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Abstract

Simulated annealing is a popular method for approaching the solution of a global
optimization problem. Existing results on its performance apply to discrete com-
binatorial optimization where the optimization variables can assume only a finite
set of possible values. We introduce a new general formulation of simulated an-
nealing which allows one to guarantee finite-time performance in the optimiza-
tion of functions of continuous variables. The results hold universallyafor
optimization problem on a bounded domain and establish a connection between
simulated annealing and up-to-date theory of convergence of Markov chain Monte
Carlo methods on continuous domains. This work is inspired by the concept of
finite-time learning with known accuracy and confidence developed in statistical
learning theory.

Optimization is the general problem of finding a value of a vector of varigbthat maximizes
(or minimizes) some scalar criteridi(6). The set of all possible values of the vectbis called
the optimization domain. The elementsgatan be discrete or continuous variables. In the first case
the optimization domain is usually finite, such as in the well-known traveling salesman problem; in
the second case the optimization domain is a continuous set. An important example of a continuous
optimization domain is the set of 3-D configurations of a sequence of amino-acids in the problem of
finding the minimum energy folding of the corresponding protein [1].

In principle, any optimization problem on a finite domain can be solved by an exhaustive search.
However, this is often beyond computational capacity: the optimization domain of the traveling
salesman problem with00 cities contains more that!®> possible tours. An efficient algorithm
to solve the traveling salesman and many similar problems has not yet been found and such prob-
lems remain reliably solvable only in principle [2]. Statistical mechanics has inspired widely used
methods for finding good approximate solutions in hard discrete optimization problems which defy
efficient exact solutions [3, 4, 5, 6]. Here a key idea has been that of simulated annealing [3]: a
random search based on the Metropolis-Hastings algorithm, such that the distribution of the ele-
ments of the domain visited during the search converges to an equilibrium distribution concentrated
around the global optimizers. Convergence and finite-time performance of simulated annealing on
finite domains has been evaluated in many works, e.g. [7, 8, 9, 10].

On continuous domains, most popular optimization methods perform a local gradient-based
search and in general converge to local optimizers; with the notable exception of convex criteria
where convergence to the unique global optimizer occurs [11]. Simulated annealing performs a
global search and can be easily implemented on continuous domains. Hence it can be considered
a powerful complement to local methods. In this paper, we introduce for the first time rigorous
guarantees on the finite-time performance of simulated annealing on continuous domains. We will



show that it is possible to derive simulated annealing algorithms which, with an arbitrarily high level
of confidence, find an approximate solution to the problem of optimizing a function of continuous
variables, within a specified tolerance to the global optimal solution after a known finite number of
steps. Rigorous guarantees on the finite-time performance of simulated annealing in the optimiza-
tion of functions of continuous variables have never been obtained before; the only results available
state that simulated annealing converges to a global optimizer as the number of steps grows to infin-
ity, e.g. [12, 13, 14, 15].

The background of our work is twofold. On the one hand, our notion of approximate solution to
a global optimization problem is inspired by the concept of finite-time learning with known accuracy
and confidence developed in statistical learning theory [16, 17]. We actually maintain an important
aspect of statistical learning theory which is that we do not introduce any particular assumption on
the optimization criterion, i.e. our results hold regardless of whist On the other hand, we ground
our results on the theory of convergence, with quantitative bounds on the distance to the target dis-
tribution, of the Metropolis-Hastings algorithm and Markov Chain Monte Carlo (MCMC) methods,
which has been one of the main achievements of recent research in statistics [18, 19, 20, 21].

In this paper, we will not develop any ready-to-use optimization algorithm. We will instead in-
troduce a general formulation of the simulated annealing method which allows one to derive new
simulated annealing algorithms with rigorous finite-time guarantees on the basis of existing theory.
The Metropolis-Hastings algorithm and the general family of MCMC methods have many degrees
of freedom. The choice and comparison of specific algorithms goes beyond the scope of the paper.

The paper is organized in the following sections. Simulated annealingve introduce the
method and fix the notation. IB@onvergenceve recall the reasons why finite-time guarantees for
simulated annealing on continuous domains have not been obtained befBigitdrtime guaran-
teeswe present the main result of the paperConclusionsve state our findings and conclude the
paper.

