Competition adds complexity

Judy Goldsmith Martin Mundhenk
Department of Computer Science Friedrich-Schiller-Universitat Jena
University of Kentucky Jena, Germany
Lexington, KY mundhenk@s. uni -j ena. de

gol dsmt @s. uky. edu

Abstract

It is known that determinining whether a DEC-POMDP, namely, a cooperative
partially observable stochastic game (POSG), has a cooperative strategy with pos-
itive expected reward is complete for NEXP. It was not known until now how
cooperation affected that complexity. We show that, for competitive POSGs, the
complexity of determining whether one team has a positive-expected-reward strat-
egy is complete for NEX}.

1 Introduction

From online auctions to Texas Hold’em, Al is captivated by multi-agent interactions based on com-
petition. The problem of finding winning strategyharks back to the first days of chess programs.
Now, we are starting to have the capacity to handle issues like stochastic games, partial informa-
tion, and real-time video inputs for human player modeling. This paper looks at the complexity of
computations involving the first two factors: partially observable stochastic games (POSGS).

There are many factors that could affect the complexity of different POSG models: Do the players,
collectively, have sufficient information to reconstruct a state? Do they communicate or cooperate?
Is the game zero sum, or do the players’ individual utilities depend on other players’ utilities? Do
the players even have models for other players’ utilities?

The ultimate question is, what is the complexity of finding a winning strategy for a particular player,
with no assumptions about joint observations or knowledge of other players’ utilities. Since a special
case of this is the DEC-POMDP, where finding an optimal (joint, cooperative) policy is known to be
NEXP-hard [1], this problem cannot be any easier than in NEXP.

We show that one variant of this problem is hard for the class NEXP

2 Definitions and Preliminaries

2.1 Partially observable stochastic games

A partially observable stochastic garflfOSG) describes multi-player stochastic game with imper-
fect information by its states and the consequences of the players actions on the system. We follow
the definition from [2] and denote it as a tupk = (1, S ,A,O,t,0,r), where

e | is the finite sef{1,2,...,k} of agents (or playersgis a finite set ofstates with distin-
guished initial statgy € S, Ais a finite set ofictions andO is a finite set obbservations

e t:Sx A¥x S— [0,1] is thetransition probability functionwheret(s,ay, ..., a,s) is the
probability that state’ is reached from statewhen each agemtchooses actiog,

e 0:Sx | — Ois theobservation function whereo(s,i) is the observation made in state
by agent, and

e r:Sx A x| — Z is thereward function wherer(s,ay,...,ax,i) is the reward gained by
agent in states, when the agents take actioas . . . ,ax. (Z is the set of integers.)

A POSG where all agents have the same reward function is callddcantralized partially-
observable Markov decision procdsee [1]).

Let # = (1,S,%,A,0,t,0,r) be a POSG. Astepof .# is a transition from one state to another
according to the transition probability functibnA run of .Z is a sequence of steps that starts in

the initial statesy. The outcome of each step is probabilistic and depends on the actions chosen. For
each agent, golicy describes how to choose actions depending on observations made during the
run of the process. ghistory-dependent) policg chooses an action dependent on all observations
made by the agent during the run of the process. This is described as a funoc@r- A, mapping

each finite sequence of observations to an action.

A trajectory 6 of length|6| = m for ./ is a sequence of statés= 01,07,...,0m (M> 1,0, € 9
which starts with the initial state o#, i.e. 01 = . Given policiesr, ..., T, each trajecton
has a probability prot®, rm, ..., 7&). We will use some abbreviations in the sequel. Rgr.., 1
we will write 7%, and form (o(o1,1)---0(0j,1)),. .., Tk(0(01,K) - --0(0},K)) we will write 7(6))
accordingly. Then praol®, ..., 7%) is defined by

16]-1

pr0d97 nf) = [l t(o—lvnf(ei)aohrl) .

