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Abstract

Finite mixture model is a powerful tool in many statistical learning problems.

In this paper, we propose a general, structure-preserving approach to reduce its
model complexity, which can bring significant computational benefits in many
applications. The basic idea is to group the original mixture components into
compact clusters, and then minimize an upper bound on the approximation error
between the original and simplified models. By adoptingfihenorm as the dis-
tance measure between mixture models, we can derive closed-form solutions that
are more robust and reliable than using the KL-based distance measure. Moreover,
the complexity of our algorithm is only linear in the sample size and dimensional-
ity. Experiments on density estimation and clustering-based image segmentation
demonstrate its outstanding performance in terms of both speed and accuracy.

1 Introduction

In many statistical learning problems, it is useful to obtain an estimate of the underlying probability
density given a set of observations. Such a density model can facilitate discovery of the underlying
data structure in unsupervised learning, and can also yield, asymptotically, optimal discriminant
procedures [7]. In this paper, we focus on fimite mixture modehich describes the distribution

by a mixture of simple parametric functiogg-)'s as f(x) = >_7_, a;¢(x,0;). Here,0; is the
parameter for thgth component, and the mixing parameters satisfyZ;?:1 a; = 1. The most
common parametric form af is the Gaussian, leading to the well-knoBaussian mixtures

The mixture model has been widely used in clustering and density estimation, where the model
parameters can be estimated by the standard Expectation-Maximization (EM) algorithm. However,
the EM can be prohibitively expensive on large problems [12]. On the other hand, note that in many
learning processes using mixture models (such as particle filtering [6] and non-parametric belief
propagation [13]), the computational requirement is also very demanding due to the large number
of components involved in the model. In this situation, our interest is more on reducing the number
of components for prospective computational saving. Previous works typically employ spatial data
structures, such as the kd-tree [8, 9], for acceleration. Recently, [5] proposes to reduce a large
Gaussian mixture into a smaller one by minimizing a KL-based distance between the two mixtures.
This has been applied with success on hierarchical clustering of scenery images and handwritten
digits.

In this paper, we propose a new algorithm for simplifying a given finite mixture model while preserv-
ing its component structures, with application to nonparametric density estimation and clustering.
The idea is to minimize an upper bound on the approximation error between the original and sim-
plified mixture models. By adopting th, norm as the error criterion, we can derive closed-form
solutions that are more robust and reliable than using the KL-based distance measures. At the same



time, our algorithm can be applied to general Gaussian kernels, and the complexity is only linear in
the sample size and dimensionality.

The rest of the paper is organized as follows. In Section 2 we describe the proposed approach
in detail, and illustrate its advantages compared with the existing ones. In Section 3, we report
experimental results on simplifying the Parzen window estimator, and color image segmentation
through the mean shift clustering procedure. Section 4 gives some concluding remarks.

2 Approximation Algorithm

Given a mixture model
Fx) =) a6;(x), &
j=1
we assume that thi#gh componend; (x) is of the form
¢j(x) = [H;| "V Kn, (x —x;), (2)

with weighta;, centerx; and covariance matrikl,;. Here, Ky (x) = K(H™/%x) whereK (x)

is the kernel that is bounded and has compact support. Note that for radially symmetric kernels, it
suffices to defings by theprofile k such thatk (x) = k(||x]||?). With this notion, the gradient of

the kernel functionK(x), can be conveniently written @ K (x) = k/(r)0xr = 2k’ (r)H ™ 1x,

wherer = xH~'x. Our task is to approximatgwith a simpler mixture model

9(x) = Zwigi(x)v 3)
i=1

with m < n, where each componegtalso takes the form
9i(x) = |ﬁi|71/2Kﬁi (x—ti), (4)

with weightw;, centert;, and covariance matrik;.

