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Abstract

Given a setF’ of classifiers and a probability distribution over their domain, one
can define a metric by taking the distance between a pair of classifiers to be the
probability that they classify a random item differently. We prove bounds on the
sample complexity of PAC learning in terms of the doubling dimension of this
metric. These bounds imply known bounds on the sample complexity of learning
halfspaces with respect to the uniform distribution that are optimal up to a constant
factor. We prove a bound that holds for any algorithm that outputs a classifier with
zero error whenever this is possible; this bound is in terms of the maximum of the
doubling dimension and the VC-dimensionof and strengthens the best known
bound in terms of the VC-dimension alone. We show that there is no bound on
the doubling dimension in terms of the VC-dimensionfo{in contrast with the
metric dimension).

1 Introduction

A setF' of classifiers and a probability distributidn over their domain induce a metric in which the
distance between classifiers is the probability that they disagree on how to classify a random object.
(Let us call this metrigpp.) Properties of metrics like this have long been used for analyzing the
generalization ability of learning algorithms [11, 32]. This paper is about bounds on the number of
examples required for PAC learning in terms of the doubling dimension [4] of this metric space.

The doubling dimension of a metric space is the leastich that any ball can be covered &%
balls of half its radius. The doubling dimension has been frequently used lately in the analysis of
algorithms [13, 20, 21, 17, 29, 14, 7, 22, 28, 6].

In the PAC-learning model, an algorithm is given examples f(x1)), ..., (zm, f(zx)) Of the be-
havior of an arbitrary membgfof a known clas#'. The itemsr;, ..., ,,, are chosen independently
at random according t®. The algorithm must, with probability at leakt- § (w.r.t. to the random
choice ofzq, ..., z,,,), output a classifier whose distance frghs at most.

We show that if(F', pp) has doubling dimensiod, thenF' can be PAC-learned with respectb
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examples. If in addition the VC-dimension éf is d, we show that any algorithm that outputs a
classifier with zero training error whenever this is possible PAC-leBEmar.t. D using
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We show that ifF” consists of halfspaces through the origin, dhds the uniform distribution over
the unit ball inR", then the doubling dimension ¢’ pp) is O(n). Thus (1) generalizes the

known bound ofD % for learning halfspaces with respect to the uniform distribution [25],
matching a known lower bound for this problem [23] up to a constant factor. Both upper bounds
improve on theD M bound that follows from the traditional analysis; (2) is the first
such improvement for a polynomial-time algorithm.

Some previous analyses of the sample complexity of learning have made use of the fact that the
“metric dimension” [18] is at most the VC-dimension [11, 15]. Since using the doubling dimension
can sometimes lead to a better bound, a natural question is whether there is also a bound on the
doubling dimension in terms of the VC-dimension. We show that this is not the case: it is possible
to pack(1/a)('/2=2(1))d classifiers in a self of VC-dimensiond so that the distance between every

pair is in the intervala, 2a]. Our analysis was inspired by some previous work in computational
geometry [19], but is simpler.

Combining our upper bound analysis with established techniques (see [33, 3, 8, 31, 30]), one can
perform similar analyses for the more general case in which no classifiétias zero error. We

have begun with the PAC model because it is a clean setting in which to illustrate the power of
the doubling dimension for analyzing learning algorithms. The doubling dimension appears most
useful when the best achievable error rate (the Bayes error) is of the same order as the inverse of the
number of training examples (or smaller).

Bounding the doubling dimension is useful for analyzing the sample complexity of learning because
it limits the richness of a subclass éf near the classifier to be learned. For other analyses that
exploit bounds on such local richness, please see [31, 30, 5, 25, 26, 34]. It could be that stronger
results could be obtained by marrying the techniques of this paper with those. In any case, it appears
that the doubling dimension is an intuitive yet powerful way to bound the local complexity of a
collection of classifiers.

2 Preliminaries

2.1 Learning

For some domaiX, an exampleconsists of a member of, and its classification i{0,1}. A
classifieris a mapping fromX to {0, 1}. A training setis a finite collection of examples. karning
algorithmtakes as input a training set, and outputs a classifier.

SupposeD is a probability distribution ovek . Then define
po(f.g9) = Prop(f(z) # g(x)).

A learning algorithmA PAC learnsF' w.r.t. D with accuracy and confidencé from m examples
if, forany f € F, if

e domain elements,, ..., z,, are drawn independently at random accordin@tand
o (x1, f(x1)), ..y (Tm, f(zm)) IS passed tal, which outputss,

then
Pr(pp(f,h) > €) < 6.

