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Abstract

Recent research has studied the role of sparsity in high dimensional regression and
signal reconstruction, establishing theoretical limits for recovering sparse models
from sparse data. In this paper we study a variant of this problem where the
original n input variables are compressed by a random linear transformation to
m � n examples inp dimensions, and establish conditions under which a sparse
linear model can be successfully recovered from the compressed data. A primary
motivation for this compression procedure is to anonymize the data and preserve
privacy by revealing little information about the original data. We characterize
the number of random projections that are required for`1-regularized compressed
regression to identify the nonzero coefficients in the true model with probabil-
ity approaching one, a property called “sparsistence.” In addition, we show that
`1-regularized compressed regression asymptotically predicts as well as an or-
acle linear model, a property called “persistence.” Finally, we characterize the
privacy properties of the compression procedure in information-theoretic terms,
establishing upper bounds on the rate of information communicated between the
compressed and uncompressed data that decay to zero.

1 Introduction

Two issues facing the use of statistical learning methods in applications arescaleandprivacy. Scale
is an issue in storing, manipulating and analyzing extremely large, high dimensional data. Privacy
is, increasingly, a concern whenever large amounts of confidential data are manipulated within an
organization. It is often important to allow researchers to analyze data without compromising the
privacy of customers or leaking confidential information outside the organization. In this paper we
show that sparse regression for high dimensional data can be carried out directly on a compressed
form of the data, in a manner that can be shown to guard privacy in an information theoretic sense.

The approach we develop here compresses the data by a random linear or affine transformation,
reducing the number of data records exponentially, while preserving the number of original input
variables. These compressed data can then be made available for statistical analyses; we focus on
the problem of sparse linear regression for high dimensional data. Informally, our theory ensures
that the relevant predictors can be learned from the compressed data as well as they could be from
the original uncompressed data. Moreover, the actual predictions based on new examples are as
accurate as they would be had the original data been made available. However, the original data
are not recoverable from the compressed data, and the compressed data effectively reveal no more
information than would be revealed by a completely new sample. At the same time, the inference
algorithms run faster and require fewer resources than the much larger uncompressed data would
require. The original data need not be stored; they can be transformed “on the fly” as they come in.
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In more detail, the data are represented as an × p matrix X. Each of thep columns is an attribute,
and each of then rows is the vector of attributes for an individual record. The data are compressed
by a random linear transformationX 7→ X̃ ≡ 8X, where8 is a randomm × n matrix with
m � n. It is also natural to consider a random affine transformationX 7→ X̃ ≡ 8X +1, where1
is a randomm × p matrix. Such transformations have been called “matrix masking” in the privacy
literature [6]. The entries of8 and1 are taken to be independent Gaussian random variables, but
other distributions are possible. We think of̃X as “public,” while8 and1 are private and only
needed at the time of compression. However, even with1 = 0 and8 known, recoveringX from
X̃ requires solving a highly under-determined linear system and comes with information theoretic
privacy guarantees, as we demonstrate.

In standard regression, a response variableY = Xβ + ε ∈ Rn is associated with the input variables,
whereεi are independent, mean zero additive noise variables. In compressed regression, we assume
that the response is also compressed, resulting in the transformed responseỸ ∈ Rm given byY 7→
Ỹ ≡ 8Y = 8Xβ + 8ε = X̃β + ε̃. Note that under compression,ε̃i , i ∈ {1, . . . ,m}, in the
transformed noisẽε = 8ε are no longer independent. In the sparse setting, the parameterβ ∈ Rp

is sparse, with a relatively small numbers = ‖β‖0 of nonzero coefficients inβ. The method we
focus on is̀ 1-regularized least squares, also known as the lasso [17]. We study the ability of the
compressed lasso estimator to identify the correct sparse set of relevant variables and to predict well.

We omit details and technical assumptions in the following theorems for clarity. Our first result
shows that the lasso issparsistentunder compression, meaning that the correct sparse set of relevant
variables is identified asymptotically.

Sparsistence (Theorem 3.3):If the number of compressed examplesm satisfiesC1s2 lognps ≤
m ≤

√
C2n/ logn, and the regularization parameterλm satisfiesλm → 0 and mλ2

m/ log p →
∞, then the compressed lasso estimatorβ̃m = arg minβ 1

2m‖Ỹ − X̃β‖2
2 + λm‖β‖1 is sparsistent:

P
(
supp(β̃m) = supp(β)

)
→ 1 asm → ∞, wheresupp(β)= {j : j 6= 0}.

