Reinforcement Learning in Continuous Action Spaces
through Sequential Monte Carlo Methods

Alessandro Lazaric Marcello Restelli Andrea Bonarini
Department of Electronics and Information
Politecnico di Milano
piazza Leonardo da Vinci 32, 1-20133 Milan, Italy
{bonarini,lazaric,restelli}@let.polim.it

Abstract

Learning in real-world domains often requires to deal with continuous state and
action spaces. Although many solutions have been proposed to apply Reinforce-
ment Learning algorithms to continuous state problems, the same techniques can
be hardly extended to continuous action spaces, where, besides the computation of
a good approximation of the value function, a fast method for the identification of
the highest-valued action is needed. In this paper, we propose a novel actor-critic
approach in which the policy of the actor is estimated through sequential Monte
Carlo methods. The importance sampling step is performed on the basis of the
values learned by the critic, while the resampling step modifies the actor’s policy.
The proposed approach has been empirically compared to other learning algo-
rithms into several domains; in this paper, we report results obtained in a control
problem consisting of steering a boat across a river.

1 Introduction

Most of the research on Reinforcement Learning (RL) [13] has studied solutions to finite Markov
Decision Processes (MDPs). On the other hand, learning in real-world environments requires to
deal with continuous state and action spaces. While several studies focused on problems with con-
tinuous states, little attention has been deserved to tasks involving continuous actions. Although
several tasks may be (suboptimally) solved by coarsely discretizing the action variables (for in-
stance using the tile coding approach [11, 12]), a different approach is required for problems in
which high-precision control is needed and actions slightly different from the optimal one lead to
very low utility values. In fact, since RL algorithms need to experience each available action several
times to estimate its utility, using very fine discretizations may be too expensive for the learning
process. Some approaches, although using a finite set of target actions, deal with this problem by
selecting real-valued actions obtained by interpolation of the available discrete actions on the basis
of their utility values [9, 14]. Despite of this capability, the learning performance of these algorithms
relies on strong assumptions about the shape of the value function that are not always satisfied in
highly non-linear control problems. Thre fitting algorithm [2] (later adopted also in [4]) tries to

solve this problem by implementing an adaptive interpolation scheme in which a finite set of pairs
(action,value) is modified in order to better approximate the action value function.

Besides having the capability of selecting any real-valued action, RL algorithms for continuous ac-
tion problems should be able to efficiently find the greedy action, i.e., the action associated to the
highest estimated value. Differently from the finite MDP case, a full search in a continuous action
space to find the optimal action is often unfeasible. To overcome this problem, several approaches
limit their search over a finite number of points. In order to keep low this number, many algorithms
(e.g., tile coding and interpolation-based) need to make (often implicit) assumptions about the shape
of the value function. To overcome these difficulties, several approaches have adopted the actor-

critic architecture [7, 10]. The key idea of actor-critic tneds is to explicitly represent the policy
(stored by the actor) with a memory structure independent of the one used for the value function
(stored by the critic). In a given state, the policy followed by the agent is a probability distribution
over the action space, usually represented by parametric functions (e.g., Gaussians [6], neural net-
works [14], fuzzy systems [5]). The role of the critic is, on the basis of the estimated value function,
to criticize the actions taken by the actor, which consequently modifies its policy through a stochas-
tic gradient on its parameter space. In this way, starting from a fully exploratory policy, the actor
progressively changes its policy so that actions that yield higher utility values are more frequently
selected, until the learning process converges to the optimal policy. By explicitly representing the
policy, actor-critic approaches can efficiently implement the action selection step even in problems
with continuous action spaces.