If F'is a set of classifiers, a learning algorithm isamsistent hypothesis finder férif it outputs an
element ofF' that correctly classifies all of the training data whenever it is possible to do so.

2.2 Metrics

Supposed = (7, p) is a metric space.

An a-cover for® is a setl’ C Z such that every element &f has a counterpart ifi that is at a
distance at most (with respect tg).



An «a-packing for® is a setl’ C Z such that every pair of elements Bfare at a distance greater
thana (again, with respect tp).

Thea-ball centered at € Z consists of alk € Z for whichp(z,t) < a.
Denote the size of the smallesicover by ' (a; ®). Denote the size of the largestpacking by
M(a; ).
Lemma 1 ([18]) For any metric spac@® = (Z, p), and anya > 0,
M(2a;®) < N(a; @) < M(a; ).

The doubling dimensiomf @ is the least such that, for all raditx > 0, any a-ball in ® can be
covered by at most? o/2-balls. That is, for anyx > 0 and any: € Z, there is &€ C Z such that

e |C] <27 and
o {t€Z:p(z,t) <a} CUeec{t € Z: p(c,t) < af2}.

2.3 Probability

For a functiorny) and a probability distributio®, let E,. (¢ (x)) be the expectation af w.r.t. D.
We will shorten this tdE (1), and ifu = (u1, ..., un,) € X™, thenE, (¢) will be L 57" 4 (u;).
We will usePr,..p, Prp, andPr, similarly.

3 The strongest upper bound

Theorem 2 Supposel is the doubling dimension df’, pp). There is an algorithm! that PAC-
learnsF from O (M) examples.

The key lemma limits the extent to which points that are separated from one another can crowd
around some point in a metric space with limited doubling dimension.

Lemma 3 (see [13])Suppos@ = (Z, p) is a metric space with doubling dimensidandz € Z.

For 5 > 0, let B(z, 8) consist of the elements afe Z such thatp(u, z) < § (that is, theS-ball
centered at). Then

M(a, B(z,8)) < (%)

«
(In other words, anyr-packing must have at mo&3/a)? elements within distangg of z.)

Proof: Since® has doubling dimensiod, the setB(z, 3) can be covered by balls of radius3/2.
Each of these can be covereddyballs of radius3/4, and so on. Thus3(z, 3) can be covered by
2dMlogs B/a] < (44/a)® balls of radiusy/2. Applying Lemma 1 completes the proof. [ |

Now we are ready to prove Theorem 2. The proof is an applicatitime peeling technique [1] (see
[30]).

Proof of Theorem 2 Construct are/4 packingG greedily, by repeatedly adding an elementrof
to G for as long as this is possible. This packing is alse aficover, since otherwise we could add
another member t6'.

Consider the algorithm that outputs the elemerafith minimum error on the training set. What-
ever the target, some element@tas error at most/4. Applying Chernoff bounds) (M)

examples are sufficient that, with probability at least §/2, this classifier is incorrect on at most
a fractione/2 of the training data. Thus, the training error of the hypothesis output Isyat most
€/2 with probability at least — §/2.

Choose an arbitrary functiofy and letS be the random training set resulting from drawingex-
amples according t®, and classifying them usinfy Defineps(g, k) to be the fraction of examples



in S on whichg andh disagree. We have

Pr(3g9 € G, pnlg, f) > eandps(g, f) < €/2)
log(1/¢€)
< Y Pr(3geG, 2"e<pply, f) < 2" eandps(g, f) < €/2)
k=0

log(1/e€) .
< Z o(k+5)d,—2"em/8
k=0

by Lemma 3 and the standard Chernoff bound.
Each of the following steps is a straightforward manipulation:

log(1/¢€) log(1/€) log(1/¢€)
o(k+5)d,~2"em/8 _ 3od Z okd,—2"em/8 < 327 Z 92"d—2"em/8
k=0 k=0 k=0
0 d,—em/8
d 2%d_—2*em/8 64%
<32 Z 2" Te < 1 — 92deg—em/8"°

k=0

Sincem = O((d + log(1/8))/¢) is sufficient for64%e—<"/% < §/2 and2%e /% < 1/2, this
completes the proof. |

4 A bound for consistent hypothesis finders

In this section we analyze algorithms that work by finding hypotheses with zero training error. This
is one way to achieve computational efficiency, as is the case Wheansists of halfspaces. This
analysis will use the notion of VC-dimension.

Definition 4 The VC-dimension of a sét of {0, 1}-valued functions with a common domain is the
size of the largest set , ..., 24 of domain elements such that

{(f(z1), . flza)) : f € F} ={0,1}".

