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Abstract

In this paper, application of sparse representation (factorization) of signals over
an overcomplete basis (dictionary) for signal classification is discussed. Search-
ing for the sparse representation of a signal over an overcomplete dictionary is
achieved by optimizing an objective function that includes two terms: one that
measures the signal reconstruction error and another that measures the sparsity.
This objective function works well in applications where signals need to be recon-
structed, like coding and denoising. On the other hand, discriminative methods,
such as linear discriminative analysis (LDA), are better suited for classification
tasks. However, discriminative methods are usually sensitive to corruption in sig-
nals due to lacking crucial properties for signal reconstruction. In this paper, we
present a theoretical framework for signal classification with sparse representa-
tion. The approach combines the discrimination power of the discriminative meth-
ods with the reconstruction property and the sparsity of the sparse representation
that enables one to deal with signal corruptions: noise, missing data and outliers.
The proposed approach is therefore capable of robust classification with a sparse
representation of signals. The theoretical results are demonstrated with signal
classification tasks, showing that the proposed approach outperforms the standard
discriminative methods and the standard sparse representation in the case of cor-
rupted signals.

1 Introduction

Sparse representations of signals have received a great deal of attentions in recent years. The prob-
lem solved by the sparse representation is to search for the most compact representation of a sig-
nal in terms of linear combination of atoms in an overcomplete dictionary. Recent developments
in multi-scale and multi-orientation representation of signals, such as wavelet, ridgelet, curvelet
and contourlet transforms are an important incentive for the research on the sparse representation.
Compared to methods based on orthonormal transforms or direct time domain processing, sparse
representation usually offers better performance with its capacity for efficient signal modelling. Re-
search has focused on three aspects of the sparse representation: pursuit methods for solving the
optimization problem, such as matching pursuit [1], orthogonal matching pursuit [2], basis pur-
suit [3], LARS/homotopy methods [4]; design of the dictionary, such as the K-SVD method [5];
the applications of the sparse representation for different tasks, such as signal separation, denoising,
coding, image inpainting [6, 7, 8, 9, 10]. For instance, in [6], sparse representation is used for image
separation. The overcomplete dictionary is generated by combining multiple standard transforms,
including curvelet transform, ridgelet transform and discrete cosine transform. In [7], application of
the sparse representation to blind source separation is discussed and experimental results on EEG
data analysis are demonstrated. In [8], a sparse image coding method with the wavelet transform is
presented. In [9], sparse representation with an adaptive dictionary is shown to have state-of-the-art
performance in image denoising. The widely used shrinkage method for image desnoising is shown
to be the first iteration of basis pursuit that solves the sparse representation problem [10].



In the standard framework of sparse representation, the objective is to reduce the signal reconstruc-
tion error with as few number of atoms as possible. On the other hand, discriminative analysis meth-
ods, such as LDA, are more suitable for the tasks of classification. However, discriminative methods
are usually sensitive to corruption in signals due to lacking crucial properties for signal reconstruc-
tion. In this paper, we propose the method of sparse representation for signal classification (SRSC),
which modifies the standard sparse representation framework for signal classification. We first show
that replacing the reconstruction error with discrimination power in the objective function of the
sparse representation is more suitable for the tasks of classification. When the signal is corrupted,
the discriminative methods may fail because little information is contained in discriminative anal-
ysis to successfully deal with noise, missing data and outliers. To address this robustness problem,
the proposed approach of SRSC combines discrimination power, signal reconstruction and sparsity
in the objective function for classification. With the theoretical framework of SRSC, our objective
is to achieve a sparse and robust representation of corrupted signals for effective classification.

The rest of this paper is organized as follows. Section 2 reviews the problem formulation and solu-
tion for the standard sparse representation. Section 3 discusses the motivations for proposing SRSC
by analyzing the reconstructive methods and discriminative methods for signal classification. The
formulation and solution of SRSC are presented in Section 4. Experimental results with synthetic
and real data are shown in Section 5 and Section 6 concludes the paper with a summary of the
proposed work and discussions.