In this paper, we propose to use a Sequential Monte Carlo (SMC) method [8] to approximate the
sequence of probability distributions implemented by the actor, thus obtaining a novel actor-critic
algorithm called SMC-learning. Instead of a parametric function, the actor represents its stochastic
policy by means of a finite set of random samples (i.e., actions) that, using simple resampling and
moving mechanisms, is evolved over time according to the values stored by the critic. Actions are
initially drawn from a prior distribution, and then they are resampled according tmpaortance
samplingestimate which depends on the utility values learned by the critic. By means of the resam-
pling and moving steps, the set of available actions gets more and more thick around actions with
larger utilities, thus encouraging a detailed exploration of the most promising action-space regions,
and allowing SMC-learning to find real continuous actions. It is worth pointing out that the main
goal here is not an accurate approximation of the action-value function on the whole action space,
but to provide an efficient way to converge to ttentinuousoptimal policy. The main characteris-

tics of the proposed approach are: the agent may learn to execute any continuous action, the action
selection phase and the search for the action with the best estimated value are computationally effi-
cient, no assumption on the shape of the value function is required, the algorithm is model-free, and
it may learn to follow also stochastic policies (needed in multi-agent problems).

In the next section, we introduce basic RL notation and briefly discuss issues about learning with
continuous actions. Section 3 details the proposed learning approach (SMC-Learning), explaining
how SMC methods can be used to learn in continuous action spaces. Experimental results are
discussed in Section 4, and Section 5 draws conclusions and contains directions for future research.

2 Reinforcement Learning

In reinforcement learning problems, an agent interacts with an unknown environment. At each
time step, the agent observes ttate, takes amction, and receives eward. The goal of the
agent is to learn golicy (i.e., a mapping from states to actions) that maximizes the long-term
return. An RL problem can be modeled as a Markov Decision Process (MDP) defined by a quadru-
ple (S, A,7,R,v), whereS is the set of statesd(s) is the set of actions available in state

T : Sx AxS — [0,1] is a transition distribution that specifies the probability of observing a certain
state after taking a given action in a given stée,S x A — R is a reward function that specifies the
instantaneous reward when taking a given action in a given state; arid, 1) is a discount factor.

The policy of an agent is characterized by a probability distributi@ris) that specifies the probabil-

ity of taking actiona in states. The utility of taking actior in states and following a policyr there-

after is formalized by the action-value functio}v (s,a) = E [, "~ 'ry|s = s1,a = ay, 7],
wherer; = R (s, a). RL approaches aim at learning the policy that maximizes the action-value func-
tion in each state. The optimal action-value function can be computed by solving the Bellman equa-
tion: Q*(s,a) = R(s,a)+v >, 7 (s,a,s") max, Q*(s’,a’). The optimal policy can be defined as

the greedy action in each state:(a|s) is equal tol /|arg max, Q*(s,a)|if a € arg max, Q*(s, a),

and 0 otherwise.

Temporal Difference (TD) algorithms [13] allows the computatio)df s, a) by direct interaction

with the environment. Given the tuple;, as, r+, st+1,a:+1) (i.€., the experience performed by the
agent), at each step, action values may be estimated by online algorithms, such as SARSA, whose
update rule is:

Qs ar) — (1 = @)Q(s1,) + au(ry, apqr, Se41), 1)
wherea € [0,1] is a learning rate and(rs, as11, St+1) = 7+ + YQ(st+1, ar4+1) i the target utility.

Although value-function approaches have theoretical quaes about convergence to the optimal
policy and have been proved to be effective in many applications, they have several limitations:
algorithms that maximize the value function cannot solve problems whose solutions are stochas-
tic policies (e.g., multi-agent learning problems); small errors in the estimated value of an action
may lead to discontinuous changes in the policy [3], thus leading to convergence problems when
function approximators are considered. These problems may be overcome by adopiingyitic
methods [7] in which the action-value function and the policy are stored into two distinct repre-
sentations. The actor typically represents the distribution density over the action space through a
function(als, 8), whose parametesare updated in the direction of performance improvement,

as established by the critic on the basis of its approximation of the value function, which is usually
computed through an on-policy TD algorithm.