The following lemma generalizes the Chernoff bound to hold uniformly over a class of random
variables; it concentrates on a simplified consequence of the Chernoff bound that is useful when
bounding the probability that an empirical estimatenigchlarger than the true expectation.

Lemma 5 (see [12, 24])Supposd- is a set of{0, 1}-valued functions with a common domaih
Letd be the VC-dimension df. Let D be a probability distribution ove’X'. Choosex > 0 and
K > 1. Thenif
c(dlog L +log )
aKlog(l1+ K) ’

wherec is an absolute constant, then
Pry~pm(3f,9 € F, Prp(f # g) < abutPry(f #g) > (1 + K)a) <4.

Now we are ready for the main analysis of this section.

Theorem 6 Suppose the doubling dimensior{ 6% pp) and the VC-dimension @f are both at most
d. Any consistent hypothesis finder #1PAC learnsF from O (]; (d, [log L + log %)) examples.
Proof: Assume without loss of generality that< 1/100. Leta = eexp(—,/In1); sincee <
1/100, we havex < ¢/8.

Choose a target functiof For eacth € F, definel;, : X — {0,1} by /s (x) =1 < h(z) # f(z).
Letlrp = {{y : h € F}. Sincel,(z) # £n(z) exactly whery(z) # h(z), the doubling dimension



of /r is the same as the doubling dimensiornFgfthe VC-dimension of i is also known to be the
same as the VC-dimension 6f(see [32]).

Construct arx packingG greedily, by repeatedly adding an element pfto G for as long as this
is possible. This packing is also ancover.

For eachy € ¢, let¢(g) be its nearest neighbor @&. Sincea < €/8, by the triangle inequality,
Ep(g) > eandE,(g) =0 = Ep(¢(g)) > 7¢/8 andE,(g) = 0. 3)
The triangle inequality also yields

Eu(9) =0 = (Eu(¢(g)) < e/40rPru(d(g) # g) > €/4).
Combining this with (3), we have we have

Pr(3g € lr,Ep(g) > e butE,(g) = 0)
< Pr(3g € {p,Ep(d(g)) > Te/8bUtEy(4(g)) < €/4) (4)
+Pr(3g € (r, Pru(d(g) # g) > €/4).

We have

Pr(3g € (r. Ep(é(g)) > Te/8 butEy(d(g)) < ¢/4)

<Pr(3g € G,Ep(g) > 7¢/8 butE,(g) < ¢/4)

=Pr(3g € G,pp(f,9) > Te/8butPry(f # g) < €/4)
log(8/(7e))

< > Pr(3geG, 25(7¢/8) < pp(g, f) < 287" (7¢/8) andPry(f # g) < €/4)
k=0

< 10g(82/576)) <8€2k+1 ) d 2% em
(8

k=0

wherec > 0 is an absolute constant, by Lemma 3 and the standard Chernoff bound.

Computing a geometric sum exactly as in the proof of Theorem 2, we have thab) (d/¢) suffices

for
Cl€

d
Pr(3g € (r,Ep(é(g)) > 7¢/SbutEy(¢(g)) < ¢/4) < (?) e c2em.
for absolute constants, c; > 0.
By plugging in the value oft and solving, we can see that

m=0 (1 <d\/10g1+10g1>>
€ € 1)

Pr(3g € L, Pro(@lg) > Te/8 butPra((g)) < ¢/4) < §/2. 5)

suffices for

SincePrp(¢(g) # g) < a < ¢/8forall g € £y, applying Lemma 5 with = ¢/(4a) — 1, we get
that there is an absolute constant 0 such that

¢(dlog+ +log %)
m
~ (/4 a)log(55)

(6)

also suffices for
Pr(3g € lp,Pru(d(g) # g) > €/4) <6/2.
Substituting the value: into (6), it is sufficient that

c (d(log 14,/logl) +1log %)

(¢/8)y/log L —log4

Putting this together with (5) and (4) completes the proof. |

m >




5 Halfspaces and the uniform distribution

Proposition 7 If U,, is the uniform distribution over the unit ball iR", and H,, is the set of
halfspaces that go through the origin, then the doubling dimensidH gf prs, ) is O(n).

Proof: Chooseh € H,, anda > 0. We will show that the ball of radiua centered at. can be
covered byO(n) balls of radiusy/2.

Supposd/y, is the probability distribution oveH,, obtained by choosing a normal vecseruni-
formly from the unit ball, and outputtingx : w - x > 0}. The argument will be a “volume
argument” usind’/ g, .

