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Abstract

Bayesian Reinforcement Learning has generated substantial interest recently, as it
provides an elegant solution to the exploration-exploitation trade-off in reinforce-
ment learning. However most investigations of Bayesian reinforcement learning
to date focus on the standard Markov Decision Processes (MDPs). Our goal is
to extend these ideas to the more general Partially Observable MDP (POMDP)
framework, where the state is a hidden variable. To address this problem, we in-
troduce a new mathematical model, the Bayes-Adaptive POMDP. This new model
allows us to (1) improve knowledge of the POMDP domain through interaction
with the environment, and (2) plan optimal sequences of actions which can trade-
off between improving the model, identifying the state, and gathering reward. We
show how the model can be finitely approximated while preserving the value func-
tion. We describe approximations for belief tracking and planning in this model.
Empirical results on two domains show that the model estimate and agent’s return
improve over time, as the agent learns better model estimates.

1 Introduction

In many real world systems, uncertainty can arise in both the prediction of the system’s behavior, and
the observability of the system’s state. Partially Observable Markov Decision Processes (POMDPSs)
take both kinds of uncertainty into account and provide a powerful model for sequential decision
making under these conditions. However most solving methods for POMDPs assume that the model
is known a priori, which is rarely the case in practice. For instance in robotics, the POMDP must
reflect exactly the uncertainty on the robot’s sensors and actuators. These parameters are rarely
known exactly and therefore must often be approximated by a human designer, such that even if
this approximate POMDP could be solved exactly, the resulting policy may not be optimal. Thus we
seek a decision-theoretic planner which can take into account the uncertainty over model parameters
during the planning process, as well as being able to learn from experience the values of these
unknown parameters.

Bayesian Reinforcement Learning has investigated this problem in the context of fully observable
MDPs [1, 2, 3]. An extension to POMDP has recently been proposed [4], yet this method relies on
heuristics to select actions that will improve the model, thus forgoing any theoretical guarantee on
the quality of the approximation, and on an oracle that can be queried to provide the current state.

In this paper, we draw inspiration from the Bayes-Adaptive MDP framework [2], which is formu-
lated to provide an optimal solution to the exploration-exploitation trade-off. To extend these ideas

to POMDPs, we face two challenges: (1) how to update Dirichlet parameters when the state is a
hidden variable? (2) how to approximate the infinite dimensional belief space to perform belief
monitoring and compute the optimal policy. This paper tackles both problem jointly. The first prob-
lem is solved by including the Dirichlet parameters in the state space and maintaining belief states
over these parameters. We address the second by bounding the space of Dirichlet parameters to a
finite subspace necessary teoptimal solutions.



We provide theoretical results for bounding the state spdtke\wreserving the value function and

we use these results to derive approximate solving and belief monitoring algorithms. We compare
several belief approximations in two problem domains. Empirical results show that the agent is able
to learn good POMDP models and improve its return as it learns better model estimate.

2 POMDP

A POMDRP is defined by finite sets of stat&s actionsA and observation. It has transition
probabilities {75%%' }, v cs.aca WhereT**' = Pr(s;;; = s'|s; = s,a, = a) and observation
probabilities{O*** } sc s oc 4 -cz WhereO*** = Pr(z, = z|s; = s,a,—1 = a). The reward function
R : S x A — R specifies the immediate reward obtained by the agent. In a POMDP, the state is
never observed. Instead the agent perceives an observatiofd at each time step, which (along
with the action sequence) allows it to maintain a belief state AS. The belief state specifies
the probability of being in each state given the history of action and observation experienced so far,
starting from an initial belieb,. It can be updated at each time step using Baye’s fle:(s’) =

0 mr 1 3 T, (o)
DN otz Sees T2t bi(s) .

A policy = : AS — A indicates how the agent should select actions as a func-
tion of the current belief. Solving a POMDP involves finding the optimal policy

that maximizes the expected discounted return over the infinite horizon. The return ob-
tained by following 7* from a belief b is defined by Bellman's equation:V*(b) =
maXge A [ZSES b(s)R(s,a) +7v>_,c, Pr(z|b, a)V*(T(b,a,z))], wherer (b, a, z) is the new be-

lief after performing actior and observation and~ € [0, 1) is the discount factor.