We useT (s) to denote all lengthtrajectories which start in the initial steggand end in state The
expected rewaré; (s,l,nf) obtained by agernitin states after exactlyl steps under policiesf is

the reward obtained iaby the actions according lnif weighted by the probability thatis reached
afterl steps,

Ri(salvnjll.(): Z T(S, ﬁf(ei)al)prouevﬁ() :

0¢€T(s),0=(01,...,07)

A POSG may behave differently under different policies. The quality of a policy is determined by
its performancei.e. by the sum of expected rewards received on it. We.uggto denote the size

of the representation o#.! Theshort-term performance for policieﬁ for agent with POSG.Z

is the expected sum of rewards received by agénting the next.# | steps by following the policy

s, ie.

The performance is also called the expected reward.

Agents may cooperate or compete in a stochastic game. We want to know whether a stochastic game
can be won by some agents. This is formally expressed in the following decision problems.

The cooperative agents problem fok agents:

instance: a POSG7 for k agents
query: are there policiem,, . .., T, under which every agent has positive performance ?

(le.3m,..., i : A perfi(.#, 1) > 07?)
The competing agents problem for2k agents:

instance: a POSG7 for 2k agents
query: are there policies, ..., 7§ under which all agents, 2, ... k have positive per-
formance independent of which policies agdmsl, k+2,...,2k choose? (l.e.

M, ... TR i1, - Tl AR perfi (4, 18%) > 0?)

It was shown by Bernstein et al. [1] that the cooperative agents problem for two or more agents is
complete for NEXP.

1The size of the representation.of is the number of bits to encode the entire model, where the function
t, o, andr are encoded by tables. We dot consider smaller representations. In fact, smaller representations
may increase the complexity.

2.2 NEXP\P

A Turing machineM has exponential running time, if there is a polynonpauch that for every
inputx, the machineM on inputx halts after at most2X) steps. NEXP is the class of sets that

can be decided by a nondeterministic Turing machine within exponential time. NEXhe class

of sets that can be decided by a nondeterministic oracle Turing machine within exponential time,
when a set in NP is used as an oracle. Similar as for the cla§g, NtRurns out that a NEX¥
computation can be performed by an NEXP oracle machine that asks exactly one query to a co NP
oracle and accepts if and only if the oracle accepts.

2.3 Domino tilings

Domino tiling problems are useful for reductions between different kinds of computations. They
have been proposed by Wang [3], and we will use it according to the following definition.

Definition 2.1 We us€m)| to denote the seff0,1,2,...,m—1}. Atile typeT = (V,H) consists of
two finite sets VH C N x N. A T-tiling of an m-square (n& N) is a mappingr : [m] x [m] — N that
satisfies both the following conditions.

1. Every pair of two neighboured tiles in the same row is in H.
l.e. forallr € [m and ce [m—1], (7(r,c),7(r,c+1)) € H.
2. Every pair of two neighboured tiles in the same columnisinV.

l.e. forallr € [/m— 1] and ce [m], (7(r,c),T(r+1,c)) € V.

Theexponential square tiling probleimthe set of all pairgT, 1), where T is a tile type ant is
a string consisting of /s (ke N), such that there exists a T -tiling of te&-square.

It was shown by Savelsbergh and van Emde Boas [4] that the exponential square tiling problem
is complete for NEXP. We will consider the following variant, which we call &x@onential,

square tiling problem given a pair(T,1¥), does there exist a row of tiles and aT-tiling of the
2X-square with final rovw, such that there exists fib-tiling of the X-square with initial roww?

The proof technique of Theorem 2.29 in [4], which translates Turing machine computations into
tilings, is very robust in the sense that simple variants of the square tiling problem can analogously
be shown to be complete for different complexity classes. Together with the above characterization
of NEXPNP it can be used to prove the following.

Theorem 2.2 The exponential, square tiling problem is complete fotEXPNP,

3 Results

POSGs can be seen as a generalization of partially-observable Markov decision processes (PO-
MDPs) in that POMDPs have only one agent and POSGs allow for many agents. Papadimitriou
and Tsitsiklis [5] proved that it is PSPACE-complete to decide the cooperative agents problem for
POMDPs. The result of Bernstein et al. [1] shows that in case of history-dependent policies, the
complexity of POSGs is greater than the complexity of POMDPs. We show that this difference
does not appear when stationary policies are considered instead of history-dependent policies. For
POMDPs, the problem appears to be NP-complete [6]. A stationary policy is a mappind\

from observations to actions. Whenever the same observation is made, the same action is chosen by
a stationary policy.