Note that direct approximation gf by g is not feasible, because they involve a large number of
components. Given a distance meashife -) between functions, the approximation error

E=D(f,g)=D Zajﬁijzwigi )
=1 i1

is usually difficult to optimize. However, the problem can be very much simplified by minimizing

an upper bound af. Consider the., distanceD (¢, ¢') = [ (¢(x) — ¢ (x))? dx, and suppose that
the mixture componentgs; }7_, are divided into disjoint clusterS;, ..., S,,. Then, itis easy to
see that the approximation er®is bounded by

2 2
E = / Zajgbj(x) — Zwigi(x) dx < mZ/ w;gi(x) — Z a;0;(x) | dx.
j=1 i=1 i=1 JES:
Denote this upper bound &= m >_;" | £;, where
2

&= / w;gi(x) — Z a;0;(x) | dx. (6)

JES:

Note that€ is the sum of the “local” approximation errofg’s. Hence, if we can find a good
representativev; g; for each cluster by minimizing the local approximation erégr the overall
approximation performance can also be guaranteed. This suggests partitioning the original mixture
components into compact clusters, wherein approximation can then be done much more easily. Our
basic algorithm proceeds as follows:



1. (Section 2.1.1) Partition the set of mixture componegiss] into m clusters wheren < n.
Let S; be the set that indexes all components belonging taéttheluster.

2. (Section 2.1.2) For each cluster, approximate the local mixture n@gggi a5 by asingle
componentu; g;, whereg; is defined in (4).

3. The simplified mode} is obtained byy(x) = >~ , w;gi(x).

These steps will be discussed in more detail in the following sections.

2.1 Procedure

2.1.1 Partitioning of Components

In this section, we consider how to group similar components into the same cluster, so that the
subsequent local approximation can be more accurate. A useful algorithm for this task is the classic
vector quantizatiofVQ) [4], where one iterates between partitioning a set of vectors and finding
the best prototype for each partition until the distortion error converges. By defining a distance
D(-,-) between mixture componends’s, we can partition the mixture components in a similar
way. However, vector quantization is sensitive to the initial partitioning. So we first introduce a
simple but highly efficient partitioning method calledquential samplinSS):
1. Randomly select &; and add it to the set of representaties
2. For all the componentg (= 1,2,...,n), do the following
e Compute the distancB (¢;, R;), whereR,; € R.
e OnceifD (¢;,R;) < r, wherer is a predefined threshold, assignto the representative
‘R., and then process the next component.
o If D(¢;,R;) >rforall R; € R, add¢; as a new representative Bf

3. Terminate when all the components have been processed.

This procedure partitions the components by choosing thg'sethat are enough far away as rep-
resentatives, with a user-defined resolutiorso it is less sensitive to initialization. In practice, we
will first initialize by sequential sampling, and then perform the iterative VQ procedure to further
refine the partition, i.e., find the best representallydor each cluster, reassign each compormgnt

to the closest representati; ;), and iterate until the erroEj a;jD(¢j, Ry(j)) converges.

2.1.2 Local Approximation

In this part, we consider how to obtain a good representatiyg, in (4), for each local clustes;.

The task is to determine the unknown variahlgst; andH; associated witly;. Using theLs norm,
the upper bound (6) of the local approximation error can be written as

2

&, / w;gi(x) — Z a;0;(x) | dx

JES:

7.

C 20k aik(r;;
W= K1/2 — W Z L (lez
|2H,| jes. [H; + Hil
Here,Cx = [ k(x'x)dx is a kernel-dependent constant,= [(3; g, o;¢7(x))*dx is a data-

dependent constant (irrelevant to the unknown variables);aned (t; —x;)/ (H; +H;) " (t; —x;).
Here we have assumed thg) - k(b) = k(a + b), which is valid for the Gaussian and negative
exponential kernels. Without this assumption, solutions can still be obtained but are less compact.