Exact solving algorithms [5] are usually intractable, except on small domains with only a few states,
actions and observations. Various approximate algorithms, both offline [6, 7, 8] and online [9],
have been proposed to tackle increasingly large domains. However, all these methods requires full
knowledge of the POMDP model, which is a strong assumption in practice. Some approaches do
not require knowledge of the model, as in [10], but these approaches generally require a lot of data
and do not address the exploration-exploitation tradeoff.

3 Bayes-Adaptive POMDP

In this section, we introduce the Bayes-Adaptive POMDP (BAPOMDP) model, an optimal decision-
theoretic algorithm for learning and planning in POMDPs under parameter uncertainty. Throughout
we assume that the state, action, and observation spaces are finite and known, but that the transition
and observation probabilities are unknown or partially known. We also assume that the reward
function is known as it is generally specified by the user for the specific task he wants to accomplish,
but the model can easily be generalised to learn the reward function as well.

To model the uncertainty on the transitidi*s” and observatio®®** parameters, we uddirichlet
distributions, which are probability distributions over the parameters of multinomial distributions.
Given ¢;, the number of times event has occurred ovet trials, the probabilitiep; of each event
follow a Dirichlet distribution, i.e.(p1,...,px) ~ Dir(¢1,...,¢x). This distribution represents

the probability that a discrete random variable behaves according to some probability distribution
(p1,--.,pk), given that the count8s, . . ., ¢x) have been observed ovetrials (n = Zf:l @;). Its

probability density function is defined byi(p, ¢) = ﬁ Hf’:l p‘f"_l, whereB is the multinomial

beta function. The expected valuemwfis E(p;) = E’“% ot
j=1%J

3.1 The BAPOMDP Model

The BAPOMDRP is constructed from the model of the POMDP with unknown parameters. Let
(S,A,Z,T,O,R,~) be that model. The uncertainty on the distributidh¥" and 0% can be
represented by experience courn$;, Vs’ represents the number of times the transitian, s’) oc-
curred, similarly? vz is the number of times observatierwas made in stat€ after doing action

a. Let ¢ be the vector of all transition counts aticbe the vector of all observation counts. Given



the count vectors and+, the expected transition probability fares” is: T;“S’ - % and

- Zs”es ‘75:5// ’
fni s'az. n)s'az _ Yo,
similarly for O **: Oy, ** = S un
The objective of the BAPOMDP is to learn an optimal policy, such that actions are chosen to
maximize reward taking into account both state and parameter uncertainty. To model this, we
follow the Bayes-Adaptive MDP framework, and include theand i) vectors in the state of

the BAPOMDP. Thus, the state spa6é of the BAPOMDP is defined as’ = S x 7 x O,
where7 = {¢ € NISPIAIY(s,a), 3, .5 6% > 0} represents the space in whighlies and

O = {y e NISIIIIZl\y(s,a), 3" _, ¥ > 0} represents the space in whigties. The action and
observation sets of the BAPOMDP are the same as in the original POMDP. Transition and obser-
vation functions of the BAPOMDP must capture how the state and count vegtgrgvolve after

every time step. Consider an agent in a given statéth count vectorsy and+), which performs
actiona, causing it to move to staté and observe. Then the vectog’ after the transition is defined

as¢’ = ¢ + 02, whered?,, is a vector full of zeroes, with & for the countp?,,, and the vector

4’ after the observation is defined @5 = v + 6%, whered? , is a vector full of zeroes, with &

for the county?, .. Note that the probabilities of such transitions and observations occurring must
be defined by considering all models and their probabilities as specified by the current Dirichlet
distributions, which turn out to be their expectations. Hence, we défiradO’ to be:

’ by T30 059%, i ¢ = ¢+ 62, andy’ = ¢ + 67,
T'(s:¢:9), 0, (', ¢,9)) = { 0, otherwise. @
1, if¢'=¢+06% andy)’ =+ 909,
O/((Sﬂbvw)»av (s/,ng/,?ﬂ/),Z) = { O’ otﬁerwiq;e. w w (2)

Note here that the observation probabilities are folded into the transition function, and that the ob-
servation function becomes deterministic. This happens because a state transition in the BAPOMDP
automatically specifies which observation is acquired after transition, via the way the counts are
incremented. Since the counts do not affect the reward, the reward function of the BAPOMDP is de-
fined asR'((s, ¢,v),a) = R(s,a); the discount factor of the BAPOMDP remains the same. Using
these definitions, the BAPOMDP has a known model specified by the(fpld, Z, 7', O, R', ).

