
Learning Motion Style Synthesis
from Perceptual Observations

Lorenzo Torresani
Riya, Inc.

lorenzo@riya.com

Peggy Hackney
Integrated Movement Studies
pjhackney@aol.com

Christoph Bregler
New York University

chris.bregler@nyu.edu

Abstract

This paper presents an algorithm for synthesis of human motion in specified styles.
We use a theory of movement observation (Laban Movement Analysis) to describe
movement styles as points in a multi-dimensional perceptual space. We cast the
task of learning to synthesize desired movement styles as a regression problem:
sequences generated via space-time interpolation of motion capture data are used
to learn a nonlinear mapping between animation parameters and movement styles
in perceptual space. We demonstrate that the learned model can apply a variety of
motion styles to pre-recorded motion sequences and it can extrapolate styles not
originally included in the training data.

1 Introduction

Human motion perception can be generally thought of as the result of interaction of two factors,
traditionally termed content and style. Content generally refers to the nature of the action in the
movement (e.g. walking, reaching, etc.), while style denotes the particular way that action is per-
formed. In computer animation, the separation of the underlying content of a movement from its
stylistic characteristics is particularly important. For example, a system that can synthesize stylistic
variations of a given action would be a useful tool for animators. In this work we address such a
problem by proposing a system that applies user-specified styles to motion sequences. Specifically,
given as input a target motion style and an arbitrary animation or pre-recorded motion, we want to
synthesize a novel sequence that preserves the content of the original input motion but exhibits style
similar to the user-specified target.

Our approach is inspired by two classes of methods that have successfully emerged within the genre
of data-driven animation: sample-based concatenation methods, and techniques based on learned
parametric models. Concatenative synthesis techniques [15, 1, 11] are based on the simple idea of
generating novel movements by concatenation of motion capture snippets. Since motion is produced
by cutting and pasting pre-recorded examples, the resulting animations achieve realism similar to
that of pure motion-capture play back. Snippet concatenation can produce novel content by gener-
ating arbitrarily complex new movements. However, this approach is restricted to synthesize only
the subset of styles originally contained in the input database. Sample-based concatenation tech-
niques are unable to produce novel stylistic variations and cannot generalize style differences from
the existing examples. In recent years, several machine learning animation systems [2, 12, 9] have
been proposed that attempt to overcome some of these limitations. Unfortunately, most of these
methods learn simple parametric motion models that are unable to fully capture the subtleties and
complexities of human movement. As a consequence, animations resulting from these systems are
often plagued by low quality and scarce realism.

The technique introduced in this paper is a compromise between the pure concatenative approaches
and the methods based on learned parametric models. The aim is to maintain the animated preci-
sion of motion capture data, while introducing the flexibility of style changes achievable by learned



parametric models. Our system builds on the observation thatstylistically novel, yet highly realistic
animations can be generated via space-time interpolation of pairs of motion sequences. We propose
to learn not a parametric function of the motion, but rather a parametric function of how the interpo-
lation or extrapolation weights applied to data snippets relate to the styles of the output sequences.
This allows us to create motions with arbitrary styles without compromising animation quality.

Several researchers have previously proposed the use of motion interpolation for synthesis of novel
movement [18, 6, 10]. These approaches are based on the naı̈ve assumption that motion interpolation
produces styles corresponding precisely to the interpolation of the styles of the original sequences.
In this paper we experimentally demonstrate that styles generated through motion interpolation are
a rather complex function of styles and contents of the original snippets. We propose to explicitly
learn the mapping between motion blending parameters and resulting animation styles. This enables
our animation system not only to generate arbitrary stylistic variations of a given action, but, more
importantly, to synthesize sequences matching user-specified stylistic characteristics. Our approach
bears similarities with the Verbs and Adverbs work of Rose et al. [16], in which interpolation models
parameterized by style attributes are learned for several actions, such as walking or reaching. Unlike
this previously proposed algorithm, our solution can automatically identify sequences having similar
content, and therefore does not require manual categorization of motions into classes of actions. This
feature allows our algorithm to be used for style editing of sequences without content specification
by the user. Additionally, while the Verb and Adverb system characterizes motion styles in terms of
difficult-to-measure emotional attributes, such as sad or clueless, our approach relies on a theory of
movement observation, Laban Movement Analysis, describing styles by means of a set of rigorously
defined perceptual attributes.