2 Sparse Representation of Signal

The problem of finding the sparse representation of a signal in a given overcomplete dictionary can
be formulated as follows. Given a N × M matrix A containing the elements of an overcomplete
dictionary in its columns, with M > N and usually M >> N , and a signal y ∈ RN , the problem
of sparse representation is to find an M × 1 coefficient vector x, such that y = Ax and ‖x‖0 is
minimized, i.e.,

x = min
x′

‖x′‖0 s.t. y = Ax. (1)

where ‖x‖0 is the �0 norm and is equivalent to the number of non-zero components in the vector x.
Finding the solution to equation (1) is NP hard due to its nature of combinational optimization.
Suboptimal solutions to this problem can be found by iterative methods like the matching pursuit
and orthogonal matching pursuit. An approximate solution is obtained by replacing the �0 norm in
equation (1) with the �1 norm, as follows:

x = min
x′

‖x′‖1 s.t. y = Ax. (2)

where ‖x‖1 is the �1 norm. In [11], it is proved that if certain conditions on the sparsity is satisfied,
i.e., the solution is sparse enough, the solution of equation (1) is equivalent to the solution of equa-
tion (2), which can be efficiently solved by basis pursuit using linear programming. A generalized
version of equation (2), which allows for certain degree of noise, is to find x such that the following
objective function is minimized:

J1(x; λ) = ‖y − Ax‖2
2 + λ ‖x‖1 (3)

where the parameter λ > 0 is a scalar regularization parameter that balances the tradeoff between
reconstruction error and sparsity. In [12], a Bayesian approach is proposed for learning the optimal
value for λ. Except for the intuitive interpretation as obtaining a sparse factorization that minimizes
signal reconstruction error, the problem formulated in equation (3) has an equivalent interpretation
in the framework of Bayesian decision as follows [13]. The signal y is assumed to be generated by
the following model:

y = Ax + ε (4)

where ε is white Gaussian noise. Moreover, the prior distribution of x is assumed to be super-
Gaussian:

p(x) ∼ exp

(
−λ

M∑
i=1

|xi|p
)

(5)



where p ∈ [0, 1]. This prior has been shown to encourage sparsity in many situations, due to its heavy
tails and sharp peak. Given this prior, maximum a posteriori (MAP) estimation of x is formulated
as

xMAP = arg max
x

p(x|y) = arg min
x

[− log p(y|x)− log p(x)] = arg min
x

(‖y − Ax‖2
2 + λ ‖x‖p)

(6)

when p = 0, equation (6) is equivalent to the generalized form of equation (1); when p = 1, equation
(6) is equivalent to equation (2).

3 Reconstruction and Discrimination

Sparse representation works well in applications where the original signal y needs to be recon-
structed as accurately as possible, such as denoising, image inpainting and coding. However, for
applications like signal classification, it is more important that the representation is discriminative
for the given signal classes than a small reconstruction error.

The difference between reconstruction and discrimination has been widely investigated in litera-
ture. It is known that typical reconstructive methods, such as principal component analysis (PCA)
and independent component analysis (ICA), aim at obtaining a representation that enables sufficient
reconstruction, thus are able to deal with signal corruption, i.e., noise, missing data and outliers.
On the other hand, discriminative methods, such as LDA [14], generate a signal representation that
maximizes the separation of distributions of signals from different classes. While both methods have
broad applications in classification, the discriminative methods have often outperformed the recon-
structive methods for the classification task [15, 16]. However, this comparison between the two
types of method assumes that the signals being classified are ideal, i.e., noiseless, complete(without
missing data) and without outliers. When this assumption does not hold, the classification may
suffer from the nonrobust nature of the discriminative methods that contains insufficient informa-
tion to successfully deal with signal corruptions. Specifically, the representation provided by the
discriminative methods for optimal classification does not necessarily contain sufficient informa-
tion for signal reconstruction, which is necessary for removing noise, recovering missing data and
detecting outliers. This performance degradation of discriminative methods on corrupted signals
is evident in the examples shown in [17]. On the other hand, reconstructive methods have shown
successful performance in addressing these problems. In [9], the sparse representation is shown to
achieve state-of-the-art performance in image denoising. In [18], missing pixels in images are suc-
cessfully recovered by inpainting method based on sparse representation. In [17, 19], PCA method
with subsampling effectively detects and excludes outliers for the following LDA analysis.