The belief state of the BAPOMDP represents a distribution over both states and count values. The
model is learned by simply maintaining this belief state, as the distribution will concentrate over
most likely models, given the prior and experience so farbglfs the initial belief state of the
unknown POMDP, and the count vectgrs € 7 andyy € O represent the prior knowledge on this
POMDP, then the initial belief of the BAPOMDP i$ (s, ¢o, ¥0) = {bo(s), if (¢,%) = (¢o,%0);

0, otherwise}. After actions are taken, the uncertainty on the POMDP model is represented by
mixtures of Dirichlet distributions (i.e. mixtures of count vectors).

Note that the BAPOMDP is in fact a POMDP with a countably infinite state space. Hence the belief
update function and optimal value function are still defined as in Section 2. However these functions
now require summations ovéf = S x 7 x @. Maintaining the belief state is practical only if the
number of states with non-zero probabilities is finite. We prove this in the following theorem:

Theorem 3.1. Let (5", A,Z,T7',0',R',v) be a BAPOMDP constructed from the POMDP
(S,A,Z,T,0,R,v). If Sis finite, then at any time, the setS’; = {o € S'|bj(c) > 0} has

size|Sy, | < [S]*.
Proof. Proof available in [11]. Proceeds by induction fréfpn O

The proof of this theorem suggests that it is sufficient taiepverS and.S;, ) in order to compute
-

the belief staté, when an action and observation are taken in the environment. Hence, Algorithm
3.1 can be used to update the belief state.

3.2 Exact Solution for BAPOMDP in Finite Horizons

The value function of a BAPOMDP for finite horizons can be represented by a finifeafdtinc-
tionsa : S’ — R, as in standard POMDP. For example, an exact solution can be computed using



function 7(b, a, 2)
Initialize b’ as a 0 vector.
forall (s,¢,%,s’) € S; x S do
B (s, + 6%, + 8%.) — b(s',d + 6%, 4 + 6%, ) + b(s, &, ’L/})T;as’oz’az
end for
return normalized’

Algorithm 3.1: Exact Belief Update in BAPOMDP.

dynamic programming (see [5] for more details):

't = {aa|aa(5,¢7w) :R(57a)}7 .,

Iy = A ai"(s,0,0) =72 ges T O3, ai(s', ¢+ 055,10 + 635.), o € Ty},
ry = T{eTly?elP®ao.. a7 (where @ is the cross sum operator)

Ft = UaGA F?

©)
Note here that the definition ofa;*(s,¢,v) is obtained from the fact that
T'((s,,0),a,(s', ¢/, 0)O'((3,6,9),a,(s',¢/,4'), ) = 0 except wheng/ = ¢ + &%, and
Y =1+ 4% ,. The optimal policy is extracted as usuak(b) = argmax,, ZUES,; a(o)b(o). In
practice, it will be impossible to compute*(s, ¢, ¢) for all (s, ¢,) € S’. In order to compute
these more efficiently, we show in the next section that the infinite state space can be reduced to a
finite state space, while still preserving the value function to arbitrary precision for any herizon

4 Approximating the BAPOMDP: Theory and Algorithms

Solving a BAPOMDP exactly for all belief states is impossible in practice due to the dimensionnality
of the state space (in particular to the fact that the count vectors can grow unbounded). We now show
how we can reduce this infinite state space to a finite state space. This allows us to compute an
optimal value function over the resulting finite-dimensionnal belief space using standard POMDP
techniques. Various methods for belief tracking in the infinite model are also presented.

