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Abstract

Given a setF of classifiers and a probability distribution over their domain, one
can define a metric by taking the distance between a pair of classifiers to be the
probability that they classify a random item differently. We prove bounds on the
sample complexity of PAC learning in terms of the doubling dimension of this
metric. These bounds imply known bounds on the sample complexity of learning
halfspaces with respect to the uniform distribution that are optimal up to a constant
factor. We prove a bound that holds for any algorithm that outputs a classifier with
zero error whenever this is possible; this bound is in terms of the maximum of the
doubling dimension and the VC-dimension ofF , and strengthens the best known
bound in terms of the VC-dimension alone. We show that there is no bound on
the doubling dimension in terms of the VC-dimension ofF (in contrast with the
metric dimension).

1 Introduction

A setF of classifiers and a probability distributionD over their domain induce a metric in which the
distance between classifiers is the probability that they disagree on how to classify a random object.
(Let us call this metric�D.) Properties of metrics like this have long been used for analyzing the
generalization ability of learning algorithms [11, 32]. This paper is about bounds on the number of
examples required for PAC learning in terms of the doubling dimension [4] of this metric space.

The doubling dimension of a metric space is the leastd such that any ball can be covered by2d
balls of half its radius. The doubling dimension has been frequently used lately in the analysis of
algorithms [13, 20, 21, 17, 29, 14, 7, 22, 28, 6].

In the PAC-learning model, an algorithm is given examples(x1; f(x1)); :::; (xm; f(xm)) of the be-
havior of an arbitrary memberf of a known classF . The itemsx1; :::; xm are chosen independently
at random according toD. The algorithm must, with probability at least1� Æ (w.r.t. to the random
choice ofx1; :::; xm), output a classifier whose distance fromf is at most�.
We show that if(F; �D) has doubling dimensiond, thenF can be PAC-learned with respect toD
using O�d+ log 1Æ� �

(1)

examples. If in addition the VC-dimension ofF is d, we show that any algorithm that outputs a
classifier with zero training error whenever this is possible PAC-learnsF w.r.t.D usingO0@dqlog 1� + log 1Æ� 1A (2)

examples.



We show that ifF consists of halfspaces through the origin, andD is the uniform distribution over
the unit ball inRn, then the doubling dimension of(F; �D) is O(n). Thus (1) generalizes the

known bound ofO �n+log 1Æ� �
for learning halfspaces with respect to the uniform distribution [25],

matching a known lower bound for this problem [23] up to a constant factor. Both upper bounds

improve on theO �n log 1�+log 1Æ� �
bound that follows from the traditional analysis; (2) is the first

such improvement for a polynomial-time algorithm.

Some previous analyses of the sample complexity of learning have made use of the fact that the
“metric dimension” [18] is at most the VC-dimension [11, 15]. Since using the doubling dimension
can sometimes lead to a better bound, a natural question is whether there is also a bound on the
doubling dimension in terms of the VC-dimension. We show that this is not the case: it is possible
to pack(1=�)(1=2�o(1))d classifiers in a setF of VC-dimensiond so that the distance between every
pair is in the interval[�; 2�]. Our analysis was inspired by some previous work in computational
geometry [19], but is simpler.

Combining our upper bound analysis with established techniques (see [33, 3, 8, 31, 30]), one can
perform similar analyses for the more general case in which no classifier inF has zero error. We
have begun with the PAC model because it is a clean setting in which to illustrate the power of
the doubling dimension for analyzing learning algorithms. The doubling dimension appears most
useful when the best achievable error rate (the Bayes error) is of the same order as the inverse of the
number of training examples (or smaller).

Bounding the doubling dimension is useful for analyzing the sample complexity of learning because
it limits the richness of a subclass ofF near the classifier to be learned. For other analyses that
exploit bounds on such local richness, please see [31, 30, 5, 25, 26, 34]. It could be that stronger
results could be obtained by marrying the techniques of this paper with those. In any case, it appears
that the doubling dimension is an intuitive yet powerful way to bound the local complexity of a
collection of classifiers.

2 Preliminaries

2.1 Learning

For some domainX , an exampleconsists of a member ofX , and its classification inf0; 1g. A
classifieris a mapping fromX to f0; 1g. A training setis a finite collection of examples. Alearning
algorithmtakes as input a training set, and outputs a classifier.

SupposeD is a probability distribution overX . Then define�D(f; g) = Prx�D(f(x) 6= g(x)):
A learning algorithmA PAC learnsF w.r.t. D with accuracy� and confidenceÆ fromm examples
if, for any f 2 F , if� domain elementsx1; :::; xm are drawn independently at random according toD, and� (x1; f(x1)); :::; (xm; f(xm)) is passed toA, which outputsh,

then Pr(�D(f; h) > �) � Æ:
If F is a set of classifiers, a learning algorithm is aconsistent hypothesis finder forF if it outputs an
element ofF that correctly classifies all of the training data whenever it is possible to do so.