Theorem 3.1 For any k> 2, the cooperative agents problem for k agents for stationary policies is
NP-complete.

Proof We start with proving NP-hardness. A POSG with only one agentis a POMDP. The problem
of deciding, for a given POMDPZ#, whether there exists a stationary policy such that the short-term
performance of# is greater than 0, is NP-complete [6]. Hence, the cooperative agents problem for
stationary policies is NP-hard.

It remains to show containment in NP. Let = (I,S,5,A,0,t,0,r) be a POSG. We assume that

is represented in a straightforward way as a tablertet . , 7 be a sequence of stationary policies

for the k agents. This sequence can be straightforwardly represented using not more space than
the representation eftakes. Under a fixed sequence of policies, the performance of the POSG for
all of the agents can be calculated in polynomial time. Using a guess and check approach (guess
the stationary policies and evaluate the POSG), this shows that the cooperative agents problem for
stationary policies is in NP. O

In the same way we can characterize the complexity of a problem that we will need in the proof of
Lemma 3.3.

Corollary 3.2 The following problem isoNRcomplete.

instance: aPOSG/# for k agents
query: do all agents under every stationary policy have positive performance? (l.e.
Vstationaryrs ... 7 : AKX, perfi (., 1) > 07?)

The cooperative agents problem was shown to be NEXP-complete by Bernstein et al. [1]. Not
surprisingly, if the agents compete, the problem becomes harder.

Lemma 3.3 For every k> 1, the competing agents problem @k agents is ifNEXP\P,

Proof The basic idea is as follows. We guess policiesm, ..., 1§ for agents 12,...,k, and
construct a POSG that “implements” these policies and leaves open the actions chosen by agents
k+1,...,2k

This new POSG has states for all short-term trajectories through the origin POSG. Therefore, its
size is exponential in the size of the origin POSG. Because the history is stored in every state, and
the POSG is loop-free, it turns out that the new POSG can be taken as a POMDP for which a (joint)
policy with positive reward is searched. This problem is known to be NP-complete.

Let.# = (1,5 5,A,0,t,0,r) be a POSG withRagents, and let, . . ., 75 be short-term policies for
A . \We define &-agent POSG#’ = (I',S,,,A, O, t',0,r’) as follows. In.#’, we have as agents
those of.#, whose policies are not fixed, i.¢. = {k+1,...,2k}. The set of states o##’ is the
cross product of states from# and all trajectories up to length#| overS, i.e. S = Sx SI#I+1,
The meaning of statés,u) € S is, that states can be reached on a trajectanfthat ends withs)
through.# with the fixed policies. The initial statg) is 5, = (So,). The statgsg, €) is taken as
a special sink state. Aftér#|+ 2 steps, the sink state is entered4#f and it is not left thereafter.
All rewards gained in the sink state are 0. Now for the transition probabilitiesislfeached on
trajectoryu in .# and the actionsy,...,ax are according to the fixed policies, ..., 1, then the
probabiliy of reaching state on trajectoryus according ta in .# is the same as to rea¢H, us)
in .’ from (s,u). In the formal description, the sink state has to be considered, too.

t'((s,u),a,...,ax,(50) =

0, if u# € andus#1d
t(57 nl(o(us 1))? 7711((0(us k)),ak+l,...,azk,§), if 0= U§1 |0| < |%|! U# &
1, if lu=|#|+1oru=¢g,andu=¢

The observation in#’ is the sequence of observations made in the trajectory that is contained in
each state, i.e0’((s,w)) = o(w), whereo(¢) is any element 0©. Finally, the rewards. Essentially,

we are interested in the rewards obtained by the ageBis.1, k. The rewards obtained by the other
agents have no impact on this, only the actions the other agents choose. Therefoislzgard the
rewards in#’ that are obtained by ageint kin .. In this way, the agents+1,...,2k obtain in