Our second result shows that the lasso ispersistentunder compression. Roughly speaking, per-
sistence [10] means that the procedure predicts well, as measured by the predictive riskR(β) =
E

(
Y − βT X

)2
, whereX ∈ Rp is a new input vector andY is the associated response. Persistence is

a weaker condition than sparsistency, and in particular does not assume that the true model is linear.

Persistence (Theorem 4.1):Given a sequence of sets of estimatorsBn,m ⊂ Rp such thatBn,m =
{β : ‖β‖1 ≤ Ln,m} with log2(np) ≤ m ≤ n, the sequence of compressed lasso estimatorsβ̃n,m =
arg min‖β‖1≤Ln,m

‖Ỹ − X̃β‖2
2 is persistent with the predictive riskR(β) = E

(
Y − βT X

)2
over

uncompressed data with respect toBn,m, meaning thatR(β̃n,m) − inf‖β‖1≤Ln,m R(β)
P−→ 0, as

n → ∞, in caseLn,m = o (m/ log(np))1/4.

Our third result analyzes the privacy properties of compressed regression. We evaluate privacy in
information theoretic terms by bounding the average mutual informationI (X̃; X)/np per matrix
entry in the original data matrixX, which can be viewed as a communication rate. Bounding this
mutual information is intimately connected with the problem of computing the channel capacity of
certain multiple-antenna wireless communication systems [13].

Information Resistence (Propositions 5.1 and 5.2): The rate at which information aboutX is
revealed by the compressed dataX̃ satisfiesrn,m = sup I (X; X̃)

np = O
(m

n

)
→ 0, where the

supremum is over distributions on the original dataX.

As summarized by these results, compressed regression is a practical procedure for sparse learning
in high dimensional data that has provably good properties. Connections with related literature are
briefly reviewed in Section 2. Analyses of sparsistence, persistence and privacy properties appear in
Section 3–5. Simulations for sparsistence and persistence of the compressed lasso are presented in
Section 6. The proofs are included in the full version of the paper, available athttp://arxiv.
org/abs/0706.0534.
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2 Background and Related Work

In this section we briefly review related work in high dimensional statistical inference, compressed
sensing, and privacy, to place our work in context.

Sparse Regression.An estimator that has received much attention in the recent literature is the
lassoβ̂n [17], defined aŝβn = arg min 1

2n‖Y − Xβ‖2
2+λn‖β‖1, whereλn is a regularization param-

eter. In [14] it was shown that the lasso is consistent in the high dimensional setting under certain
assumptions. Sparsistency proofs for high dimensional problems have appeared recently in [20]
and [19]. The results and method of analysis of Wainwright [19], whereX comes from a Gaussian
ensemble andεi is i.i.d. Gaussian, are particularly relevant to the current paper. We describe this
Gaussian Ensemble result, and compare our results to it in Sections 3, 6.Given that under com-
pression, the noisẽε = 8ε is not i.i.d, one cannot simply apply this result to the compressed case.
Persistence for the lasso was first defined and studied by Greenshtein and Ritov in [10]; we review
their result in Section 4.

Compressed Sensing.Compressed regression has close connections to, and draws motivation from
compressed sensing [4, 2]. However, in a sense, our motivation is the opposite of compressed
sensing. While compressed sensing ofX allows a sparseX to be reconstructed from a small number
of random measurements, our goal is to reconstruct a sparse function ofX. Indeed, from the point
of view of privacy, approximately reconstructingX, which compressed sensing shows is possible
if X is sparse, should be viewed as undesirable; we return to this point in Section??. Several
authors have considered variations on compressed sensing for statistical signal processing tasks
[5, 11]. They focus on certain hypothesis testing problems under sparse random measurements, and
a generalization to classification of a signal into two or more classes. Here one observesy = 8x,
wherey ∈ Rm, x ∈ Rn and8 is a known random measurement matrix. The problem is to select
between the hypotheses̃Hi : y = 8(si + ε). The proofs use concentration properties of random
projection, which underlie the celebrated Johnson-Lindenstrauss lemma. The compressed regression
problem we introduce can be considered as a more challenging statistical inference task, where the
problem is to select from an exponentially large set of linear models, each with a certain set of
relevant variables with unknown parameters, or to predict as well as the best linear model in some
class.