2.2 Metrics

Suppose� = (Z; �) is a metric space.

An �-cover for� is a setT � Z such that every element ofZ has a counterpart inT that is at a
distance at most� (with respect to�).



An �-packing for� is a setT � Z such that every pair of elements ofT are at a distance greater
than� (again, with respect to�).

The�-ball centered atz 2 Z consists of allt 2 Z for which�(z; t) � �.

Denote the size of the smallest�-cover byN (�; �). Denote the size of the largest�-packing byM(�; �).
Lemma 1 ([18]) For any metric space� = (Z; �), and any� > 0,M(2�; �) � N (�; �) �M(�; �):
The doubling dimensionof � is the leastd such that, for all radii� > 0, any�-ball in � can be
covered by at most2d �=2-balls. That is, for any� > 0 and anyz 2 Z, there is aC � Z such that� jCj � 2d, and� ft 2 Z : �(z; t) � �g � [c2Cft 2 Z : �(c; t) � �=2g.
2.3 Probability

For a function and a probability distributionD, letEx�D( (x)) be the expectation of w.r.t.D.
We will shorten this toED( ), and ifu = (u1; :::; um) 2 Xm, thenEu( ) will be 1mPmi=1  (ui).
We will usePrx�D,PrD, andPru similarly.

3 The strongest upper bound

Theorem 2 Supposed is the doubling dimension of(F; �D). There is an algorithmA that PAC-

learnsF fromO �d+log(1=Æ)� �
examples.

The key lemma limits the extent to which points that are separated from one another can crowd
around some point in a metric space with limited doubling dimension.

Lemma 3 (see [13])Suppose� = (Z; �) is a metric space with doubling dimensiond andz 2 Z.

For � > 0, letB(z; �) consist of the elements ofu 2 Z such that�(u; z) � � (that is, the�-ball
centered atz). Then M(�;B(z; �)) � �8�� �d :
(In other words, any�-packing must have at most(8�=�)d elements within distance� of z.)

Proof: Since� has doubling dimensiond, the setB(z; �) can be covered by2d balls of radius�=2.
Each of these can be covered by2d balls of radius�=4, and so on. Thus,B(z; �) can be covered by2ddlog2 �=�e � (4�=�)d balls of radius�=2. Applying Lemma 1 completes the proof.

Now we are ready to prove Theorem 2. The proof is an applicationof the peeling technique [1] (see
[30]).

Proof of Theorem 2: Construct an�=4 packingG greedily, by repeatedly adding an element ofF
toG for as long as this is possible. This packing is also an�=4-cover, since otherwise we could add
another member toG.

Consider the algorithm that outputs the element ofG with minimum error on the training set. What-

ever the target, some element ofG has error at most�=4. Applying Chernoff bounds,O � log(1=Æ)� �
examples are sufficient that, with probability at least1 � Æ=2, this classifier is incorrect on at most
a fraction�=2 of the training data. Thus, the training error of the hypothesis output byA is at most�=2 with probability at least1� Æ=2.

Choose an arbitrary functionf , and letS be the random training set resulting from drawingm ex-
amples according toD, and classifying them usingf . Define�S(g; h) to be the fraction of examples



in S on whichg andh disagree. We havePr(9g 2 G; �D(g; f) > � and�S(g; f) � �=2)� log(1=�)Xk=0 Pr(9g 2 G; 2k� < �D(g; f) � 2k+1� and�S(g; f) � �=2)� log(1=�)Xk=0 2(k+5)de�2k�m=8
by Lemma 3 and the standard Chernoff bound.

Each of the following steps is a straightforward manipulation:log(1=�)Xk=0 2(k+5)de�2k�m=8 = 32d log(1=�)Xk=0 2kde�2k�m=8 � 32d log(1=�)Xk=0 22kde�2k�m=8� 32d 1Xk=0 22kde�2k�m=8 � 64de��m=81� 2de��m=8 :
Sincem = O((d + log(1=Æ))=�) is sufficient for64de��m=8 � Æ=2 and2de��m=8 � 1=2, this
completes the proof.

4 A bound for consistent hypothesis finders

In this section we analyze algorithms that work by finding hypotheses with zero training error. This
is one way to achieve computational efficiency, as is the case whenF consists of halfspaces. This
analysis will use the notion of VC-dimension.

Definition 4 The VC-dimension of a setF of f0; 1g-valued functions with a common domain is the
size of the largest setx1; :::; xd of domain elements such thatf(f(x1); :::; f(xd)) : f 2 Fg = f0; 1gd:
The following lemma generalizes the Chernoff bound to hold uniformly over a class of random
variables; it concentrates on a simplified consequence of the Chernoff bound that is useful when
bounding the probability that an empirical estimate ismuchlarger than the true expectation.