1 Simulated annealing

The original formulation of simulated annealing was inspired by the analogy between the stochastic
evolution of the thermodynamic state of an annealing material towards the configurations of minimal
energy and the search for the global minimum of an optimization criterion [3]. In the procedure, the
optimization criterion plays the role of the energy and the state of the annealed material is simulated
by the evolution of the state of an inhomogeneous Markov chain. The state of the chain evolves
according to the Metropolis-Hastings algorithm in order to simulate the Boltzmann distribution of
thermodynamic equilibrium. The Boltzmann distribution is simulated for a decreasing sequence of
temperatures (“cooling”). The target distribution of the cooling procedure is the limiting Boltzmann
distribution, for the temperature that tends to zero, which takes non-zero values only on the set of
global minimizers [7].

The original formulation of the method was for a finite domain. However, simulated anneal-
ing can be generalized straightforwardly to a continuous domain because the Metropolis-Hastings
algorithm can be used with almost no differences on discrete and continuous domains The main
difference is that on a continuous domain the equilibrium distributions are specified by probability
densities. On a continuous domain, Markov transition kernels in which the distribution of the el-
ements visited by the chain converges to an equilibrium distribution with the desired density can
be constructed using the Metropolis-Hastings algorithm and the general family of MCMC methods
[22].

We point out that Boltzmann distributions are not the only distributions which can be adopted as
equilibrium distributions in simulated annealing [7]. In this paper it is convenient for us to adopt a
different type of equilibrium distribution in place of Boltzmann distributions.

1.1 Our setting

The optimization criterion i§/ : ® — [0, 1], with ® c R . The assumption thaf takes values in
the interval0, 1] is a technical one. It does not imply any serious loss of generality. In general, any
bounded optimization criterion can be scaled to take valu@s ihj. We assume that the optimiza-
tion task is to find a global maximizer; this can be done without loss of generality. We also assume
that® is a bounded set.

We consider equilibrium distributions defined by probability density functions proportional to



[U(6) + )7 whereJ and§ are two strictly positive parameters. We us€) to denote an equi-
librium distribution, i.e.w(")(df) o« [U(0) + 6]’ mLep(df) Wherer,., is the standard Lebesgue
measure. Here/~! plays the role of the temperature: if the functibiff) plusd is taken to a
positive power.J then asJ increases (i.e. ag—! decreases)U(f) + 6]’ becomes increasingly
peaked around the global maximizers. The paramétisr an offset which guarantees that the
equilibrium densities are always strictly positive, evertiftakes zero values on some elements
of the domain. The offset is chosen by the user and we show later that our results allow one to
make an optimal selection éf The zero-temperature distribution is the limiting distribution, for
J — oo, which takes non-zero values only on the set of global maximizers. It is denoteGdy

In the generic formulation of the method, the Markov transition kernel ofthie step of the
inhomogeneous chain has equilibrium distributidr) where{Ji }r=1,2,.. is the “cooling sched-
ule”. The cooling schedule is a hon-decreasing sequence of positive numbers according to which
the equilibrium distribution become increasingly sharpened during the evolution of the chain. We
used;. to denote the state of the chain aRgl, to denote its probability distribution. The distribution
Py, obviously depends on the initial conditiély. However, in this work, we don’t need to make
this dependence explicit in the notation.

Remark 1:If, given an elemeng in ©, the valuel/ (§) can be computed directly, we say tliat
is a deterministic criterion, e.g. the energy landscape in protein structure prediction [1]. In problems
involving random variables, the vali&6) may be the expected vali&d) = [ g(z, 0)py(z; 0)dx
of some functiory which depends on both the optimization variaBlend on some random vari-
ablex which has probability density, (x; 6) (which may itself depend of)). In such problems it
is usually not possible to computé(d) directly, either because evaluation of the integral requires
too much computation, or because no analytical expression.far, 6) is available. Typically one
must perform stochastic simulations in order to obtain samples fofr a givend, hence obtain
sample values of(x, ¢), and thus construct a Monte Carlo estimaté&/df). The Bayesian design
of clinical trials is an important application area where such expected-value criteria arise [23]. The
authors of this paper investigate the optimization of expected-value criteria motivated by problems
of aircraft routing [24]. In the particular case that(z; 6) does not depend ofy the optimization
task is often called “empirical risk minimization”, and is studied extensively in statistical learning
theory [16, 17]. The results of this paper apply in the same way to the optimization of both deter-
ministic and expected-value criteria. The MCMC method developed iek[25, 26] allows one
to construct simulated annealing algorithms for the optimization of expected-value critdiii@r M
[25, 26] employs the same equilibrium distributions as those described in our setting; in his context
J is restricted to integer values.