To minimize€; w.r.t. w;,t; and H;, one can set the corresponding partial derivatives ofo

zero. However, this leads to a nonlinear system that is quite difficult to solve. Here, we decouple
the relations among these three parameters. First, observé;tima quadratic function ofy;.
Therefore, giverﬁi andt;, the minimum value of; can be easily obtained as

2
—min —1/2

g = |’ Zajk(rij)‘Hﬂrﬁi
JES:

()




The remaining task is to mlnlmlmZ "w.rt. t; andH,. By settingd;,£; = 0, we have

ok’ (ri;) (H; —i—H)_lx-
t; =M, i) L 8
Z |H; +H|1/2 ’ (8)

where

M, Z ajk’ (rij) (H; + H;)™!
S HHP?
This is an iterative contraction mapping.flfl- is fixed, we can obtain; by starting with an initial
t{”), and then iterate (8) until convergence. Now, to sd@llewe setd £, = 0 and obtain

(H; + H; -
;=P ! 7; ﬁ (k(m‘)Hg‘ + 4(=K(rig)) (x5 — t3) (x5 — t)" (H; + Hj)_lHi) )
)

where

(H; + H;)!
P,=Y L ok(ry).
jeZS |H +Hz|1/2 @ J

In summary, we first initialize

0
6 = Yes x/(Tjes, ),
A = S a5 (B + 6 = %) = %)) /(Sjes, )

and then iterate (8) and (9) until convergence. The converged valugsaatl H, are substituted
into 0,,,&; = 0 to obtainw; as

wi = ST k) )| (10)
jes, [Hy +Hy|'/?

2.2 Complexity

In the partitioning step, sequential sampling has a complexify(dfnn), wheren is original model
size,m is the number of clusters, antithe dimension. By using a hierarchical scheme [2], this
can be reduced t®(dn log(m)). The VQ takesD(dnm) time. In the local approximation step,
the complexity i > ;" , n;d®> = Ind®, wherel is the maximum number of iterations needed. In
practice, we can enforce a diagonal structure on the covariance ribtsixvhile still obtaining a
closed-form solution. Hence, the complexity becomes linear in the dimersimstead of cubic.
Summing up these three terms, the overall complexi€(ién log(m) + dnm + Ind) = O(dn(m +

1)), which is linear in both the data size and dimension (in practi@nd! are quite small).

2.3 Remarks

In this section, we discuss some interesting properties of the approximation scheme proposed in
Section 2.1.2. To have better intuitions, we examine the special case of a Parzen window density
estimator [11], where alb;’s have the same weights and bandwidils < H for j = 1,2,...,n).
Equation (9) then reduces to

H, = H 4 4H(H, + H) 7'V, (11)
where / /
Djes, @i (=K (i) (x5 — t:)(x; — )
> jes, ajk(rij)

It shows that the bandwidtHL; of ¢; can be decomposed into two parts: the bandwidtbf the
original kernel density estimator, and the covariabgef the local clusterS; with an adjusting
matrix'; = 4H;(H; + H)~!. As an illustration, consider the 1-D case whete= h?, H; = h?.

V=




2
Theny; = % andh? = h? + ~;V;. SinceV; > 0 andy; > 2, we can see thdt? > h? + V.
Moreover,h; is élosely related to the spread of the local cluster. If all the point; &re located at
the same position (i.e¥; = 0), thenh? = h2. Otherwise, the larger the spread of the local cluster,

the larger ish;. In other words, the bandwidtig;’s are adaptive to the local data distribution.

Related works in simplifying the mixture models (such as [5]) simply chd®se- H + Cov|[S;].

In comparison, our covariance teinis more reliable in that it incorporates distance-based weight-
ing. Interestingly, this is somewhat similar to the bandwidth matrix used in the manifold Parzen
windows [14], which is designed for handling sparse, high-dimensional data more robustly. Note
that our choice oH; is derived rigorously by minimizing thé-, approximation error. Therefore,

this coincidence naturally indicates the robustness of iiaorm based distance measures. More-
over, note that the adjusting matriX changes not only the scale of the bandwidth, but also its
eigen-structures in an iterative manner. This will be very beneficial in multivariate cases.