Privacy. Research on privacy in statistical data analysis has a long history, going back at least to [3].
We refer to [6] for discussion and further pointers into this literature; recent work includes [16]. The
work of [12] is closely related to our work at a high level, in that it considers low rank random linear
transformations of either the row space or column space of the dataX. The authors note the Johnson-
Lindenstrauss lemma, and argue heuristically that data mining procedures that exploit correlations
or pairwise distances in the data are just as effective under random projection. The privacy analysis
is restricted to observing that recoveringX from X̃ requires solving an under-determined linear
system. We are not aware of previous work that analyzes the asymptotic properties of a statistical
estimator under random projection in the high dimensional setting, giving information-theoretic
guarantees, although an information-theoretic quantification of privacy was proposed in [1]. We
cast privacy in terms of the rate of information communicated aboutX throughX̃, maximizing over
all distributions onX, and identify this with the problem of bounding the Shannon capacity of a
multi-antenna wireless channel, as modeled in [13]. Finally, it is important to mention the active
area of cryptographic approaches to privacy from the theoretical computer science community, for
instance [9, 7]; however, this line of work is quite different from our approach.

3 Compressed Regression is Sparsistent

In the standard setting,X is an × p matrix, Y = Xβ + ε is a vector of noisy observations under
a linear model, andp is considered to be a constant. In the high-dimensional setting we allowp to
grow with n. The lasso refers to the following:(P1) min ‖Y − Xβ‖2

2 such that ‖β‖1 ≤ L. In
Lagrangian form, this becomes:(P2) min 1

2n‖Y − Xβ‖2
2 + λn‖β‖1. For an appropriate choice of

the regularization parameterλ = λ(Y, L), the solutions of these two problems coincide.

In compressed regression we project each columnX j ∈ Rn of X to a subspace ofm dimensions,
using anm × n random projection matrix8. Let X̃ = 8X be the compressed design matrix, and
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let Ỹ = 8Y be the compressed response. Thus, the transformed noiseε̃ is no longer i.i.d.. The
compressed lasso is the following optimization problem, forỸ = 8Xβ + 8ε = 8X̃ + ε̃, with �̃m
being the set of optimal solutions:

(a) (P̃2) min
1

2m
‖Ỹ − X̃β‖2

2 + λm‖β‖1, (b) �̃m = arg min
β∈Rp

1

2m
‖Ỹ − X̃β‖2

2 + λm‖β‖1. (1)

Although sparsistency is the primary goal in selecting the correct variables, our analysis establishes
conditions for the stronger property of sign consistency:

Definition 3.1. (Sign Consistency)A set of estimators�n is sign consistentwith the trueβ if
P

(
∃β̂n ∈ �n s.t. sgn(β̂n) = sgn(β)

)
→ 1 asn → ∞, where sgn(·) is given by sgn(x) = 1,0, and

−1 for x >,=, or < 0 respectively. As a shorthand, denote the event that a sign consistent solution
exists withE

(
sgn(β̂n) = sgn(β∗)

)
:=

{
∃β̂ ∈ �n such that sgn(β̂) = sgn(β∗)

}
.

Clearly, if a set of estimators is sign consistent then it is sparsistent.

All recent work establishing results on sparsity recovery assumes some form ofincoherence condi-
tion on the data matrixX. To formulate such a condition, it is convenient to introduce an additional
piece of notation. LetS = {j : β j 6= 0} be the set of relevant variables and letSc = {1, . . . , p} \ S
be the set of irrelevant variables. ThenXS andXSc denote the corresponding sets of columns of the
matrix X. We will impose the following incoherence condition; related conditions are used by [18]
in a deterministic setting. Let‖A‖∞ = maxi

∑p
j =1 |Ai j | denote the matrix∞-norm.

Definition 3.2. (S-Incoherence)Let X be ann × p matrix and letS ⊂ {1, . . . , p} be nonempty.
We say thatX is S-incoherentin case

∥∥∥ 1
n XT

Sc XS

∥∥∥
∞

+
∥∥∥ 1

n XT
S XS − I |S|

∥∥∥
∞

≤ 1 − η, for someη ∈ (0,1]. (2)

Although not explicitly required, we only apply this definition toX such that columns ofX satisfy∥∥X j
∥∥2

2 = 2(n),∀ j ∈ {1, . . . , p}. We can now state our main result on sparsistency.