2 The LMA Framework

In computer animation literature motion style is a vaguely defined concept. In our work, we describe
motion styles according to a movement notation system, called Laban Movement Analysis or LMA
[7]. We focus on a subset of Laban Movement Analysis: the ”LMA-Effort” dimensions. This system
does not attempt to describe the coarse aspects of a motion, e.g. whether someone is walking, or
swinging his/her arm. Instead, it targets the subtle differences in motion style, e.g. is the movement
”bound” or ”free”? Each LMA-Effort factor varies in intensity between opposing poles, and takes
values in a continuous range. The factors are briefly described as follows:

1. The ”LMA-Effort Factor of Flow” defines the continuity of the movement. The two oppos-
ing poles are ”Free” (fluid, released), and ”Bound” (controlled, contained, restrained).

2. The ”LMA-Effort Factor of Weight” is about the relationship of the movement to gravity.
The two opposing extremes are ”Light” (gentle, delicate, fine touch) and ”Strong” (power-
ful, forceful, firm touch).

3. The ”LMA-Effort Factor of Time” has to do with the persons inner attitude toward the time
available, but not with how long it takes to perform the movement. The two opposing poles
are ”Sudden” (urgent, quick) and ”Sustained” (stretching the time, indulging).

4. The ”LMA-Effort Factor of Space” describes the directness of the movement. Generally,
additional features not present in motion capture data, such as eye gaze, are necessary to
detect this factor.

We use only the LMA-Effort factors of Flow, Weight, and Time. We model styles as points in
a three-dimensional perceptual space derived by translating the LMA-Effort notations for each of
these factors into numerical values ranging in the interval[−3, 3].

3 Overview of the system

The key-idea of our work is to learn motion style synthesis from a training set of computer-generated
animations. The training animations are observed by a human expert who assigns LMA labels to
each sequence. This set of supervised data is used to learn a mapping between the space of motion
styles and the animation system parameters. We next provide a high-level description of our system,
while the following sections give specific details of each component.



3.1 Training: Learning the Style of Motion Interpolation

In order to train our system to synthesize motion styles, we employ a corpus of human motion
sequences recorded with a motion capture system. We represent the motion as a time-varying vector
of joint angles. In the training stage each motion sequence is manually segmented by an LMA
human expert into fragments corresponding to fundamental actions or units of motions. LetXi

denote the joint angle data of thei-th fragment in the database.

Step 1: Matching motion content. We apply a motion matching algorithm to identify fragment
pairs(Xi,Xj) containing similar actions. Our motion matching algorithm is based on dynamic-time
warping. This allows us to compare kinematic contents while factoring out differences in timing or
acceleration, more often associated to variations in style.

Step 2: Space-time interpolation. We use these motion matches to augment the database with
new synthetically-generated styles: given matching motion fragmentsXi, Xj , and an interpolation
parameterα, space-time interpolation smoothly blends the kinematics and dynamics of the two
fragments to produce a new motionXα

i,j with novel distinct style and timing.

Step 3: Style interpolation learning. Both the synthesized animationsXα
i,j as well as the ”seed”

motion capture dataXi are labeled with LMA-Effort values by an LMA expert. Letei andeα
i,j de-

note the three-dimensional vectors encoding the LMA-Effort qualities ofXi andXα
i,j , respectively.

A non-linear regression model [5] is fitted to the LMA labels and the parametersα of the space-time
interpolation algorithm. This regression defines a functionf predicting LMA-Effort factorseα

i,j

from the style attributes and joint angle data of fragmentsi andj:

eα
i,j = f(Xi,Xj , ei, ej , α) (1)

This function-fitting stage allows us to learn how the knobs of our animation system relate to the
perceptual space of movement styles.