Second, in determining the centergf (8) can be reduced to

Zjesi ajk;‘l-ﬁ-ﬁi (Xj - tl) X
Djes, Giky g, (x5 — i)

This can be regarded a mean-shift procedure [1] inddttmensional space with kernd{. It
is easy to verify that this iterative procedure is indeed locating the peak of the density function

pi(x) = [H+H,| 2 > jes: Kuym, (x —x;). Note, on the other hand, that what we want to
approximate origin~aIIy is the local densify(x) = |H| z > jes, Ku (x —x;). Inthe 1-D case
(with H = h2, andH; = h?), the bandwidth of; (i.e.,h? + h?) is larger than that of; (i.e., h?).

It appears intriguing that on fitting a kernel densftyx) estimated on the sample sgt;}cs;,

one needs to locate the maximum of another density fungtigx), instead of the maximum of
fi(x) itself or simply, the mean of the sample 4et; } ;cs, as chosen in [5]. Indeed, these three
choices coincide when the distribution 8f is symmetric and uni-modal, but will differ otherwise.
Intuitively, when the data is asymmetric, the certteshould be biased towards the heavier side of
the data distribution. The maximum ¢f(x) thus fails to meet this requirement. On the other hand,
the mean of5;, though biased towards the heavier side, still lacks an accurate control on the degree
of bias. In comparison, our method provides a principled way of selecting the center. Note that
pi(x) has a larger bandwidth than the origirfalx). Therefore, its maximum will move towards the
heavier side of the distribution compared with thatfgfx), with the degree of bias automatically
controlled by the mean shift iterations in (12).

t; =

(12)

Here, we give an illustration on the performance of the three center selection schemes. Figure 1(a)
shows the histogram of a local clustgr, whose Parzen window estimatgi)is asymmetric. Fig-

ure 1(b) plots the corresponding approximation efrg(6) at different bandwidth’s; (the remaining
parameteryw;, is set to the optimal value by (10) ). As can be seen, the approximation error of our
method is consistently lower than those of the other two. Moreover, the resultant optimum is also
much lower.
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(a) The histogram of a local cluster (b) Approximation error.
S; and its densityf;.

Figure 1: Approximation of an asymmetric density using different center selection schemes.



3 Experiments

In this section, we perform experiments to evaluate the performance of our mixture simplification
scheme. We focus on the Parzen window estimator which, on given a set of s&mplés; } ; in

R?, can be written ag (x) = 1|H| 2 Y71 Ku (x — x;) . Note that the Parzen window estimator
is a limiting form of the mixture model, where the humber of components equals the data size
and can be quite huge. In Section 3.1, we use the proposed approach to reduce the number of
components in the kernel density estimator, and compare its performance with the algorithm in [5].
Then, in Section 3.2, we perform color image segmentation by running the mean shift clustering

algorithm on the simplified density model.

3.1 Simplifying Nonparametric Density Models

In this section, we reduce the number of kernels in the Parzen window estimator by using the pro-
posed approach and the method in [5]. Experiments are performed on a 1-D set with 1800 samples
drawn from the Gaussian mixtugg '(—2.6, 0.09) + SN (—0.8,0.36) + -\ (1.7,0.64), where

N (u, o?) denotes the normal distribution with mearand variance®. The Gaussian kernel with

fixed bandwidthh = 0.3 is used for density estimation. To make the problem more challenging,
we choosen = 5, i.e., only 5 kernels are used to approximate the density.xTimeans algorithm

is used for initialization. As can be seen from Figure 2(b), the third Gaussian component has been
broken into two by the method in [5]. In comparison, our result in Figure 2(c) is more reliable.

N
i \ < v
/ AN v RN ’ AN X

(a) Histogram. (b) Result by [5]. (c) Our result.

Figure 2: Approximate the Parzen window estimator by simplifying mixture models. Green: Parzen
window estimator; black: simplified mixture model; blue-dashed: components of the mixture model.