All of these examples motivate the design of a new signal representation that combines the advan-
tages of both reconstructive and discriminative methods to address the problem of robust classifica-
tion when the obtained signals are corrupted. The proposed method should generate a representation
that contain discriminative information for classification, crucial information for signal reconstruc-
tion and preferably the representation should be sparse. Due to the evident reconstructive proper-
ties [9, 18], the available efficient pursuit methods and the sparsity of representation, we choose the
sparse representation as the basic framework for the SRSC and incorporate a measure of discrimina-
tion power into the objective function. Therefore, the sparse representation obtained by the proposed
SRSC contains both crucial information for reconstruction and discriminative information for clas-
sification, which enable a reasonable classification performance in the case of corrupted signals. The
three objectives: sparsity, reconstruction and discrimination may not always be consistent. There-
fore, weighting factors are introduced to adjust the tradeoff among these objectives, as the weighting
factor λ in equation (3). It should be noted that the aim of SRSC is not to improve the standard dis-
criminative methods like LDA in the case of ideal signals, but to achieve comparable classification
results when the signals are corrupted. A recent work [17] that aims at robust classification shares
some common ideas with the proposed SRSC. In [17], PCA with subsampling proposed in [19] is
applied to detect and exclude outliers in images and the rest of pixels are used for calculating LDA.



4 Sparse Representation for Signal Classification

In this section, the SRSC problem is formulated mathematically and a pursuit method is proposed
to optimize the objective function. We first replace the term measuring reconstruction error with a
term measuring discrimination power to show the different effects of reconstruction and discrimina-
tion. Further, we incorporate measure of discrimination power in the framework of standard sparse
representation to effectively address the problem of classifying corrupted signals. The Fisher’s dis-
crimination criterion [14] used in the LDA is applied to quantify the discrimination power. Other
well-known discrimination criteria can easily be substituted.

4.1 Problem Formulation

Given y = Ax as discussed in Section 2, we view x as the feature extracted from signal y for
classification. The extracted feature should be as discriminative as possible between the different
signal classes. Suppose that we have a set of K signals in a signal matrix Y = [y1,y2, ...,yK ] with
the corresponding representation in the overcomplete dictionary as X = [x1,x2, ...,xK ], of which
Ki samples are in the class Ci, for 1 ≤ i ≤ C. Mean mi and variance s2

i for class Ci are computed
in the feature space as follows:

mi =
1

Ki

∑
x∈Ci

x , s2
i =

1
Ki

∑
x∈Ci

‖x − mi‖2
2 (7)

The mean of all samples are defined as: m = 1
K

K∑
i=1

xi. Finally, the Fisher’s discrimination power

can then be defined as:

F (X) =
SB

SW
=

∥∥∥∥ C∑
i=1

Ki(mi − m)(mi − m)T

∥∥∥∥
2

2
C∑

i=1

s2
i

. (8)

The difference between the sample means SB =
∥∥∥∥ C∑

i=1

Ki(mi − m)(mi − m)T

∥∥∥∥
2

2

can be inter-

preted as the ‘inter-class distance’ and the sum of variance SW =
C∑

i=1

s2
i can be similarly interpreted

as the ‘inner-class scatter’. Fisher’s criterion is motivated by the intuitive idea that the discrimination
power is maximized when the spatial distribution of different classes are as far away as possible and
the spatial distribution of samples from the same class are as close as possible.

Replacing the reconstruction error with the discrimination power, the objective function that focuses
only on classification can be written as:

J2(X, λ) = F (X) − λ

K∑
i=1

‖xi‖0 (9)

where λ is a positive scalar weighting factor chosen to adjust the tradeoff between discrimination
power and sparsity. Maximizing J2(X, λ) generates a sparse representation that has a good discrim-
ination power. When the discrimination power, reconstruction error and sparsity are combined, the
objective function can be written as:

J3(X, λ1, λ2) = F (X) − λ1

K∑
i=1

‖xi‖0 − λ2

K∑
i=1

‖yi − Axi‖2
2 (10)

where λ1 and λ2 are positive scalar weighting factors chosen to adjust the tradeoff between the
discrimination power, sparsity and the reconstruction error. Maximizing J3(X, λ1, λ2) ensures that



a representation with discrimination power, reconstruction property and sparsity is extracted for
robust classification of corrupted signals. In the case that the signals are corrupted, the two terms
K∑

i=1

‖xi‖0 and
K∑

i=1

‖yi − Axi‖2
2 robustly recover the signal structure, as in [9, 18]. On the other hand,

the inclusion of the term F (X) requires that the obtained representation contains discriminative
information for classification. In the following discussions, we refer to the solution of the objective
function J3(X, λ1, λ2) as the features for the proposed SRSC.