2 Convergence

The rationale of simulated annealing is as follows: if the temperature is kept constaiit, say,

then the distribution of the state of the chai), tends to the equilibrium distribution(); if J — oo

then the equilibrium distribution(”) tends to the zero-temperature distributidf®); as a result, if

the cooling scheduld}, tends to infinity, one obtains thay, “follows” (%) and thatr(/*) tends

to 7(>) and eventually that the distribution of the state of the chiaintends tor(>*). The theory
shows that, under conditions on the cooling schedule and the Markov transition kernels, the distri-
bution of the state of the chaiRy, actually converges to the target zero-temperature distribution
7(®) ask — oo [12, 13, 14, 15]. Convergence to the zero-temperature distribution implies that
asymptotically the state of the chain eventually coincides with a global optimizer with probability
one.

The difficulty which must be overcome in order to obtain finite step results on simulated an-
nealing algorithms on a continuous domain is that usually, in an optimization problem defined over
continuous variables, the set of global optimizers has zero Lebesgue measure (e.g. a set of isolated
points). If the set of global optimizers has zero measure then the set of global optimizers has null
probability according to the equilibrium distribution$”) for any finite J and, as a consequence,
according to the distributionBy, for any finitek. Put another way, the probability that the state of
the chain visits the set of global optimizers is constantly zero after any finite number of steps. Hence
the confidence of the fact that the solution provided by the algorithm in finite time coincides with a
global optimizer is also constantly zero. Notice that this is not the case for a finite domain, where
the set of global optimizers is of non-null measure with respect to the reference counting measure



[7,8,9,10].

It is instructive to look at the issue also in terms of the rate of convergence to the target zero-
temperature distribution. On a discrete domain, the distribution of the state of the chain at each
step and the zero-temperature distribution are both standard discrete distributions. It is then possible
to define a distance between them and study the rate of convergence of this distance to zero. This
analysis allows one to obtain results on the finite-time behavior of simulated annealing [7, 8]. On a
continuous domain and for a set of global optimizers of measure zero, the target zero-temperature
distribution7(>) ends up being a mixture of probability masses on the set of global optimizers. In
this situation, although the distribution of the state of the ctain still converges asymptotically
to 7(°°), it is not possible to introduce a sensible distance between the two distributions and a rate
of convergence to the target distribution cannot even be defined (weak convergence), see [12, The-
orem 3.3]. This is the reason that until now there have been no guarantees on the performance of
simulated annealing on a continuous domain after a finite number of computations: by adopting the
zero-temperature distributiarf>) as the target distribution it is only possible to prove asymptotic
convergence in infinite time to a global optimizer.

Remark 2:The standard distance between two distributions;gandp.», on a continuous sup-
port is the total variation normiu; — ua||lrv = sup 4 |1 (A) — ua(A4)[, see e.g. [21]. In simulated
annealing on a continuous domain the distribution of the state of the éfhaiis absolutely con-
tinuous with respect to the Lebesgue measure firg, (A) = 0 = Py, (A) = 0), by construction
for any finitek. Hence if the set of global optimizers has zero Lebesgue measure then it has zero
measure also according &, . The set of global optimizers has however measure 1 according to
7(>°), The distancél Py, — 7(>) ||z is then constantly for any finitek.

It is also worth mentioning that if the set of global optimizers has zero measure then asymp-
totic convergence to the zero-temperature distributio®) can be proven only under the additional
assumptions of continuity and differentiability 6f[12, 13, 14, 15].