' the same rewards that are obtained by agerits 1,k in .#, and this is what we are interested

in. This results inr’((s,u),ay,...,ax,i) = r(s,m(o(u,1)), -, m(o(u,k)),ay1,...,ax, — k) for
i=k+1,...,2k

255l denotes the set of sequences ug.¥| elements fromS. The empty sequence is denoted by
e. Forwe S| we useo(w,i) to describe the sequence of observations made by agentrajectoryw.
The concatenation of sequenaeandw is denoteduw. We do not distinguish between elements of sets and
sequences of one element.

Notice that the size of#’ is exponential in the size of7. The sink state in#Z’ is the only state that

lies on a loop. This means, that on all trajectories thraugjh the sink state is the only state that

may appear more than once. All states other than the sink state contain the full history of how they
are reached. Therefore, there is a one-to-one correspondence between history-dependent policies
for .# and stationary policies fowz’ (with regard to horizon.#|). Moreover, the corresponding
policies have the same performances.

Claim 1 Letrm,..., e be short-term policies for#, and letfi, 1, ..., 7bx be their corresponding
stationary policies for#’.

For |.#| steps and i= 1,2, ...k, perf(.#,) = perf (', %)),

Thus, this yields an NEX® algorithm to decide the competitive agents problem. The input is a
POSG.# for 2k agents. In the first step, the policies for the agen®s.1. k are guessed. This takes
nondeterministic exponential time. In the second step, the P@3@& constructed from the input

. and the guessed policies. This takes exponential time (in the length of theipwinally, the
oracle is queried whethew/’ has positive performance for all agents under all stationary policies.
This problem belongs to coNP (Corollary 3.2). Henceforth, the algorithm shows the competing
agents problem to be in NEXE. O

Lemma 3.4 For every k> 2, the competing agents problem &k agents is hard foNEXP\P.

Proof We give a reduction from the exponential square tiling problem to the competing agents
problem.

Let.7 = (T,1¥) be an instance of the exponential square tiling problem, whergé = (V,H) is a

tile type. We will show how to construct a POS®# with 4 agents from it, such thaf is a positive
instance of the exponentiab square tiling problem if and only if (1) agents 1 and 2 have a tiling
for the X square with final rowv such that (2) agents 3 and 4 have no tiling for ths@uare with
initial row w.

The basic idea for checking of tilings with POSGs for two agents stems from Bernstein et al. [1],
but we give a slight simplification of their proof technique, and in fact have to extend it for four
agents later on. The POSG is constructed so that on every trajectory each agent sees a position in
the square. This position is chosen by the process. The only action of the agent that has impact
on the process is putting a tile on the given position. In fact, the same position is observed by the
agents in different states of the POSG. From a global point of view, the process splits into two parts.
The first part checks whether both agents know the same tiling, without checking that it is a correct
tiling. In the state where the agents are asked to put their tiles on the given position, a high negative
reward is obtained if the agents put different tiles on that position. "High negative” means that,

if there is at least one trajectory on which such a reward is obtained, then the performance of the
whole process will be negative. The second part checks whether the tiling is correct. The idea is to
give both the agents neighboured positions in the square and to ask each which tile she puts on that
position. Notice that the agents do not know in which part of the process they are. This means, that
they do not know whether the other agent is asked for the same position, or for its upper or right
neighbour. This is why the agents cannot cheat the process. A high negative reward will be obtained
if the agents’ tiles do not fit together.

For the first part, we need to construct is a POS%; for two agents, that allows both agents to
make the same sequence of observations consisting loit® This sequence is randomly chosen,

and encodes a position in &2 2" grid. At the end, stateame is reached, at which no observation is
made. At this state, it will be checked whether both agents put the same tile at this position (see later
on). The task of% is to provide both agents with the same position. Figure 1 shows an example
for a 2 x 2*-square. The initial state ig. Dashed arrows indicate transitions with probabiﬁty
independent of the actions. The observation of agent 1 is written on the left hand side of the states,
and the observations of agent 2 at the right hand sids, lthe agents make no observation. Hy

both agents always make the same observations.