Lemma 5 (see [12, 24])SupposeF is a set off0; 1g-valued functions with a common domainX .
Let d be the VC-dimension ofF . LetD be a probability distribution overX . Choose� > 0 andK � 1. Then if m � c(d log 1� + log 1Æ )�K log(1 +K) ;
wherec is an absolute constant, thenPru�Dm(9f; g 2 F; PrD(f 6= g) � � butPru(f 6= g) > (1 +K)�) � Æ:
Now we are ready for the main analysis of this section.

Theorem 6 Suppose the doubling dimension of(F; �D) and the VC-dimension ofF are both at mostd. Any consistent hypothesis finder forF PAC learnsF fromO �1� �dqlog 1� + log 1Æ�� examples.

Proof: Assume without loss of generality that� � 1=100. Let � = � exp(�qln 1� ); since� �1=100, we have� � �=8.

Choose a target functionf . For eachh 2 F , definè h : X ! f0; 1g by `h(x) = 1, h(x) 6= f(x).
Let `F = f`h : h 2 Fg. Since`g(x) 6= `h(x) exactly wheng(x) 6= h(x), the doubling dimension



of `F is the same as the doubling dimension ofF ; the VC-dimension of̀F is also known to be the
same as the VC-dimension ofF (see [32]).

Construct an� packingG greedily, by repeatedly adding an element of`F toG for as long as this
is possible. This packing is also an�-cover.

For eachg 2 `F , let�(g) be its nearest neighbor inG. Since� � �=8, by the triangle inequality,ED(g) > � andEu(g) = 0 ) ED(�(g)) > 7�=8 andEu(g) = 0: (3)

The triangle inequality also yieldsEu(g) = 0 ) (Eu(�(g)) � �=4 orPru(�(g) 6= g) > �=4):
Combining this with (3), we have we havePr(9g 2 `F ;ED(g) > � butEu(g) = 0)� Pr(9g 2 `F ;ED(�(g)) > 7�=8 butEu(�(g)) � �=4) (4)+Pr(9g 2 `F ;Pru(�(g) 6= g) > �=4):
We havePr(9g 2 `F ;ED(�(g)) > 7�=8 butEu(�(g)) � �=4)� Pr(9g 2 G;ED(g) > 7�=8 butEu(g) � �=4)= Pr(9g 2 G; �D(f; g) > 7�=8 butPru(f 6= g) � �=4)� log(8=(7�))Xk=0 Pr(9g 2 G; 2k(7�=8) < �D(g; f) � 2k+1(7�=8) andPru(f 6= g) � �=4)� log(8=(7�))Xk=0 �8�2k+1� �d e�c2k�m;
wherec > 0 is an absolute constant, by Lemma 3 and the standard Chernoff bound.

Computing a geometric sum exactly as in the proof of Theorem 2, we have thatm = O(d=�) suffices
for Pr(9g 2 `F ;ED(�(g)) > 7�=8 butEu(�(g)) � �=4) � �c1�� �d e�c2�m;
for absolute constantsc1; c2 > 0.

By plugging in the value of� and solving, we can see thatm = O 1�  drlog 1� + log 1Æ!!
suffices for Pr(9g 2 `F ;PrD(�(g)) > 7�=8 butPru(�(g)) � �=4) � Æ=2: (5)

SincePrD(�(g) 6= g) � � � �=8 for all g 2 `F , applying Lemma 5 withK = �=(4�)� 1, we get
that there is an absolute constantc > 0 such thatm � c �d log 1� + log 1Æ �(�=4� �) log( �4� ) (6)

also suffices for Pr(9g 2 `F ;Pru(�(g) 6= g) > �=4) � Æ=2:
Substituting the value� into (6), it is sufficient thatm � c�d(log 1� +qlog 1� ) + log 1Æ�(�=8)qlog 1� � log 4 :
Putting this together with (5) and (4) completes the proof.



5 Halfspaces and the uniform distribution

Proposition 7 If Un is the uniform distribution over the unit ball inRn, andHn is the set of
halfspaces that go through the origin, then the doubling dimension of(Hn; �Un) isO(n).
Proof: Chooseh 2 Hn and� > 0. We will show that the ball of radius� centered ath can be
covered byO(n) balls of radius�=2.

SupposeUHn is the probability distribution overHn obtained by choosing a normal vectorw uni-
formly from the unit ball, and outputtingfx : w � x � 0g. The argument will be a “volume
argument” usingUHn .

It is known (see Lemma 4 of [25]) thatPrg�UHn (�Un(g; h) � �=4) � (c1�)n�1
wherec1 > 0 is an absolute constant independent of� andn. Furthermore,Prg�UHn (�Un(g; h) � 5�=4) � (c2�)n�1
wherec2 > 0 is another absolute constant.