3 Finite-time guarantees

In general, optimization algorithms for problems defined on continuous variables can only find ap-
proximate solutions in finite time [27]. Given an eleméndf a continuous domain how can we
assess how good it is as an approximate solution to an optimization problem? Here we introduce
the concept ohpproximate global optimizeio answer this question. The definition is given for

a maximization problem in a continuous but bounded domain. We use two parameteraluthe
imprecisione (greater than or equal to 0) and thesidual domainx (between 0 and 1) which to-
gether determine the level of approximation. We say #hatan approximate global optimizer bf

with value imprecisiore and residual domain if the functionU takes values strictly greater than

U(#) + e only on a subset of values 6fno larger than an portion of the optimization domain. The
formal definition is as follows.

Definition 1 LetU : ® — R be an optimization criterion wher® c R¥ is bounded. Letr,
denote the standard Lebesgue measure.cLet0 anda € [0, 1] be given numbers. Thehis an
approximate global optimizer &f with value imprecisior and residual domaiw if 77,.,{6’ € © :
U@)>U0)+ e} <ampe(®).

In other words, the valuE (6) is within e of a value which is greater than the values ttiabkes
on at least d — « portion of the domain. The smallerand« are, the better is the approximation
of a true global optimizer. If both ande are equal to zero theli(#) coincides with the essential
supremum ofJ.

Our definition of approximate global optimizer carries an important property, which holds re-
gardless of what the criterioli is: if ¢ and o have non-zero values then the set of approximate
global optimizers always has non-zero Lebesgue measure. It follows that the probability that the
chain visits the set of approximate global optimizers can be non-zero. Hence, it is sensible to study
the confidence of the fact that the solution found by simulated annealing in finite time is an approx-
imate global optimizer.

Remark 3:The intuition that our notion of approximate global optimizer can be used to obtain
formal guarantees on the finite-time performance of optimization methods based on a stochastic
search of the domain is already apparent in the work of Vidyasagar [17, 28]. Vidyasagar [17, 28]
introduces a similar definition and obtains rigorous finite-time guarantees in the optimization of ex-



pected value criteria based on uniform independent sampling of the domain. Notably, the number
of independent samples required to guarantee some desired accuracy and confidence turns out to be
polynomial in the values of the desired imprecision, residual domain and confidence. Although the
method of Vidyasagar is not highly sophisticated, it has had considerable success in solving difficult
control system design applications [28, 29]. Its appeal stems from its rigorous finite-time guarantees
which exist without the need for any particular assumption on the optimization criterion.

Here we show that finite-time guarantees for simulated annealing can be obtained by selecting a
distribution7(”) with a finite J as the target distribution in place of the zero-temperature distribution
7(>), The fundamental result is the following theorem which allows one to select in a rigorous way
§ andJ in the target distributionr(). It is important to stress that the result holds universally for
any optimization criterionlU on a bounded domain. The only minor requirement is thaakes
values in[0, 1].

Theorem 1 LetU : ® — [0, 1] be an optimization criterion wher® c R¥ is bounded. Let
J > 1andd > 0 be given numbers. L& be a multivariate random variable with distribution
7 (dh) o [U(0) + 6] 7re(dB). Leta € (0, 1] ande € [0, 1] be given numbers and define

1
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Then the statement “& an approximate global optimizer dfwith value imprecisior and residual
domaina” holds with probability at least.

Proof. See Appendix A.

)

The importance of the choice of a target distributigd) with a finite .J is thatr(/) is absolutely
continuous with respect to the Lebesgue measure. Hence, the digfance 7(/)||r, between the
distribution of the state of the chaify, and the target distribution(”) is a meaningful quantity.

Convergence of the Metropolis-Hastings algorithm and MCMC methods in total variation norm
is a well studied problem. The theory provides simple conditions under which one derives upper
bounds on the distance to the target distribution which are known at each step of the chain and
decrease monotonically to zero as the number of steps of the chain grows. The theory has been
developed mainly fonomogeneoushains [18, 19, 20, 21].