To have a quantitative evaluation, we randomly generate the 3-Gaussian data 100 times, and compare
the two algorithms (ours and [5]) using the following error criteria: 1) fheerror (5); 2) the
standard KL distance; 3) the local KL-distance used in [5]. The local KL-distance between two
mixtures,f = Y°7 | aj¢; andg = > | wig;, is defined as

d(f,9) =Y o KL(;ll9x());
j=1
wherer(j) is the function that maps each componéntio the closest representative component
gﬂ'(j) such thab‘r(_]) = arg Ininizl_rng_’m KL(gﬁngZ)

Results are plotted in Figure 3, where for clarity we order the results in increasing error obtained
by [5]. We can see that under tlie norm, the error of our algorithm is significantly lower than
that of [5]. Quantitatively, our error is only aboB6.61% of that by [5]. On using the standard
KL-distance, our error is abo@t7.34% of that by [5], where the improvement is less significant.
This is because the KL-distance is sensitive to the tail of the distribution, i.e., a small difference in
the low-density regions may induce a huge KL-distance. As for the local KL-distance, our error is
about99.35% of that by [5].

3.2 Image Segmentation

The Parzen window estimator can be used to reveal important clustering information, namely that its
modes (or local maxima) correspond to dominant clusters in the data. This property is utilized in the



m
KL distance

0 20 80 10 (] 20 20 60 80 10 0 20 80 100

40 60 40 60
number of tests X number of tests

(a) TheL- distance error. (b) Standard KL-distance.(c) Local KL-distance defined by [5]

Figure 3: Quantitative comparison of the approximation errors.

mean shift clustering algorithm [1, 3], where every data point is moved along the density gradient
until it reaches the nearest local density maximum. The mean shift algorithm is robust, and can
identify arbitrarily-shaped clusters in the feature space.

Recently, mean shiftis applied in colorimage segmentation and has proven to be quite successful [1].
The idea is to identify homogeneous image regions through clustering in a properly selected feature
space (such as color, texture, or shape). However, mean shift can be quite expensive due to the large
number of kernels involved in the density estimator. To reduce the computational requirement, we
first reduce the density estimatf)(m) to a simpler modej(x) using our simplification scheme, and

then apply the iterative mean shift procedure on the simplified mgael

Experiments are performed on a number of benchmark images in [1]. We use the Gaussian
kernel with bandwidtth = 20. The partition parameter is= 25. For comparison, we also imple-
ment the standard mean shift and its fast version using kd-trees (using the ANN library [10]). The
codes are written in C++ and run on a 2.26GHz Pentium-IIl machine. As the “true” segmentation
of an image is subjective, so only a visual comparison is intended here.

Table 1:Total wall time (in seconds) on various segmentation tasks, and the number of compongts in

mean shift our method
image data size standard kd-tree # components time consumption
squirrel 60,192 (209288) 12158 11.94 81 0.18
hand 73,386 (248302) 1679.7 12.92 120 0.35
house 48,960 (192255) 1284.5 5.16 159 0.22
lake 262,144 (512512) 3343.0 85.65 440 3.67

Segmentation results are shown in Figures 4. The rows, from top to bottom, are: the original image,
segmentation results by standard mean shift and our approach. We can see that our results are closer
to those by the standard mean shift (applied on the original density estimator), with the number of
components (Table 1) dramatically smaller than the datarsiZEhis demonstrates the success of

our approximation scheme in maintaining the structure of the data distribution using highly compact
models. Our algorithm is also much faster than the standard mean shift and its fast version using kd-
trees. The reason is that kd-trees only facilitates range searching but does not reduce the expensive
computations associated with the large number of kernels.

4 Conclusion

Finite mixture is a powerful model in many statistical learning problems. However, the large model
size can be a major hindrance in many applications. In this paper, we reduce the model complexity
by first grouping the components into compact clusters, and then perform local function approxima-
tion that minimizes an upper bound of the approximation error. Our algorithm has low complexity,
and demonstrates more reliable performance compared with methods using KL-based distances.

1http://www.caip.rutgersedu/rvcomanici/MSPAMI/msPamiResuIts.htmI



Figure 4: Image segmentation by standard mean shift (2nd row), and ours (bottom).
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