Theorem 3.3. Suppose that, before compression,Y = Xβ∗ + ε, where each column ofX is
normalized to havè2-norm n, andε ∼ N(0, σ2In). Assume thatX is S-incoherent, whereS =
supp(β∗), and defines = |S| andρm = mini∈S |β∗

i |. We observe, after compression,Ỹ = X̃β∗ + ε̃,

whereỸ = 8Y, X̃ = 8X, and̃ε = 8ε, where8i j ∼ N(0, 1
n ). Let β̃m ∈ �̃m as in (1b). If

(
16C1s2

η2
+ 4C2s

η

)
(ln p + 2 logn + log 2(s+ 1)) ≤ m ≤

√
n

16 logn
(3)

with C1 = 4e√
6π

≈ 2.5044andC2 =
√

8e≈ 7.6885, andλm → 0 satisfies

(a)
mη2λ2

m

log(p − s)
→ ∞, and (b)

1

ρm

{√
logs

m
+ λm

∥∥∥( 1
n XT

S XS)
−1

∥∥∥
∞

}
→ 0. (4)

Then the compressed lasso is sparsistent:P
(
supp(β̃m) = supp(β)

)
→ 1 asm → ∞.

4 Compressed Regression is Persistent

Persistence (Greenshtein and Ritov [10]) is a weaker condition than sparsistency. In particular, the
assumption thatE(Y|X) = βT X is dropped. Roughly speaking, persistence implies that a procedure
predicts well. We review the arguments in [10] first; we then adapt it to the compressed case.

Uncompressed Persistence.Consider a new pair(X, Y) and suppose we want to predictY from X.
The predictive risk using predictorβT X is R(β) = E(Y − βT X)2. Note that this is a well-defined
quantity even though we do not assume thatE(Y|X) = βT X. It is convenient to rewrite the risk in
the following way: defineQ = (Y, X1, . . . , Xp) andγ = (−1, β1, . . . , βp)

T , then

R(β) = γ T6γ, where6 = E(QQT ). (5)
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LetQ = (Q†
1 Q†

2 · · · Q†
n)

T , whereQ†
i = (Yi , X1i , . . . , Xpi )

T ∼ Q,∀i = 1, . . . ,n are i.i.d. random
vectors and the training error is

R̂n(β) = 1

n

n∑

i=1

(Yi − XT
i β)2 = γ T 6̂nγ, where 6̂n = 1

n
QTQ. (6)

Given Bn = {β : ‖β‖1 ≤ Ln} for Ln = o
(
(n/ logn)1/4

)
, we define the oracle predictorβ∗,n =

arg min‖β‖1≤Ln
R(β), and the uncompressed lasso estimatorβ̂n = arg min‖β‖1≤Ln

R̂n(β).

Assumption 1. Suppose that, for eachj andk, E
(
|Z|q

)
≤ q!Mq−2s/2, for everyq ≥ 2 and some

constantsM ands, whereZ = Q j Qk − E(Q j Qk), whereQ j , Qk denote elements ofQ.

Following arguments in [10], it can be shown that under Assumption 1 and given a sequence of sets
of estimatorsBn = {β : ‖β‖1 ≤ Ln} for Ln = o

(
(n/ logn)1/4

)
, the sequence of uncompressed

lasso estimatorŝβn = arg minβ∈Bn
R̂n(β) is persistent, i.e.,R(β̂n) − R(β∗,n)

P→ 0.

Compressed Persistence. For the compressed case, again we want to predict(X, Y), but
now the estimator̂βn,m is based on the lasso from the compressed data of sizemn. Let γ =
(−1, β1, . . . , βp)

T as before and we replacêRn with

R̂n,m(β) = γ T 6̂n,mγ, where6̂n,m = 1

mn
QT8T8Q. (7)

Given compressed sample sizemn, let Bn,m = {β : ‖β‖1 ≤ Ln,m}, whereLn,m = o
(

mn
log(npn)

)1/4
.

We define the compressed oracle predictorβ∗,n,m = arg minβ : ‖β‖1≤Ln,m
R(β) and the compressed

lasso estimator̂βn,m = arg minβ : ‖β‖1≤Ln,m
R̂n,m(β).