4.2 Problem Solution

Both the objective function J2(X, λ) defined in equation (9) and the objective
function J3(X, λ1, λ2) defined in equation (10) have similar forms to the objective function
defined in the standard sparse representation, as J1(x; λ) in equation (3). However, the key
difference is that the evaluation of F (X) in J2(X, λ) and J3(X, λ1, λ2) involves not only a
single sample, as in J1(x;λ), but also all other samples. Therefore, not all the pursuit methods,
such as basis pursuit and LARS/Homotopy methods, that are applicable to the standard sparse
representation method can be directly applied to optimize J2(X, λ) and J3(X, λ1, λ2). However,
the iterative optimization methods employed in the matching pursuit and the orthogonal matching
pursuit provide a direct reference to the optimization of J2(X, λ) and J3(X, λ1, λ2). In this
paper, we propose an algorithm similar to the orthogonal matching pursuit and inspired by the
simultaneous sparse approximation algorithm described in [20, 21]. Taking the optimization
of J3(X, λ1, λ2) as example, the pursuit algorithm can be summarized as follows:

1. Initialize the residue matrix R0 = Y and the iteration counter t = 0.

2. Choose the atom from the dictionary, A, that maximizes the objective function:

g = argmaxg∈AJ3(gT Rt, λ1, λ2) (11)

3. Determine the orthogonal projection matrix Pt onto the span of the chosen atoms, and
compute the new residue.

Rt = Y − PtY (12)

4. Increment t and return to Step 2 until t is less than or equal to a pre-determined number.

The pursuit algorithm for optimizing J2(X, λ) also follows the same steps. Detailed analysis of this
pursuit algorithm can be found in [20, 21].

5 Experiments

Two sets of experiments are conducted. In Section 5.1, synthesized signals are generated to show the
difference between the features extracted by J1(X, λ) and J2(X, λ), which reflects the properties
of reconstruction and discrimination. In Section 5.2, classification on real data is shown. Random
noise and occlusion are added to the original signals to test the robustness of SRSC.

5.1 Synthetic Example

Two simple signal classes, f1(t) and f2(t), are constructed with the Fourier basis. The signals are
constructed to show the difference between the reconstructive methods and discriminative methods.

f1(t) = g1 cos t + h1 sin t (13)

f2(t) = g2 cos t + h2 sin t (14)
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Figure 1: Distributions of projection of signals from two classes with the first atom selected by:
J1(X, λ) (the left figure) and J2(X, λ) (the right figure).

The scalar g1 is uniformly distributed in the interval [0, 5], and the scalar g2 is uniformly distributed
in the interval [5, 10]. The scalar h1 and h2 are uniformly distributed in the interval [10, 20]. There-
fore, most of the energy of the signal can be described by the sine function and most of the discrim-
ination power is in the cosine function. The signal component with most energy is not necessary the
component with the most discrimination power. Construct a dictionary as {sin t, cos t}, optimizing
the objective function J1(X, λ) with the pursuit method described in Section 4.2 selects sin t as the
first atom. On the other hand, optimizing the objective function J2(X, λ) selects cos t as the first
atom. In the simulation, 100 samples are generated for each class and the pursuit algorithm stops at
the first run. The projection of the signals from both classes to the first atom selected by J1(X, λ)
and J2(X, λ) are shown in Fig.1. The difference shown in the figures has direct impact on the
classification.