3 SMC-Learningfor Continuous Action Spaces

SMC-learning is based on an actor-critic architecture, in which the actor stores and updates, for
each states, a density distributiont®(a|s) that specifies the agent's policy at time instantAt

the beginning of the learning process, without any prior information about the problem, the actor
usually considers a uniform distribution over the action space, thus implementing a fully exploratory
policy. As the learning process progresses, the critic collects data for the estimation of the value
function (in this paper, the critic estimates the action-value function), and provides the actor with
information about which actions are the most promising. On the other hand, the actor changes its
policy to improve its performance and to progressively reduce the exploration in order to converge
to the optimal deterministic policy. Instead of using parametric functions, in SMC-learning the
actor represents its evolving stochastic policy by means of Monte Carlo sampling. The idea is the
following: for each state, the set of available actiond(s) is initialized with N samples drawn

from a proposal distribution®(a|s):

A(s) = {ar,a9,---,an}, a; ~7°(als).

Each sampled actios; is associated to an importance weighte W(s) whose value is initialized
to 1/N, so that the prior density can be approximated as

N
70(als) ~ Zwi -0(a — a;),
i=1

wherea; € A(s), w; € W(s), andd is the Dirac delta measure. As the number of samples goes
to infinity this representation gets equivalent to the functional description of the original probability
density function. This means that the actor can approximately follow the policy specified by the
densityn%(a|s), by simply choosing actions at random fro#ds), where the (normalized) weights

are the selection probabilities. Given the continuous action-value function estimated by the critic
and chosen a suitable exploration strategy (e.g., the Boltzmann exploration), it is possible to define
the desired probability distribution over the continuous action space, usually referred taas the

get distribution. As long as the learning process goes on, the action values estimated by the critic
become more and more reliable, and the policy followed by the agent should change in order to
choose more frequently actions with higher utilities. This means that, in each state, the target dis-
tribution changes according to the information collected during the learning process, and the actor
must consequently adapt its approximation.

In general, when no information is available about the shape of the target distribution, SMC meth-
ods can be effectively employed to approximate sequences of probability distributions by means of
random samples, which are evolved over time exploitingortance samplingndresamplingech-
nigues. The idea behind importance sampling is to modify the weights of the samples to account
for the differences between the target distributigm) and the proposal distribution(z) used to
generate the samples. By setting each weighproportional to the ratip(x;) /7 (x;), the discrete

weighted distributiorEiN:1 w; -6(x — x;) better approximates the target distribution. In our context,

the importance sampling step is performed by the actor, which modifies the weights of the actions
according to their utility values estimated by the critic. When some samples have very small or very
large normalized weights, it follows that the target density significantly differs from the proposal
density used to draw the samples. From a learning perspective, this means that the set of available

Algorithm 1 SMC-learning algorithm

for all s € S do
Initialize .A(s) by drawingN samples fromr® (a|s)
Initialize W(s) with uniform valuesw; = 1/N
end for
for each time step do
Action Selection
Given the current state;, the actor selects actian, from A(s;) according tor® (a|s) = =N | w; - 8(a — a;)
Critic Update
Given the reward-, and the utility of next state, 1, the critic updates the action valag(s;, a+)
Actor Update
Given the action-value function, the actor updates the importance weights
if the weights have a high variantieen
the setA(s;) is resampled
end if
end for

actions contains a number of samples whose estimated ugilitgry low. To avoid this, the ac-
tor has to modify the set of available actions by resampling new actions from the current weighted
approximation of the target distribution.

In SMC-learning, SMC methods are included into a learning algorithm that iterates through three
main steps (see Algorithm 1): the action selection performed by the actor, the update of the action-
value function managed by the critic, and finally the update of the policy of the actor.

3.1 Action Selection

One of the main issues of learning in continuous action spaces is to determine which is the best action
in the current state, given the (approximated) action-value function. Actor-critic methods effectively
solve this problem by explicitly storing the current policy. As previously described, in SMC-learning
the actor performs the action selection step by taking one action at random among those available
in the current state. The probability of extraction of each action is equal to its normalized weight
Pr(a;|s) = w,;. The time complexity of the action selection phase for SMC-learning is logarithmic

in the number of actions samples.