In the case of simulated annealing, the factor that enables us to employ these results is the abso-
lute continuity of the target distribution(”) with respect to the Lebesgue measure. However, simu-
lated annealing involves the simulation of inhomogeneous chains. In this respect, another important
fact is that the choice of a target distributiof’) with a finite J implies that the inhomogeneous
Markov chain can in fact be formed by a finite sequence of homogeneous chains (i.e. the cooling
schedule{ Ji }r=1,2,... can be chosen to be a sequence that takes only a finite set of values). In turn,
this allows one to apply the theory of homogeneous MCMC methods to study the convergence of
Py, to (/) in total variation norm.

On a bounded domain, simple conditions on the ‘proposal distribution’ in the iteration of the sim-
ulated annealing algorithm allows one to obtain upper boundsfen— 7(/) ||, that decrease geo-
metrically to zero ag — oo, without the need for any additional assumptionl6fl8, 19, 20, 21].

It is then appropriate to introduce the following finite-time result.

Theorem 2 Let the notation and assumptions of Theorem 1 hold 8.etwith distribution Py, , be

the state of the inhomogeneous chain of a simulated annealing algorithm with target distribution
7(/). Then the statement is an approximate global optimizer 6f with value imprecision and
residual domair” holds with probability at leastr — || Ps, — 7(7) ||v.

The proof of the theorem follows directly from the definition of the total variation norm.

It follows that if simulated annealing is implemented with an algorithm which converges in total
variation distance to a target distributiaft’) with a finite .J, then one can state with confidence
arbitrarily close to 1 that the solution found by the algorithm after the known appropriate finite
number of steps is an approximate global optimizer with the desired approximation level. For given
non-zero values of, « the value ofs given by (1) can be made arbitrarily close to 1 by choice of
J; while the distancél Py, — (/) |lry can be made arbitrarily small by taking the known sufficient
number of steps.



It can be shown that there exists the possibility of making an optimal choiéeanél J in the
target distributiont(”). In fact, for givene anda and a given value of there exists an optimal
choice ofs which maximizes the value of given by (1). Hence, it is possible to obtain a desised
with the smallest possiblé. The advantage of choosing the smalléstonsistent with the required
approximation and confidence, is that it will decrease the number of steps required to achieve the
desired reduction df Py, — (/) ||7y.

4 Conclusions

We have introduced a new formulation of simulated annealing which admits rigorous finite-time
guarantees in the optimization of functions of continuous variables. First, we have introduced the
notion of approximate global optimizer. Then, we have shown that simulated annealing is guaranteed
to find approximate global optimizers, with the desired confidence and the desired level of accuracy,
in a known finite number of steps, if a proper choice of the target distribution is made and conditions
for convergence in total variation norm are met. The results holdfgoptimization criterion on a
bounded domain with the only minor requirement that it takes values between 0 and 1.

In this framework, simulated annealing algorithms with rigorous finite-time guarantees can be
derived by studying the choice of the proposal distribution and of the cooling schedule, in the generic
iteration of simulated annealing, in order to ensure convergence to the target distribution in total
variation norm. To do this, existing theory of convergence of the Metropolis-Hastings algorithm and
MCMC methods on continuous domains can be used [18, 19, 20, 21].

Vidyasagar [17, 28] has introduced a similar definition of approximate global optimizer and has
shown that approximate optimizers with desired accuracy and confidence can be obtained with a
number of uniform independent samples of the domain which is polynomial in the accuracy and
confidence parameters. In general, algorithms developed with the MCMC methodology can be
expected to be equally or more efficient than uniform independent sampling.
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A Proof of Theorem 1

Leta € (0, 1] andp € (0, 1] be given numbers. Lét;(0) := U(0) + . Let s be a normalized
measure such that; (df) o« Us(0)mLer(d9). In the first part of the proof we find a lower bound on
the probability tha® belongs to the s€t) € © : w5{0' € ® : pU;s(0') > Us(0)} < a}.