3.2 Testing: Style Transfer

At testing stage we are given a motion sequenceY, and a user-specified motion styleē. The goal
is to apply stylēe to the input sequenceY, without modifying the content of the motion. First, we
use dynamic-time warping to segment the input sequence into snippetsYi, such that each snippet
matches the content of a set of analogous motions{Xi1 , ...,XiK

} in the database. Among all
possible pairwise blendsXα

ik,il
of examples in the set{Xi1 , ...,XiK

}, we determine the one that
provides the best approximation to the target styleē. This objective can be formulated as

α∗, k∗, l∗ ← arg min
α,k,l

||ē− f(Xik
,Xil

, eik
, eil

, α)|| (2)

The animation resulting from space-time interpolation of fragmentsXik∗
andXil∗

with parameter
α∗ will exhibit content similar to that of snippetYi and style approximating the targetē. Concate-
nating these artificially-generated snippets will produce the desired output.

4 Matching motion content

The objective of the matching algorithm is to identify pairs of sequences having similar motion
content or consisting of analogous activities. The method should ignore variations in the style with
which movements are performed. Previous work [2, 12] has shown that the differences in movement
styles can be found by examining the parameters of timing and movement acceleration. By contrast,
an action is primarily characterized by changes of body configurations in space rather than over
time. Thus we compare the content of two motions by identifying similar spatial body poses while
allowing for potentially large differences in timing. Specifically, we define the content similarity
between motion snippetsXi andXj , as the minimum sum of their squared joint angle differences
SSD(Xi,Xi) under a dynamic time warping path. Letd(p, q) = ||Xi(p) −Xj(q)||

2 be our local
measure of the distance between spatial body configurationsXi at framep andXj at frameq. LetTi



be the number of frames in sequencei andL the variable length of a time pathw(n) = (p(n),q(n))
aligning the two snippets. We can then formally defineSSD(Xi,Xi) as:

SSD(Xi,Xi) = min
w

∑

n

d(w(n)) (3)

subject to constraints:

p(1) = 1,q(1) = 1,p(L) = Ti,q(L) = Tj (4)

if w(n) = (p, q) thenw(n− 1) ∈ {(p− 1, q), (p− 1, q − 1), (p, q − 1)} (5)

We say that two motionsi andj have similar content ifSSD(Xi,Xi) is below a certain value.

5 Space-time interpolation

A time warping strategy is also employed to synthesize novel animations from the pairs of content-
matching examples found by the algorithm outlined in the previous section. Given matching snippets
Xi andXj , the objective is to generate a stylistically novel sequence that maintains the content of
the two original motions. The idea is to induce changes in style by acting primarily on the timings
of the motions. Letw∗ = (p∗,q∗) be the path minimizing Equation 3. This path defines a time
alignment between the two sequences. We can interpret frame correspondences(p∗(n),q∗(n)) for
n = 1, ..., L, as discrete samples from a continuous 2D curve parameterized byn. ResamplingXi

andXj along this curve will produce synchronized versions of the two animations, but with new
timings. Suppose parameter valuesn0

1, ...., n
0
Ti

are chosen such thatp∗(n0
k) = k. ThenXi(p

∗(n0
k))

will be replayed with its original timing. However, if we use these same parameter values on se-
quenceXj (i.e. we estimate joint anglesXj at time stepsq∗(n0

k)) then the resampled motion will
correspond to playing sequencej with the timing of sequencei. Similarly, n1

1, ...., n
1
Tj

can be cho-
sen, such thatq∗(n1

k) = k, and these parameter values can be used to synthesize motioni with the
timing of motionj. It is also possible to smoothly interpolate between these two scenarios according
to an interpolation parameterα ∈ [0, 1] to produce intermediate time warps. This will result in a
time path of lengthTα

ij = (1−α)Ti +αTj . Let us indicate withnα
1 , ...., nα

T α
ij

the path parameter val-

ues obtained from this time interpolation. New stylistic versions of motionsi andj can be produced
by estimating the joint anglesXi andXj at p∗(nα

k ) andq∗(nα
k ), respectively. The two resulting

sequences will move in synchrony according to the new intermediate timing. From these two syn-
chronized sequences, a novel motionXα

i,j can be generated by averaging the joint angles according
to mixing coefficients(1−α) andα: Xα

i,j(k) = (1−α)Xi(p
∗(nα

k )) + αXj(q
∗(nα

k )). The synthe-
sized motionXα

i,j will display content similar to that ofXi andXj , but it will have distinct style.
We call this procedure ”space-time interpolation”, as it modifies the spatial body configurations and
the timings of sequences.