3.2 Critic Update

While the actor determines the policy, the critic, on the basis of the collected rewards, computes
an approximation of the action-value function. Although several function approximation schemes
could be adopted for this task (e.g., neural networks, regression tress, support-vector machines), we
use a simple solution: the critic stores an action valp, a;), for each action available in state

(like in tabular approaches) and modifies it according to TD update rules (see Equation 1). Using
on-policy algorithms, such as SARSA, the time complexity of the critic update is constant (i.e., does
not depend on the number of available actions).

3.3 Actor Update

The core of SMC-learning is represented by the update of the policy distribution performed by the
actor. Using the importance sampling principle, the actor modifies the weightsus performing

a policy improvement step based on the action values computed by the critic. In this way, actions
with higher estimates get more weight. Several RL schemes could be adopted to update the weights.
In this paper, we focus on the Boltzmann exploration strategy [13].

TheBoltzmann exploratiostrategy privileges the execution of actions with higher estimated utility
values. The probabilities computed by the Boltzmann exploration can be used as weights for the
available actions. At time instahtthe weight of actior; in states is updated as follows:

2QM 1 (s,ay)
2™ (sia5)

41 _ ¢ €
w; = w; AQtHL(s,a;) (2)

N
Zj:l w;e T

whereAQ (s, a;) = Q' (s,a;) — Q'(s, a;), and the parameter(usually referred as to temper-
ature) specifies the exploration degree: the highdne higher the exploration.

Once the weights have been modified, the agent’s policy hasgelda Unfortunately, it is not
possible to optimally solve continuous action MDPs by exploring only a finite set of actions sampled
from a prior distribution, since the optimal action may not be available. Since the prior distribution
used to initialize the set of available actions significantly differs from the optimal policy distribution,
after a few iterations, several actions will have negligible weights: this problem is known as the
weight degeneracghenomenon [1]. Since the number of samples should be kept low for efficiency
reasons, having actions associated with very small weights means to waste learning parameters for
approximating both the policy and the value function in regions of the action space that are not
relevant with respect to the optimal policy. Furthermore, long learning time is spent to execute
and update utility values of actions that are not likely to be optimal. Therefore, following the SMC
approach, after the importance sampling phase, a resampling step may be needed in order to improve
the distribution of the samples on the action domain. The degeneracy phenomenon can be measured
through the effective sample size [8], which, for each statan be estimated by

7 .
Negs(s) = Z w? ®)

w; EW(s)

wherew; is the normalized Weightﬁeff(s) is always less than the number of actions contained
in A(s), and low values ofV.;(s) reveal high degeneracy. In order to avoid high degeneracy,

the actions are resampled whenever the ratio between the effective samplé. size) and the

number of sampled/ falls below some given threshoted The goal of resampling methods is to
replace samples with small weights, with new samples close to samples with large weights, so that
the discrepancy between the resampled weights is reduced. The new set of samples is generated by
resampling (with replacementy times from the following discrete distribution

§:wz (a—ap), @

so that samples with high weights are selected many times. Among the several resampling ap-
proaches that have been proposed, here we consider the systematic resampling scheme, since it can
be easily implemented, takes O)Aime, and minimizes the Monte Carlo variance (refer to [1] for

more details). The new samples inherit the same action values of their parents, and the sample
weights are initialized using the Boltzmann distribution.