5.2 Real Example

Classification with J1, J2 and J3(SRSC) is also conducted on the database of USPS handwritten
digits [22]. The database contains 8-bit grayscale images of “0” through “9” with a size of 16 × 16
and there are 1100 examples of each digit. Following the conclusion of [23], 10-fold stratified
cross validation is adopted. Classification is conducted with the decomposition coefficients (’ X’ in
equation (10)) as feature and support vector machine (SVM) as classifier. In this implementation,
the overcomplete dictionary is a combination of Haar wavelet basis and Gabor basis. Haar basis is
good at modelling discontinuities in signal and on the other hand, Gabor basis is good at modelling
continuous signal components.

In this experiment, noise and occlusion are added to the signals to test the robustness of SRSC. First,
white Gaussian noise with increasing level of energy, thus decreasing level of signal-to-noise ratio
(SNR), are added to each image. Table 1 summarizes the classification error rates obtained with
different SNR. Second, different sizes of black squares are overlayed on each image at a random
location to generate occlusion (missing data). For the image size of 16 × 16, black squares with
size of 3 × 3, 5 × 5, 7 × 7, 9 × 9 and 11 × 11 are overlayed as occlusion. Table 2 summarizes the
classification error rates obtained with occlusion.

Results in Table 1 and Table 2 show that in the case that signals are ideal (without missing data and
noiseless) or nearly ideal, J2(X, λ) is the best criterion for classification. This is consistent with the
known conclusion that discriminative methods outperform reconstructive methods in classification.
However, when the noise is increased or more data is missing (with larger area of occlusion), the
accuracy based on J2(X, λ) degrades faster than the accuracy base on J1(X, λ). This indicates



Table 1: Classification error rates with different levels of white Gaussian noise
Noiseless 20db 15db 10db 5db

J1(Reconstruction) 0.0855 0.0975 0.1375 0.1895 0.2310

J2(Discrimination) 0.0605 0.0816 0.1475 0.2065 0.2785

J3(SRSC) 0.0727 0.0803 0.1025 0.1490 0.2060

Table 2: Classification error rates with different sizes of occlusion
no occlusion 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11

J1(Reconstruction) 0.0855 0.0930 0.1270 0.1605 0.2020 0.2990

J2(Discrimination) 0.0605 0.0720 0.1095 0.1805 0.2405 0.3305

J3(SRSC) 0.0727 0.0775 0.1135 0.1465 0.1815 0.2590

that the signal structures recovered by the standard sparse representation are more robust to noise
and occlusion, thus yield less performance degradation. On the other hand, the SRSC demonstrates
lower error rate by the combination of the reconstruction property and the discrimination power in
the case that signals are noisy or with occlusions.

6 Discussions

In summary, sparse representation for signal classification(SRSC) is proposed. SRSC is motivated
by the ongoing researches in the area of sparse representation in the signal processing area. SRSC
incorporates reconstruction properties, discrimination power and sparsity for robust classification. In
current implementation of SRSC, the weight factors are empirically set to optimize the performance.
Approaches to determine optimal values for the weighting factors are being conducted, following
the methods similar to that introduced in [12].

It is interesting to compare SRSC with the relevance vector machine (RVM) [24]. RVM has shown
comparable performance to the widely used support vector machine (SVM), but with a substantially
less number of relevance/support vectors. Both SRSC and RVM incorporate sparsity and recon-
struction error into consideration. For SRSC, the two terms are explicitly included into objective
function. For RVM, the two terms are included in the Bayesian formula. In RVM, the “dictio-
nary” used for signal representation is the collection of values from the “kernel function”. On the
other hand, SRSC roots in the standard sparse representation and recent developments of harmonic
analysis, such as curvelet, bandlet, contourlet transforms that show excellent properties in signal
modelling. It would be interesting to see how RVM works by replacing the kernel functions with
these harmonic transforms. Another difference between SRSC and RVM is how the discrimination
power is incorporated. The nature of RVM is function regression. When used for classification,
RVM simply changes the target function value to class membership. For SRSC, the discrimination
power is explicitly incorporated by inclusion of a measure based on the Fisher’s discrimination. The
adjustment of weighting factor in SRSC (in equation (10)) may give some flexibility for the algo-
rithm when facing various noise levels in the signals. A thorough and systemic study of connections
and difference between SRSC and RVM would be an interesting topic for the future research.
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