6 Learning style interpolation

Given a pair of content-matching snippetsXi andXj , our goal is to determine the parameterα that
needs to be applied to space-time interpolation in order to produce a motionXα

i,j exhibiting target
style ē. We propose to solve this task by learning to predict the LMA-Effort qualities of animations
synthesized by space-time interpolation. The training data for this supervised learning task consists
of our seed motion sequences{Xi} in the database, a set of interpolated motions{Xα

i,j}, and the
corresponding LMA-Effort qualities{ei}, {eα

i,j} observed by an LMA human expert. In order to
maintain a consistent data size, we stretch or shrink the time trajectories of the joint angles{Xi}
to a set length. In order to avoid overfitting, we compress further the motion data by projecting
it onto a low-dimensional linear subspace computed using Principal Component Analysis (PCA).
In many of the test cases, we found it was sufficient to retain only the first two or three principal
components in order to obtain a discriminative representation of the motion contents. Letci denote
the vector containing the PCA coefficients computed fromXi. Let zα

i,j = [cT
i , cT

j , eT
i , eT

j , α]T . We
pose the task of predicting LMA-Effort qualities as a function approximation problem: the goal is to
learn the optimal parametersθ of a parameterized functionf(zα

i,j , θ) that models the dependencies



betweenzα
i,j and the observed LMA-Effort valueseα

i,j . Parametersθ are chosen so as to minimize
the objective function:

E(θ) = U
∑

L(f(zα
i,j , θ)− eα

i,j) + ||θ||2 (6)

whereL is a general loss function andU is a regularization constant aimed at avoiding overfitting
and improving generalization. We experimented with several function parameterizations and loss
functions applied to our problem. The simplest of the adopted approaches is linear ridge regression
[4], which corresponds to choosing the loss functionL to be quadratic (i.e.L(.) = (.)2) andf to be
linear in input space:

f(z, θ) = zT · θ (7)

We also applied kernel ridge regression, resulting from mapping the input vectorsz into features of
a higher-dimensional space via a nonlinear functionΦ: z → Φ(z). In order to avoid the explicit
computation of the vectorsΦ(zj) in the high-dimensional feature space, we apply the kernel trick
and choose mappingsΦ such that the inner productΦ(zi)

T · Φ(zj) can be computed via a kernel
function k(zi, zj) of the inputs. We compared the performance of kernel ridge regression with
that of support vector regression [5]. While kernel ridge regression requires us to store all training
examples in order to evaluate functionf at a given input, support vector regression overcomes this
limitation by using anǫ-insensitive loss function [17]. The resultingf can be evaluated using only
a subset of the training data, the set of support vectors.

7 Testing: Style Transfer

We can restate our initial objective as follows: given an input motion sequenceY in unknown style,
and a target motion stylēe specified by LMA-Effort values, we want to synthesize a sequence having
style ē and content analogous to that of motionY. A näıve approach to this problem is to seek in
the motion database a pair of sequences having content similar toY and whose interpolation can
approximate stylēe. The learned functionf can be used to determine the pair of motions and the
interpolation parameterα that produce the best approximation toē. However, such an approach
is destined to fail asY can be any arbitrarily long and complex sequence, possibly consisting of
several movements performed one after the other. As a consequence, we might not have in the
database examples that match sequenceY in its entirety.

7.1 Input segmentation and matching

The solution that we propose is inspired by concatenative methods. The idea is to determine the
concatenation of database motion examples[X1, ...,XN ] that best matches the content of input
sequenceY. Our approach relies again on dynamic programming and can be interpreted as a gen-
eralization of the dynamic time warping technique presented in Section 4, for the case when a time
alignment is sought between a given sequence and a concatenation of a variable number of exam-
ples chosen from a set. Letd(p, q, i) be the sum of squared differences between the joint angles of
sequenceY at framep and those of exampleXi at frameq. The goal is to recover the time warping
pathw(n) = (p(n),q(n), i(n)) that minimizes the global error

min
w

∑

n

d(w(n)) (8)