Although the resampling step reduces the degeneracy, it introduces another problem keamn as
ple impoverishment. Since samples with large weights are replicated several times, after a few
resampling steps a significant number of samples could be identical. Furthermore, we need to learn
over a continuous space, and this cannot be carried out using a discrete set of fixed samples; in
fact, the learning agent would not be able to achieve the optimal policy whenever the initial set of
available actions in state(A(s)) does not contain the optimal action of that state. This limitation
may be overcome by means o$moothingstep, that consists of moving the samples according to a
continuous approximation’(a|s, w;) of the posterior distribution . The approximation is obtained
by using a weighted mean of kernel densities:

“). ©)

7' (a|s,w;) = Zwl (

whereh > 0 is the kernel bandwidth. Typlcal ch0|ces for the kernel densities are Gaussian kernels
and Epanechnikov kernels. However, these kernels produce over-dispersed posterior distributions,
and this negatively affects the convergence speed of the learning process, especially when a few
samples are used. Here, we propose to use uniform kernels:

ORI e ©)
2 2

As far as boundary samples are concerned (ke.and ay), their corresponding kernel is set

to Ki(a) = Ul(ar —a2); (a2 —a1)/2] and Ky(a) = Ul(an-1 —an)/2;(any —an—1)] re-
spectively, thus preserving the possibility to cover the whole action domain. Using these (non-
overlapped) kernel densities, each sample is moved locally within an interval which is determined
by its distances from the adjacent samples, thus achieving fast convergence.

200
1801) [Parameter] Value |
160 Wi
R - fe 1.25 [Alg. Param.[Value |
140 viability zone q I 0.1
ool < , 25 Al aold. | 0.5/0.01
100)] MSIAX 1 .75 Al b 0.99
b 0.9 SARSA | 70/5, | 3.0/0.0001
sof ey P : SMC 0.95
601 x quay (200, 110) ° :
| i SMC T0ld+ 25.0/0.0005
T | Z s width 0.2
40 | current Z. width 20 Cont-QL | /3. 0.4/0.005
20 |
S 2l T U N N

i i i i
0 20 40 60 80 100 120 140 160 180 2

Table 1. The dy-

¢ Table 2: The learning param-
namics parameters.

Figure 1: The boat problem. ders.

Besides reducing the dispersion of the samples, this resampling scheme implements, from the critic
perspective, a variable resolution generalization approach. Since the resampled actions inherit the
action value associated to their parent, the learned values are generalized over a region whose width
depends on the distance between samples. As a result, at the beginning of the learning process, when
the actions are approximately uniformly distributed, SMC-learning performs broad generalization,
thus boosting the performance. On the other hand, when the learning is near convergence the avail-
able actions tend to group around the optimal action, thus automatically reducing generalization
which may prevent the learning of the optimal policy (see [12]).

4 Experiments

In this section, we show experimental results with the aim of analyzing the properties of SMC-
learning and to compare its performance with other RL approaches. Additional experiments on a
mini-golf task and on the swing-up pendulum problem are reported in Appendix.

4.1 TheBoat Problem

To illustrate how the SMC-learning algorithm works and to assess its effectiveness with respect to
approaches based on discretization, we used a variant of the boat problem introduced in [5]. The
problem is to learn a controller to drive a boat from the left bank to the right bank quay of a river,
with a strong non-linear current (see Figure 1). The boat’s bow coordinatas]y, are defined
in the rangd0, 200] and the controller sets the desired directidlver the rang¢—90°, 90°]. The
dynamics of the boat’s bow coordinates is described by the following equations:

tr1 = min(200, max (0, + S¢41 co8(041)))

Y41 = min(200, max(0,y; — $¢—18in(de41) — E(z441)))
where the effect of the current is defined Byz) = f. (5””—0 — (1%)2) , Wheref, is the force of the
current, and the boat angigand speed, are updated according to the desired directipn; as:

Otr1 O + 11

Qr1 = U+ (i1 — Q) (se41/5Mmax))
St41 st + (sp —se)l

wryr = min(max(p(Uppr — 0t), —45°),45°)

where] is the system inertiasy; 4 x is the maximum speed allowed for the boag, is the speed
goal,w is the rudder angle, andis a proportional coefficient used to compute the rudder angle in
order to reach the desired directidip.