Let ys := inf{y : ms{0 € © : Us(#) < y} > 1 — a}. To start with we show that the set
{0 €O :7;{0/ € ®:pUs(0) > Us(9)} < a} coincides with{f € © : Us(0) > pya}. Notice
that the quantityrs {0 € © : Us(0) < y} is a right-continuous non-decreasing functiorydfecause
it has the form of a distribution function (see e.g. [30, p.162] and [17, Lemma 11.1]). Therefore we
havers{6 € ® : Us(0) < ya} >1—aand

y>pya = ws{0€®@:pUs(@)<yt>1—-a = {0 €O:pUsd)>y}<a.
Moreover,

y<pya = w0 €O®:pUs(@)<yl<l—-a = m{0€®:pUs)>y}>a
and taking the contrapositive one obtains

m5{0' €@ :pUs(0') >yt <a = y>pya

Therefore{f € © : Us(0) > pya} = {0 € © : w5{0' € © : pUs(0') > Us(0)} < a}.
We now derive a lower bound on”){# € © : Us(f) > pyas}. Let us introduce the notation
Ad :? {9 €0O: U5(6) < y&}, Aa = {6 €cO: Ug(@) 2 y@}, B@,p ::_{9 S (:l) : U5(9) < py(j}
andB;s,, == {0 € © : Us(#) > pys}. Notice thatB; , C As; andA; C Bs,,. The quantity
ms{0 € © : Us(#) < y} as a function of; is the left-continuous version afs {6 € © : Us(0) <

y}30, p.162]. Hence, the definition gf;, implies7s(Asz) < 1 — @ andns(Asz) > &. Notice that

6 e A& _
m5(Ag) <l—-a = mreb(Aa) <l-a,

o Us(0)mres(df)] —




(14 8)7ren(As) -
[f@ U5 (Q)ﬂ'Leb(de)] o

4

7T5(A@) Z @7

Hencerr.p(As) > 0 and

WLebEAa) a d
Notice thatry,.,(Az) > 0 implies e, (Ba,,) > 0. We obtain
1 S 1
fB&, U5(9) Trep(d0) — fB&‘p Us(0)! wpep(d)
fo Us@)7mrand) [y Us(0)7mren(d0)

1 1
>

p7ys TLev(Bay) JWLeb(A&) - |4 potzaltor

yd  mres(As) TLeb(Aa) a 9
Since{d € ® : Us(0) > pya} ={0 € O : 7ws{0' € ® : pUs(0’) > Us(0)} < a} the first part of
the proof is complete.

In the second part of the proof we show that the gkte © : #5{0' € © : pUs(¢) >
Us(0)} < a} is contained in the set of approximate global optimizerSZ(wf/ith value imprecision
é:= (p~' —1)(1 + 6) and residual domaiti := £ a.
O:pUs(@)>Us0)}<al C{0e®:mpp{l €O: U(H) >U(0) + €} < omrLeb( )}We
have

0 ec®:Us(0) > pyat =

1+

U@)>U@B)+e < pUs(¥)
which is proven by noticing thap [Us(6)
andU(0) € [0, 1]. Hence{e’ € O : pUs(0
Thereforers{0’ € © : pUs(8') > Us(6)} <
Qoe:={0 € ®:U(0) > U(0) + &} and notice tha

U(H/)WLeb(dH/) + 67TLeb(Q97g)
75{0' € ©@:U0)>U(0) + ¢} = Qo,z
/@ U(e/)ﬂ-Leb(de/) + 571—Leb(®)

We obtain
{0 €@ :UW0)>U0)+¢é} <a= émpen(Qoz) +0mren(Qoc) < a(l+0)mLen(O)
= mrep{l €O :U0) >U(0) + €} <anmre(O).
Hence we can conclude that
75{0' € © : pUs(0') > Us(0)} <@ = 7mrep{d €O :U0) >U(B) +¢} < ampe(O)
and the second part of the proof is complete.
We have shown that givem € (0, 1], p € (0, 1], &:= (p~' = 1)(1 +4), & := 2 a and
1 1
1+pJ1*75‘1L5: { 146 } {11+5 }1+5’
E+1+6 QaE+d é

0
the statement “As an approximate global optimizer &f with value imprecisiore and residual
domaina” holds with probability at least. Notice that € [0, 1] and& € (0, 1] are linked through

a bijective relation tp € [;ig, 1] anda € (0, iig] The statement of the theorem is eventually

obtained by expressingas a function of desireél= ¢ anda = «. O
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