subject to basic segment transition and endpoint constraints. Transitions constraints are enforced
to guarantee that time order is preserved and that no time frames are omitted. Endpoint constraints
require that the time path starts at beginning frames and finishes at ending frames of the sequences.
The above mentioned conditions can be formalized as follows:

if w(n) = (p, 1, i), thenw(n− 1) ∈ {(p− 1, 1, i), (p− 1, Tj , j)for j = 1, ..., J} (9)

if w(n) = (p, q, i) andq > 1, thenw(n− 1) ∈ {(p− 1, q, i), (p− 1, q − 1, i), (p, q − 1, i)} (10)

p(1) = 1,q(1) = 1,p(L) = T,q(L) = Ti(L) (11)

whereJ denotes the number of fragments in the database,L the length of the time warping path,T
the number of frames of the input sequence, andTj the length of thej-th fragment in the database.



Table 1:Mean squared error on LMA-Effort prediction for different function approximation methods

Function Approxim. Linear Linear Ridge Kernel Ridge Support Vector
Method Interpolation Regression Regression Regression

Flow MSE 0.65 1.03 0.50 0.48
Weight MSE 0.97 1.04 0.39 0.48
Time MSE 1.01 1.01 0.60 0.61

The global minimum of the objective in Equation (8), subject to constraints (9),(10),(11), can be
found using a dynamic programming method originally developed by Ney [14] for the problem of
connected word recognition in speech data. Note that this approach induces a segmentation of the
input sequenceY into snippets[Y1, ...,YN ], matching the examples in the optimal concatenation
[X1, ...,XN ].

7.2 Piecewise Style synthesis

The final step of our algorithm uses the concatenation of examples[X1, ...,XN ] determined by the
method outlined in the previous section to synthesize a version of motionY in style ē. For each
Xi in [X1, ...,XN ], we identify theK most similar database examples according to the criterion
defined in Equation 3. Let{Xi1 , ...,XiK

} denote theK content-neighbors ofXi and{ei1 , ..., eiK
}

their LMA-Effort values.{Xi1 , ...,XiK
} defines a cluster of examples having content similar to that

of snippetYi. The final goal then is to replace each snippetYi with a pairwise blend of examples
in its cluster so as to produce a motion exhibiting styleē. Formally, this is achieved by determining
the pair of examples(ik∗ , il∗) in Yi’s cluster, and the interpolation weightα∗ that provide the best
approximation to target stylēe, according to the learned style-prediction functionf :

α∗, k∗, l∗ ← arg min
α,k,l

||ē− f(zα
ik,il

)|| (12)

Minimization of this objective is achieved by first finding the optimalα for each possible pair(ik, il)
of candidate motion fragments. We then select the pair(ik∗ , il∗) providing the minimum deviation
from the target stylēe. In order to estimate the optimal values ofα for pair (ik, il), we evaluate
f(zα

ik,il
) for M values ofα uniformly sampled in the interval [-0.25,1.25], and choose the value

with the closest fit to the target style. We found thatf tends to vary smoothly as a function ofα,
and thus a good estimate of the global minimum in the specified interval can be obtained even with
a modest numberM of samples. The approximation is further refined using a golden section search
[8] around the initial estimate. Note that, by allowing valuesα to be chosen in the range [-0.25,1.25]
rather than [0,1], we give the algorithm the ability to extrapolate from existing motion styles.

Given optimal parameters(α∗, k∗, l∗), space-time interpolation of fragmentsXik∗
andXil∗

with
parameter valueα∗ produces an animation with content similar to that ofYi and style approximating
the desired target̄e. This procedure is repeated for all snippets ofY. The final animation is obtained
by concatenating all of the fragments generated via interpolation with optimal parameters.