Theorem 4.1. Under Assumption1, we further assume that there exists a constantM1 > 0 such
thatE(Q2

j ) < M1,∀ j , whereQ j denotes thej th element ofQ. For any sequenceBn,m ⊂ Rp with

log2(npn) ≤ mn ≤ n, whereBn,m consists of all coefficient vectorsβ such that‖β‖1 ≤ Ln,m =
o

(
(mn/ log(npn))

1/4
)
, the sequence of compressed lasso proceduresβ̂n,m = arg minβ∈Bn,m

R̂n,m(β)

is persistent:R(β̂n,m) − R(β∗,n,m)
P→ 0, whenpn = O

(
enc)

for c < 1/2.

The main difference between the sequence of compressed lasso estimators and the original un-
compressed sequence is thatn and mn together define the sequence of estimators for the com-
pressed data. Heremn is allowed to grow from�(log2(np)) to n; hence for each fixedn,{
β̂n,m , ∀mn such that log2(np) < mn ≤ n

}
defines a subsequence of estimators. In Section 6 we

illustrate the compressed lasso persistency via simulations to compare the empirical risks with the
oracle risks on such a subsequence for a fixedn.

5 Information Theoretic Analysis of Privacy

Next we derive bounds on the rate at which the compressed dataX̃ reveal information about the
uncompressed dataX. Our general approach is to consider the mappingX 7→ 8X + 1 as a noisy
communication channel, where the channel is characterized by multiplicative noise8 and additive
noise1. Since the number of symbols inX is np we normalize by this effective block length to

define the information ratern,m per symbol asrn,m = supp(X)
I (X; X̃)

np . Thus, we seek bounds on
the capacity of this channel. A privacy guarantee is given in terms of bounds on the ratern,m → 0
decaying to zero. Intuitively, if the mutual information satisfiesI (X; X̃) = H(X) − H(X | X̃) ≈ 0,
then the compressed datãX reveal, on average, no more information about the original dataX than
could be obtained from an independent sample.

The underlying channel is equivalent to the multiple antenna model for wireless communication
[13], where there aren transmitter andm receiver antennas in a Raleigh flat-fading environment.
The propagation coefficients between pairs of transmitter and receiver antennas are modeled by the
matrix entries8i j ; they remain constant for a coherence interval ofp time periods. Computing the
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channel capacity over multiple intervals requires optimization of the joint density ofpn transmitted
signals, the problem studied in [13]. Formally, the channel is modeled asZ = 8X + γ1, where
γ > 0, 1i j ∼ N(0,1), 8i j ∼ N(0,1/n) and 1

n

∑n
i=1 E[X2

i j ] ≤ P, where the latter is a power
constraint.

Theorem 5.1. Suppose thatE[X2
j ] ≤ P and the compressed data are formed byZ = 8X + γ1,

where8 is m×n with independent entries8i j ∼ N(0,1/n) and1 is m× p with independent entries

1i j ∼ N(0,1). Then the information ratern,m satisfiesrn,m = supp(X)
I (X;Z)

np ≤ m
n log

(
1 + P

γ 2

)
.

This result is implicitly contained in [13]. When1 = 0, or equivalentlyγ = 0, which is the
case assumed in our sparsistence and persistence results, the above analysis yields the trivial bound
rn,m ≤ ∞. We thus derive a separate bound for this case; however, the resulting asymptotic order
of the information rate is the same.

Theorem 5.2. Suppose thatE[X2
j ] ≤ P and the compressed data are formed byZ = 8X, where

8 is m × n with independent entries8i j ∼ N(0,1/n). Then the information ratern,m satisfies
rn,m = supp(X)

I (X;Z)
np ≤ m

2n log(2πeP) .

Under our sparsistency lower bound onm, the above upper bounds arern,m = O(log(np)/n). We
note that these bounds may not be the best possible since they are obtained assuming knowledge of
the compression matrix8, when in fact the privacy protocol requires that8 and1 are not public.

6 Experiments

In this section, we report results of simulations designed to validate the theoretical analysis presented
in previous sections. We first present results that show the compressed lasso is comparable to the
uncompressed lasso in recovering the sparsity pattern of the true linear model. We then show results
on persistence that are in close agreement with the theoretical results of Section 4. We only include
Figures 1–2 here; additional plots are included in the full version.