It is known (see Lemma 4 of [25]) that

Pry vy, (pu, (9,h) < a/4) > (c1a)"
wherec; > 0 is an absolute constant independentafndn. Furthermore,

Pry.u,, (pu,(9,h) < 5a/4) < (c2a)" "
wherec, > 0 is another absolute constant.

Suppose we choose arbitrarily chogseg., ... € H,, that are at a distance at mestfrom h, but
a/2 far from one another. By the triangle inequality/4-balls centered aj, ¢, ... are disjoint.
Thus, the probability that an random elementfhf is in a ball of radiusy/4 centered at one of
g1, gn is at leastN (c;a)”~!. On the other hand, since eagh ..., g has distance at moat
from h, any element of an/4 ball centered at one of them is at mest «/4 far from h. Thus,
the union of thex/4 balls centered &j, ..., gn is contained in thé«/4 ball centered abt. Thus
N(c1a)" ' < (ca)™ 1, which impliesN < (ep/c;)" ' = 290" completing the proof. |

6 Separation

Theorem 8 For all o € [0,1/2] and positive integerd there is a sef" of classifiers and a proba-
bility distribution D over their common domain with the following properties:

e the VC-dimension of is d

o« |F|> 13 (55) ")

2ea

o foreachf,g € F,a < pp(f,g) < 2.
This proof uses the probabilistic method. We begin with the following lemma.

Lemma 9 Choose positive integessandd. Supposel is chosen uniformly at random from among
the subsets ofl, ..., s} of sized. Then, for anyB > 1,

(1+B)E(JAN{1,...,d}|)
1+B> '

Pr(ANn{l,...d}| > (1+B)E(|AN{1,...d}])) < <

Proof: in Appendix A. |

Now we’re ready for the proof of Theorem 8, which uses the d@widechnique (see [2]).

Proof (of Theorem 8): Set the domaixi to be{1, ..., s}, wheres = [d/a]. LetN = L(Qi)d/2

Supposefy, ..., fn are chosen independently, uniformly at random from among the éfassifiers that
evaluate td on exactlyd elements of\. For any distinct, j, supposef; ' (1) is fixed, and we think

of the members of]fl(l) as being chosen one at a time. The probability that any of the elements
of fj*] (1) is also inf; (1) is d/s. Applying the linearity of expectation, and averaging over the
different possibilities forf, ' (1), we get
d2
E(f7 N fimh=—.

S



Applying Lemma 9,

s 2

2ed (31)(F)
(%)

2ed\ 1/
(%)

Pr(f, (1) N f ()] > d/2)

IN

Thus, the expected number of pairg such thatPr(/f; '(1) N f; '(1)] > d/2) is at most
(N?/2) (2;;‘1)[1/2. This implies that there exigh , ..., fx such that

ed\ 12
{%ﬂwﬂMmEWn>ww<wme§>.

If we delete one element from each such pair, and f@rfrom what remains, then each pairh of
elements irG satisfies

g7 (M) N7 ()] < d/2. ()

If D is the uniform distribution ovef1, ..., s}, then (7) impliespp(g,h) > «. The number of
elements of7 is at leastV — (N2/2) (%)d/2 > N/2.

Since eacly € G hasg'(1) = d, no function inG evaluates td on each element of any set of
d + 1 elements ofX. Thus, the VC-dimension d@¥ is at most. |

Theorem 8 implies that there is no bound on the doubling dilnensf (G, pp) in terms of the
VC-dimension ofG. For any constraint on the VC-dimension, a Gesatisfying the constraint can
have arbitrarily large doubling dimension by setting the value of Theorem 8 arbitrarily small.
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A Proof of Lemma 9

Definition 10 ([16]) A collectionXy, ..., X,, of random variables araegatively associatatifor every disjoint
pair I,.J C {1, ...,n} of index sets, and for every pafr: R - R andg : RI”! = R of non-decreasing
functions, we have

E(f(Xi,i € Ig(X;,5 € J)) SE(f(Xi,i € )E(g9(X;,j € J)).

Lemma 11 ([10]) If A is chosen uniformly at random from among the subset§lof.., s} with exactlyd
elements, and; = 1 if i € A and0 otherwise, therX,, ..., X are negatively associated.

Lemma 12 ([9]) CollectionsX,, ..., X,, of negatively associated random variables satisfy Chernoff bounds:
foranyA > 0, E(exp(A Y1, X3)) <[], E(exp(AX;)).

Proof of Lemma 9 Let X; € {0,1} indicate whethei € A. By Lemma 11,X;,..., X4 are negatively

associated. We haveAN{1,...,d}| = Zle X;. Combining Lemma 12 with a standard Chernoff-Hoeffding
bound (see Theorem 4.1 of [27]) completes the proof. |