The second part is more involved. The goal is to provide both agents with neighboured positions
in the square. Eventually, it is checked whether the tiles they put on the neighboured positions
are according to the tile typ€. Because the positions are encoded in binary, we can make use

o
/e
\ ;
\
<
P
/N
/ \
N

o
7O\
\ P

iR

QLT
ofe%e%% e et %

/
/7
\

row

A}
\\ /
I(\
/7
/7
/7

o
’ro
II i
N
I(\
\
\
-

<

\
/
/7

o
7O\
/
\ ;
\
<
P
/N
/ \
N

o
=X\
\

s

/
\

\
LAY

column

Figure 1: 2, Figure 2:63.4 Figure 3: %34

\
\/
<
LA
/
/

o
/7 O

N/ \

\

\

/(\

LAY

/ A\
i

o
=

of the following fact of subsequent binary numbers. bet u;...ux andw = ws ... w be bitwise
representation of strings. iy = ny+ 1, then for some indek it holds that (1)u; = w; for i =
12,...,1-1, (2w =1andy =0,and (3w; =0anduj=1forj=1+1,... .k

The POSGEF i is intended to provide the agents with two neighboured positions in the same row,
where the index of the leftmost bit of the column encoding where both positions distinguish is
(The % stands forcolumn) Figure 2 shows an example for th&-@quare. The “final state” o] x

is the statenori, from which it is checked whether the agents put horizontically fitting tiles together.

In the same way, a POS@, x can be constructedX stands forrow), whose task is, to check
whether two tiles in neighboured rows correspond to a correct tiling. This POSG has the final state
vert, from which on it is checked whether two tiles fit vertically.

Finally, we have to construct the last part of the POSG. It consists of the stateshori, vert (as
mentioned abovejood, bad, andsink. All transitions between these states are deterministic (i.e.
with probability 1). From stateame the stategood is reached, if both agents take the same action
— otherwisebad is reached. From stateri the stategood is reached, if actiom; by agent 1 andy,

by agent 2 make a pafas,ay) in H, i.e. in the set of horizontically correct pairs of tiles — otherwise
bad is reached. Similarly, from statert the stategood is reached, if actioa; by agent 1 and, by
agent 2 make a paigy,ap) in V. All these transitions are with reward 0. From stgded the state
sink is reached on every action with reward 1, and from dfatethe statesink is reached on every
action with reward-(2%t2). When the statsink is reached, the process stays there on any action,
and all agents obtain reward 0. All rewards are the same for both agents. (This part can be seen in
the overall picture in Figure 4).

From these POSGs we construct a PQ&(that checks whether two agents know the same correct

tiling for a 2 x 2¢ square, as described above. There &re 2parts of% k. The initial state of each
part can be reached with one step from the initial stqtef 75 . The parts of%; are as follows.

o P, with initial states (checks whether two agents have the same tiling)
e ForeacH =1,2,... k, we taked x. Letc be the initial state ot k.

Figure 4: %

e ForeacH =1,2,... k, we takeZ, . Letr| be the initial state o7, x.

There are & +2. Z|k:1 2¢.2=1 —: tr(k) trajectories with probability> 0 through.% . Notice

thattr (k) < 2%+2_ From the initial statey of D, each of the initial states of the parts is reachable
independent on the action chosen by the agents. We will give transition probabilities to the transition
from 55 to each of the initial states of the parts in a way, that eventually each trajectory has the same
probability.

2% if § = s, i.e. the initial state o

t(so.ana,9) =< W
%k)l ifse{rn,q|l=12,...k}

In the initial statesy and in the initial states of all parts, the observatiis made. When a state
same, hori, vert is reached, each agent has maklleg-3 observations, where the first and last are

and the remainingRare each i{0,1}. Such a state is the only one where the actions of the agents
have impact on the process. Because of the partial observability, they cannot know in which part
of %y they are. The agents can win, if they both know the same correct tiling and interpret the
sequence of observations as the position in the grid they are asked to put a tile on. On the other
hand, if both agents know different tilings or the tiling they share is not correct, then at least one
trajectory will end in a bad state and has rewar@%t?). The structure of the POSG is given in
Figure 4.