Sparsistency.Here we run simulations to compare the compressed lasso with the uncompressed
lasso in terms of the probability of success in recovering the sparsity pattern ofβ∗. We use random
matrices for bothX and8, and reproduce the experimental conditions of [19]. A design parameter
is the compression factor f= n

m, which indicates how much the original data are compressed.
The results show that when the compression factorf is large enough, the thresholding behaviors
as specified in (8) and (9) for the uncompressed lasso carry over to the compressed lasso, when
X is drawn from a Gaussian ensemble. In general, the compression factorf is well below the
requirement that we have in Theorem 3.3 in caseX is deterministic. In more detail, we consider the
Gaussian ensemble for the projection matrix8, where8i, j ∼ N(0,1/n) are independent. The noise
is ε ∼ N(0, σ2), whereσ 2 = 1. We consider Gaussian ensembles for the design matrixX with both
diagonal and Toeplitz covariance. In the Toeplitz case, the covariance is given byT(ρ)i, j = ρ|i− j |;
we useρ = 0.1. [19] shows that whenX comes from a Gaussian ensemble under these conditions,
there exist fixed constantsθ` andθu such that for anyν > 0 ands = supp(β), if

n > 2(θu + ν)s log(p − s) + s + 1, (8)

then the lasso identifies true variables with probability approaching one. Conversely, if

n < 2(θ` − ν)s log(p − s) + s + 1, (9)

then the probability of recovering the true variables using the lasso approaches zero. In the follow-
ing simulations, we carry out the lasso using procedurelars(Y, X) that implements the LARS
algorithm of [8] to calculate the full regularization path. For the uncompressed case, we run
lars(Y, X) such thatY = Xβ∗ + ε, and for the compressed case we runlars(8Y,8X) such
that8Y = 8Xβ∗ +8ε. The regularization parameter isλm = c

√
(log(p − s) logs)/m. The results

show that the behavior under compression is close to the uncompressed case.

Persistence.Here we solve the following`1-constrained optimization problem̃β =
arg min‖β‖1≤L ‖Y − Xβ‖2 directly, based on algorithms described by [15]. We constrain the solu-
tion to lie in the ballBn = {‖β‖1 ≤ Ln}, whereLn = n1/4/

√
logn. By [10], the uncompressed lasso
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Figure 1: Plots of the number of samples versus the probability of success for recovering sgn(β∗).
Each point on a curve for a particularθ or m, wherem = 2θσ2s log(p − s) + s + 1, is an average
over 200 trials; for each trial, we randomly drawXn×p, 8m×n, andε ∈ Rn. The covariance6 =
1
nE

(
XT X

)
and modelβ∗ are fixed across all curves in the plot. The sparsity level iss(p) = 0.2p1/2.

The four sets of curves in the left plot are forp = 128,256,512 and 1024, with dashed lines
markingm for θ = 1 ands = 2,3,5 and 6 respectively. In the plots on the right, each curve has
a compression factorf ∈ {5,10,20,40,80,120} for the compressed lasso, thusn = f m; dashed
lines markθ = 1. For6 = I , θu = θ` = 1, while for6 = T(0.1), θu ≈ 1.84 andθ` ≈ 0.46 [19],
for the uncompressed lasso in (8) and in (9).
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Figure 2: Risk versus compressed dimension. We fixn = 9000 andp = 128, and sets(p) = 3 and
Ln = 2.6874. The model isβ∗ = (−0.9,−1.7,1.1,1.3,−0.5,2,−1.7,−1.3,−0.9,0, . . . ,0)T so
that

∥∥β∗
b

∥∥
1 > Ln andβ∗

b 6∈ Bn, and the uncompressed oracle predictive risk isR = 9.81. For each
value ofm, a data point corresponds to the mean empirical risk, which is defined in (7), over 100
trials, and each vertical bar shows one standard deviation. For each trial, we randomly drawXn×p
with i.i.d. row vectorsxi ∼ N(0,T(0.1)), andY = Xβ∗ + ε.
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estimatorβ̂n is persistent overBn. For the compressed lasso, givenn and pn, and a varying com-
pressed sample sizem, we take the ballBn,m = {β : ‖β‖1 ≤ Ln,m} whereLn,m = m1/4/

√
log(npn).

The compressed lasso estimatorβ̂n,m for log2(npn) ≤ m ≤ n, is persistent overBn,m by Theo-
rem 4.1. The simulations confirm this behavior.
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