Suppose we choose arbitrarily chooseg1; g2; ::: 2 Hn that are at a distance at most� from h, but�=2 far from one another. By the triangle inequality,�=4-balls centered atg1; g2; ::: are disjoint.
Thus, the probability that an random element ofHn is in a ball of radius�=4 centered at one ofg1; :::; gN is at leastN(c1�)n�1. On the other hand, since eachg1; :::; gN has distance at most�
from h, any element of an�=4 ball centered at one of them is at most� + �=4 far fromh. Thus,
the union of the�=4 balls centered atg1; :::; gN is contained in the5�=4 ball centered ath. ThusN(c1�)n�1 � (c2�)n�1, which impliesN � (c2=c1)n�1 = 2O(n), completing the proof.

6 Separation

Theorem 8 For all � 2 [0; 1=2] and positive integersd there is a setF of classifiers and a proba-
bility distributionD over their common domain with the following properties:� the VC-dimension ofF is d� jF j � b 12 � 12e��d=2c� for eachf; g 2 F , � � �D(f; g) � 2�.

This proof uses the probabilistic method. We begin with the following lemma.

Lemma 9 Choose positive integerss andd. SupposeA is chosen uniformly at random from among
the subsets off1; :::; sg of sized. Then, for anyB > 1,Pr(jA \ f1; :::; dgj � (1 +B)E(jA \ f1; :::; dgj)) � � e1 +B�(1+B)E(jA\f1;:::;dgj) :
Proof: in Appendix A.

Now we’re ready for the proof of Theorem 8, which uses the deletion technique (see [2]).

Proof (of Theorem 8): Set the domainX to bef1; :::; sg, wheres = dd=�e. LetN = b� s2ed�d=2c.
Supposef1; :::; fN are chosen independently, uniformly at random from among the classifiers that
evaluate to1 on exactlyd elements ofX . For any distincti; j, supposef�1i (1) is fixed, and we think
of the members off�1j (1) as being chosen one at a time. The probability that any of the elements

of f�1j (1) is also inf�1i (1) is d=s. Applying the linearity of expectation, and averaging over the

different possibilities forf�1i (1), we getE(jf�1i (1) \ f�1j (1)j) = d2s :



Applying Lemma 9, Pr(jf�1i (1) \ f�1j (1)j � d=2) � �2eds �( s2d )( d2s )= �2eds �d=2 :
Thus, the expected number of pairsi; j such thatPr(jf�1i (1) \ f�1j (1)j � d=2) is at most(N2=2) �2eds �d=2. This implies that there existf1; :::; fN such thatjffi; jg : jf�1i (1) \ f�1j (1)j � d=2gj � (N2=2)�2eds �d=2 :
If we delete one element from each such pair, and formG from what remains, then each pairg; h of
elements inG satisfies jg�1(1) \ h�1(1)j < d=2: (7)

If D is the uniform distribution overf1; :::; sg, then (7) implies�D(g; h) > �. The number of

elements ofG is at leastN � (N2=2) �2eds �d=2 � N=2.

Since eachg 2 G hasg�1(1) = d, no function inG evaluates to1 on each element of any set ofd+ 1 elements ofX . Thus, the VC-dimension ofG is at mostd.

Theorem 8 implies that there is no bound on the doubling dimension of (G; �D) in terms of the
VC-dimension ofG. For any constraint on the VC-dimension, a setG satisfying the constraint can
have arbitrarily large doubling dimension by setting the value of� in Theorem 8 arbitrarily small.
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A Proof of Lemma 9

Definition 10 ([16]) A collectionX1; :::; Xn of random variables arenegatively associatedif for every disjoint
pair I; J � f1; :::; ng of index sets, and for every pairf : RjIj ! R andg : RjJj ! R of non-decreasing
functions, we haveE(f(Xi; i 2 I)g(Xj; j 2 J)) � E(f(Xi; i 2 I))E(g(Xj; j 2 J)):
Lemma 11 ([10]) If A is chosen uniformly at random from among the subsets off1; :::; sg with exactlyd
elements, andXi = 1 if i 2 A and0 otherwise, thenX1; :::; Xs are negatively associated.

Lemma 12 ([9]) CollectionsX1; :::; Xn of negatively associated random variables satisfy Chernoff bounds:
for any� > 0,E(exp(�Pni=1Xi)) �Qni=1E(exp(�Xi)):
Proof of Lemma 9: Let Xi 2 f0; 1g indicate whetheri 2 A. By Lemma 11,X1; :::; Xd are negatively
associated. We havejfA\f1; :::; dgj =Pdi=1Xi. Combining Lemma 12 with a standard Chernoff-Hoeffding
bound (see Theorem 4.1 of [27]) completes the proof.


