerun
the algorithm from multiple random initializations and chose the mostly likely of these solutions.
To gauge the performance of our algorithm we use theedge symmetric difference error: the total
number of false positives (edges in the inferred network which do not exist in the true network) plus
the number of false negatives (edges in the true network not appearing in the inferred network).

We simulate co-occurrence observations in the following fashion. A random graph on 50 vertices
is sampled. Disjoint sets of vertices are randomly chosen as path origins and destinations, paths
are generated between each origin-destination pair using the shortest path algorithm with either unit
weight per edge (“shortest path”) or a random weight on each edge (“random routing”), and then
co-occurrence observations are formed from each path. We keep the number of origins fixed at 5
and vary the number of destinations between 5 and 40 to see how the number of observations effects
performance. NICO performance is compared against thefrequency method(FM) described in [4].

Figure 1 plots the edge error for synthetic data generated using (a) shortest path routing, and (b)
random routing. Each curve is the average performance over 100 different network and path real-
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Figure 1: Edge symmetric differences between inferred networks and the network one would obtain
using co-occurrence measurements arranged in the correct order. Performance is averaged over
100 different network realizations. For each configuration 10 NICO and FM solutions are obtained
via different initializations. We then choose the NICO solution yielding the largest likelihood, and
compare with both the sparsest (fewest edges) and clairvoyant best (lowest error) FM solution.

izations. For each network/path realization, the EM algorithm is executed with 10 random initial-
izations. Exact E-step calculation is used for observations withNm ≤ 12, and importance sampling
is used for longer paths. The longest observation in our data hasNm = 19. The FM uses simple
pairwise frequencies of co-occurrence to assign an order independently to each path observation. Of
the 10 NICO solutions (different random initializations), we use the one based on parameter esti-
mates yielding the highest likelihood score which also always gives the best performance. Because
it is a heuristic, the FM does not provide a similar mechanism for ranking solutions from different
initializations. We plot FM performance for two schemes; one based on choosing the sparsest FM
solution (the one with the fewest edges), and one based on clairvoyantly choosing the FM solution
with lowest error. NICO consistently outperforms even the clairvoyant best FM solution.

Our method has also been applied to infer the stress-activated protein kinease (SAPK)/JunN -
terminal kinase (JNK) and NFκB signal transduction pathways1 (biological networks). The clus-
tering procedure described in [2] is applied to microarray data in order to identify 18 co-occurrences
arising from different environmental stresses or growth factors (path source) and terminating in the
production of SAPK/JNK or NFκB proteins. The reconstructed network (combined SAPK/JNK and
NFκB signal transduction pathways) is depicted in Figure 2. This structure agrees with the signalling
pathways identified using traditional experimental techniques which test individually for each pos-
sible edge (e.g., “MAPK” and “NF-κB Signaling” onhttp://www.cellsignal.com ).

5 Conclusion

This paper describes a probabilistic model and statistical inference procedure for inferring network
structure from incomplete “co-occurrence” measurements. Co-occurrences are modelled as samples
of a first-order Markov chain subjected to a random permutation. We describe exact and Monte Carlo
EM algorithms for calculating maximum likelihood estimates of the Markov chain parameters (ini-
tial state distribution and transition matrix), treating the random permutations as hidden variables.
Standard results for the EM algorithm guarantee convergence to a local maximum. Although our
exact EM algorithm has exponential computational complexity, we provide finite-sample bounds
guaranteeing convergence of the Monte Carlo EM variation to a local maximum with high probabil-
ity and with only polynomial complexity. Our algorithm is easily extended to compute maximuma
posterioriestimates, applying a Dirichlet prior to the initial state distribution and to each row of the
Markov transition matrix.

1NFκB proteins control genes regulating a broad range of biological processes including innate and adaptive
immunity, inflammation and B cell development. The NFκB pathway is a collection of paths activated by
various environmental stresses and growth factors, and terminating in the production of NFκB.
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Figure 2: Inferred topology of the combined SAPK/JNK and NFκB signal transduction pathways.
Co-occurrences are obtained from gene expression data via the clustering algorithm described in [2],
and then network is inferred using NICO.
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