8 Experiments

The system was tested using a motion database consisting of 12 sequences performed by differ-
ent professional dancers. The subjects were asked to perform a specific movement phrase in their
own natural style. Each of the 12 sequences was segmented by an LMA expert into 5 fragments
corresponding to the main actions in the phrase. All fragments were then automatically clustered
into 5 content groups using theSSD criterion outlined in section 4. The motions were recorded
using a marker-based motion capture system. In order to derive joint angles, the 3D trajectories of
the markers were fitted to a kinematic chain with 17 joints. The joint angles were represented with
exponential maps [13], which have the property of being locally linear and thus particularly suitable
for motion interpolation. From these 60 motion fragments, 105 novel motions were synthesized
with space-time interpolation using random values ofα in the range[−0.25, 1.25]. All motions,
both those recorded and those artificially generated, were annotated with LMA-Effort qualities by
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Figure 1:Sample LMA-Effort attributes estimated by kernel ridge regression on three different pairs of mo-
tions(Xi,Xj) and forα varying in [-0.25, 1.25]. The Flow attribute appears to be almost linearly dependent
onα. By contrast, Weight and Time exhibit non-linear relations with the interpolation parameter.

an LMA expert. From this set of motions, 85 training examples were randomly selected to train the
style regression models. The remaining 20 examples were used for testing.

Table 1 summarizes the LMA-Effort prediction performance in terms of mean squared error for the
different function approximation models discussed in the paper. Results are reported by averaging
over 500 runs of random splitting of the examples into training and testing sets. We include in our
analysis the linear style interpolation model, commonly used in previous work. This model assumes
that the style of a sequence generated via motion interpolation is equal to the interpolation of the
styles of the two seed motions:eα

i,j = αei + (1 − α)ej . In all experiments involving kernel-based
approximation methods, we used a Gaussian RBF kernel. The hyperparameters (i.e. the kernel
and the regularization parameters) were tuned using tenfold cross-validation. Since the size of the
training data is not overly large, it was possible to run kernel ridge regression without problems
despite the absence of sparsity of this solution. The simple linear interpolation model performed
reasonably well only on the Flow dimension. Overall, non-linear regression models proved to be
much superior to the linear interpolation function, indicating that the style of sequences generates
via space-time interpolation is a complex function of the original styles and motions.

Figure 1 shows the LMA-Effort qualities predicted by kernel ridge regression while varyingα for
three different sample values of the inputs(Xi,Xj , ei, ej). Note that the shapes of the sample
curves learned by kernel ridge regression for the Flow attribute suggest an almost linear dependence
of Flow onα. By contrast, sample functions for the Weight and Time dimensions exhibit non-linear
behavior. These results are consistent with the differences in prediction performance between the
non-linear function models and the linear approximations, as outlined in Table 1.

Several additional motion examples performed by dancers not included in the training data were
used to evaluate the complete pipeline of the motion synthesis algorithm. The input sequences
were always correctly segmented by the dynamic programming algorithm into the five fragments
associated with the actions in the phrase. Kernel ridge regression was used to estimate the values
of α∗, k∗, l∗ as to minimize Equation 12 for different user-specified LMA-Effort vectorsē. The
recovered parameter values were used to synthesize animations with the specified desired styles.
Videos of these automatically generated motions as well as additional results can be viewed at
http://movement.nyu.edu/learning-motion-styles/ . In order to test the generalization
ability of our system, the target styles in this experiment were chosen to be considerably different
from those in the training set. All of the synthesized sequences were visually inspected by LMA
experts and, for the great majority, they were found to be consistent with the style target labels.

9 Discussions and Future Work

We have presented a novel technique that learns motion style synthesis from artificially-generated
examples. Animations produced by our system have quality similar to pure motion capture play-
back. Furthermore, we have shown that, even with a small database, it is possible to use pair-wise
interpolation or extrapolation to generate new styles. In previous LMA-based animation systems
[3], heuristic and hand-designed rules have been adopted to implement the style changes associated
to LMA-Effort variations. To the best of our knowledge, our work represents the first attempt at
automatically learning the mapping between LMA attributes and animation parameters. Although



our algorithm has shown to produce good results with small training data, we expect that larger
databases with a wider variety of motion contents and styles are needed in order to build an effective
animation system. Multi-way, as opposed to pair-wise, interpolation might lead to synthesis of more
varied motion styles. Our approach could be easily generalized to other languages and notations,
and to additional domains, such as facial animation. Our future work will focus on the recognition
of LMA categories in motion capture data. Research in this area might point to methods for learning
person-specific styles and to techniques for transferring individual movement signatures to arbitrary
motion sequences.
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