The reward function is defined on three bank zones. The success£zameresponds to the quay,
the viability zoneZz, is defined around the quay, and the failure zanen all the other bank points.
Therefore, the reward function is defined as:

+10 (z,y) € Z;

_) DY) (z,y) € 2,
R(xay) = -10 x,y) e Zf (7)

0 otherwise

Sarsa vs SMC-learning QL-Continuous, Tile coding, SMC-learning

10 10
8 r 8
B B
S 6 E
[4] <)
o 14
= 4 SMC-learning (5 samples) + s 4
2 SMC-learning (10 samples) X ° 1
1 Sarsa (5 actions) ¥
24 Sarsa (10 actions) O 2 SMC-learning (10 samples) +
Sarsa (20 actions) © QL-Continuous (40 actions) X
0 ‘ _ Sarsa (40 actions) & ‘ 0 Tile coding (80 actions) %
0 20 40 60 80 100 0 20 40 60 80 100
Episodes (x1000) Episodes (x1000)

Figure 2: Performance comparison between SMC-learning &RIS3 (left), SMC-learning and
tile coding and Continuous Q-learnirigght)

where D is a function that gives a reward decreasing linearly from 10 to -10 relative to the dis-
tance from the success zone. In the experiment, each state variable is discretized in 10 intervals
and the parameters of the dynamics are those listed in Table 1. At each trial, the boat is positioned
at random along the left bank in one of the points shown in Figure 1. In the following, we com-
pare the results obtained with four different algorithms: SARSA with Boltzmann exploration with
different discretizations of the action space, SARSA with tile coding (or CMAC) [12], Continuous
Q-learning [9], and SMC-learning. The learning parameters of each algorithm are listed in Table 2.

Figure 2-leftcompares the learning performance (in terms of total reward per episode) for SARSA
with 5, 10, 20, and 40 evenly distributed actions to the results obtained by SMC-learning with

5 and 10 samples. As it can be noticed, the more the number of actions available the better the
performance of SARSA is. With only 5 actions (one action €z&%), the paths that the controller

can follow are quite limited and the quay is not reachable from any of the starting point. As a
result, the controller learned by SARSA achieves a very poor performance. On the other hand, a
finer discretization allows the boat to reach more frequently the quay, even if it takes about three
times the number of episodes to converge with respect to the case with 5 actions. As it can be
noticed, SMC-learning with 5 samples outperforms SARSA with 5 and 10 actions both in terms of
performance and in convergence time. In fact, after few trials, SMC-learning succeeds to remove
the less-valued samples and to add new samples in regions of the action space where higher rewards
can be obtained. As a result, not only it can achieve better performance than SARSA, but it does
not spend time exploring useless actions, thus improving also the convergence time. Nonetheless,
with only 5 samples the actor stores a very roughly approximated policy, which, as a consequence
of resampling, may converge to actions that do not obtain a performance as good as that of SARSA
with 20 and 40 actions. By increasing the number of samples from 5 to 10, SMC-learning succeeds
in realizing a better coverage of the action space, and obtains equivalent performance as SARSA
with 40 actions. At the same time, while the more actions available, the more SARSA takes to
converge, the convergence time of SMC-learning, as in the case with 5 samples, benefits from the
initial resampling, thus taking less than one sixth of the trials needed by SARSA to converge.

Figure 2-rightshows the comparison of the performance of SMC-learning, SARSA with tile coding
using two tilings and a resolution @f25° (equivalent to 80 actions), and Continuous Q-learning
with 40 actions. We omit the results with fewer actions because both tile coding and Continuous
Q-learning obtain poor performance. As it can be noticed, SMC-learning outperforms both the
compared algorithms. In particular, the generalization over the action space performed by tile cod-
ing negatively affects the learning performance because of the non-linearity of the dynamics of the
system. In fact, when only few actions are available, two adjacent actions may have completely dif-
ferent effects on the dynamics and, thus, receive different rewards. Generalizing over these actions
prevents the agent from learning which is the best action among those available. On the other hand,
as long as the samples get closer, SMC-learning dynamically reduces its generalization over the ac-

z(0)
T+6,N "