Claim 2 Let(T,1¥) be an instance of the exponential square tiling problem.

(1) There exists a polynomial time algorithm, that on ingit1*) outputs.7; .

(2) There exists a T -tiling of th&X square if and only if there exist policies for the agents under
which % has performance- 0.

Part (1) is straightforward. Part (2) is not much harder. If there exitditing of the Z square,
both agents use the same policy according to this tiling. Under these policieqztatél not be
reached. This guarantess performanc@ for both agents. For the other direction: if there exist
policies for the agents under which x has performance 0, then statdad is not reached. Hence,
both agents use the same policy. It can be shown inductively that this policy Tidflimg of the X
square.

The POSG for the competing agents problem with 4 agents ¢emdithree parts. The first part is

a copy of % . Itis used to check whether the first square can be tiled correctly (by agents 1 and
2). In this part, the negative rewards are increased in a way that guarantees the performance of the
POSG to be negative whenever agents 1 and 2 do not correctly tile their square. The second part
is a modified copy of% . It is used to check whether the second square can be tiled correctly (by
agents 3 and 4). Whenever statal is left in this copy, reward 0 is obtained, and whenever state
good is left, reward—1 is obtained. The third part checks whether agent 1 puts the same tiles into
the last row of its square as agent 3 puts into the first row of its square 5@ Figure 3 as an
example.) If this succeeds, the performance of the third part equals 0, otherwise it has performance
1. These three parts run in parallel.

If agents 1 and 2 have a tiling for the first square, the performance of the first part equals 1.

e If agents 3 and 4 are able to continue this tiling through their square, the performance
of the second part equalsl and the performance of the third part equals 0. At all, the
performance of the POSG under these policies equals 0.

e If agents 3 and 4 are not able to continue this tiling through their square, then the perfor-
mance of part 2 and part 3 is strictly greatek. At all, the performance of the POSG under
these policies is- 0.

Lemmas 3.3 and 3.4 together yield completeness of the competing agents problem.

Theorem 3.5 For every k> 2, the competing agents problem &k agents is complete fodEXPNP.

4 Conclusion

We have shown that competition makes life—and computation—more complex. However, in order
to do so, we needed teamwork. Itis not yet clear what the complexity is of determining the existence
of a good strategy for Player | in a 2-person POSG, or a 1-against-many POSG.

There are other variations that can be shown to be complete for NEXPcomplexity class that,
shockingly, has not been well explored. We look forward to further results about the complexity of
POSGs, and to additional NEXP-completeness results for familiar Al and ML problems.

References

[1] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity
of decentralized control of Markov decision procesdéath. Oper. Re$27(4):819-840, 2002.

[2] E. Hansen, D. Bernstein, and S. Zilberstein. Dynamic programming for partially observable
stochastic games. IRroceedings of the Nineteenth National Conference on Atrtificial Intelli-
gence (AAAI-04)pages 709-715, 2004.

[3] Hao Wang. Proving theorems by pattern recognitiorBiell Systems Technical Journd0:1—
42,1961.

[4] M. Savelsbergh and P. van Emde Boas. Bounded tiling, an alternative to satisfiability. In Gerd
Wechsung, edito@nd Frege Confereng@olume 20 ofMathematische Forschunpages 354—
363. Akademie Verlag, Berlin, 1984.

[5] C.H. Papadimitriou and J.N. Tsitsiklis. The complexity of Markov decision proceésathe-
matics of Operations Researct?(3):441-450, 1987.

[6] Martin Mundhenk, Judy Goldsmith, Christopher Lusena, and Eric Allender. Complexity results
for finite-horizon Markov decision process probledsurnal of the ACM47(4):681-720, 2000.