15, is the decreasing rate for parametewhose value afteN trials is computed ag(N) =

tion space, so that their utility can be more accurately egoh Similarly, Continuous Q-learning

is strictly related to the actions provided by the designer and to the implicit assumption of linearity
of the action-value function. As a result, although it could learn any real-valued action, it does not
succeed in obtaining the same performance as SMC-learning even with the quadruple of actions. In
fact, the capability of SMC-learning to move samples towards more rewarding regions of the action
space allows the agent to learn more effective policies even with a very limited number of samples.

5 Conclusions

In this paper, we have described a novel actor-critic algorithm to solve continuous action problems.
The algorithm is based on a Sequential Monte Carlo approach that allows the actor to represent
the current policy through a finite set of available actions associated to weights, which are updated
using the utility values computed by the critic. Experimental results show that SMC-learning is
able to identify the highest valued actions through a process of importance sampling and resam-
pling. This allows SMC-learning to obtain better performance with respect to static solutions such
as Continuous Q-learning and tile coding even with a very limited number of samples, thus improv-
ing also the convergence time. Future research activity will follow two main directions: extending
SMC-learning to problems in which no good discretization of the state space is a priori known, and
experimenting in continuous action multi-agent problems.

References

[1] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on particle
filters for online nonlinear/non-gaussian bayesian trackiB§E Trans. on Signal Processing,
50(2):174-188, 2002.

[2] Leemon C. Baird and A. Harry Klopf. Reinforcement learning with high-dimensional, con-
tinuous actions. Technical Report WL-TR-93-117, Wright-Patterson Air Force Base Ohio:
Wright Laboratory, 1993.

[3] D.P. Bertsekas and J.N. Tsitsiklideural Dynamic ProgrammingAthena Scientific, Belmont,
MA, 1996.

[4] Chris Gaskett, David Wettergreen, and Alexander Zelinsky. Q-learning in continuous state and
action spaces. lAustralian Joint Conference on Atrtificial Intelligenqeages 417-428, 2003.

[5] L. Jouffe. Fuzzy inference system learning by reinforcement methB&& Trans. on Systems,
Man, and Cybernetics-PART C, 28(3):338-355, 1998.

[6] H. Kimura and S. Kobayashi. Reinforcement learning for continuous action using stochastic
gradient ascent. 16th Intl. Conf. on Intelligent Autonomous Systems, pages 288-295, 1998.

[7] V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithm&IAM Journal on Control and Opti-
mization, 42(4):1143-1166, 2003.

[8] J. S. Liu and E. Chen. Sequential monte carlo methods for dynamical systkmmal of
American Statistical Association, 93:1032-1044, 1998.

[9] Jose Del R. Millan, Daniele Posenato, and Eric Dedieu. Continuous-action g-leaiviaag.
chine Learning, 49:247-265, 2002.

[10] Jan Peters and Stefen Schaal. Policy gradient methods for robotix®deedings of the IEEE
International Conference on Intelligent Robotics Systems (IROS), pages 2219-2225, 2006.

[11] J. C. Santamaria, R. S: Sutton, and A. Ram. Experiments with reinforcement learning in
problems with continuous state and action spaéelsptive Behavior, 6:163-217, 1998.

[12] Alexander A. Sherstov and Peter Stone. Function approximation via tile coding: Automating
parameter choice. IBARA 2005, LNAI, pages 194—-205. Springer Verlag, 2005.

[13] Richard S. Sutton and Andrew G. Bartd&Reinforcement Learning: An IntroductionMIT
Press, Cambridge, MA, 1998.

[14] Hado van Hasselt and Marco Wiering. Reinforcement learning in continuous action spaces. In
2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning,
pages 272-279, 2007.