4.1 Approximate Finite Model
We first present an upper bound on the value difference between two states that differ only by
their model estimat@ and+. This bound uses the following definitions: given¢’ € 7, and
6,1/ € O, defineDg (6, ¢') = Xy |T5% = T | and Dy (v,0') = 3.0 |07 = 037,
annga - ZS'ES (,b(sls/ ansta = ZzEZ wgz‘
Theorem 4.1. Given anyg, ¢’ € T, ,v¢’ € O, and~ € (0,1), then for all¢:

sup_Jau(s,6,4) — (s, 0/ 0| < e swp  [D¥(6.0) + Dye(.v)

ai€l'y,se8 s,8’€S,a€

L4 ares|bg — b i Siez|Vi—vl,
In(y=¢) \ (V*+DNGF+1D) N T+ WV +1)

Proof. Proof available in [11] finds a bound on a 1-step backup and solves the recurrenceld

We now use this bound on thevector values to approximate the space of Dirichlet parameters

within a finite subspace. We use the following definitions: givenany0, definec’ = ;5‘1‘?“):,

n_ e(1=7)2In(y"%) are _ [S|(a+e) 1 e _ 1Z](a+e) 1
€ = TR Vs = max -, 27 — 1) andNj = max 5 —1).

Theorem 4.2. Given anye > 0 and (s, ¢,1) € S’ such thatda € A, s’ € S, /\/g'“ > Ng or
$'e > Ng, thend(s, ¢/, ¢') € S’ such thatva € A,s' € S, N3,* < Ng andN3,® < Ng where
| (s, 1) — (s, @', ¢")| < eholds for allt ando; € T;.

Proof. Proof available in [11]. O



Theorem 4.2 suggests that if we want a precisioaaf the value function, we just need to restrict

the space of Dirichlet parameters to count vectors 7. = {¢ € NISPI4llyvg € A, s € S,0 <

N3@ < Ng}andy € O, = {p € NSIAIZl\vg € A s € 5,0 < N3® < Ng}. SinceZ. andO, are

f|n|te we can define a finite approximate BAPOMDP as the tfle A, Z, T, O, R., ) Where

S. = S x T, x O, is the finite state space. To define the transition and observation functions over
that finite state space, we need to make sure that when the count vectors are incremented, they stay
within the finite space. To achieve, this we define a projection opefatorS’ — S, that simply

projects every state if’ to their closest state if,.

Definition 4.1. Letd : S’ x S’ — R be defined such that:
28 sup  [Dg(6,0/) + Dy, )

s,s’€S,a€A ifs—s
d(s, ¢, 1,8, ¢ ") = 4 Dores b0 =Gl | Poep IVl —¥.
(5,6,%,5', ¢, 9") RRTICRD) ( WDV T Vg e+ ) |
8[| Rl 4 2[|Rlloo i
=)L (1 + 1n<¢e)> + o otherwise.
Definition 4.2. LetP, : S’ — S, be defined a®, (s) = argmin d(s, s')
s'€8.

The functiond uses the bound defined in Theorem 4.1 as a distance between states that only differs
by their ¢ and > vectors, and uses an upper bound on that value when the states differ. Thus

P. always maps states, ¢,v) € S’ to some statés, ¢’,v’') € S.. Note that ifo € S., then
P.(c) = 0. UsingP,, the transition and observation function are defined as follows:

TE((s,¢7w),a,(s’,¢’,w')):{Téa‘“Ofp“, it (s, 0/,0) = Pels', 0+ 08 0 +00.) g

0, otherwise.

~ 1, if (s',¢,¢") =Pe(s', o+ 6%, ¢+ 6%,

OE((87¢u 1/)),6% (S/>¢/7wl)7z) = { 0, otéervq\iisze/}.) ( ¢ w ) (5)
These definitions are the same as the one in the infinite BAPOMDP, except that now we add an extra
projection to make sure that the incremented count vectors stays Finally, the reward function
Rc: S. x A — Ris defined ask. ((s, ¢, 1), a) = R(s, a).

Theorem 4.3 bounds the value difference betweearectors computed with this finite model and
the a-vector computed with the original model.

Theorem 4.3. Given anye > 0, (s, ¢,v) € S’ anda, € T'; computed from the infinite BAPOMDP.
Leta; be thea-vector representing the same conditionnal plamasut computed with the finite
BAPOMDP(S, A, Z,T¢, O, Re, ), then|a.(Pe(s, ¢, 1)) — au(s, ¢, )

157 )
Proof. Proof available in [11]. Solves a recurrence over the 1-step approximation in Thm. [4.2.

Because the state space is now finite, solution methods frerite¢hature on finite POMDPs could
theoretically be applied. This includes en particular the equations(fot, z) andV*(b) that were
presented in Section 2. In practice however, even though the state space is finite, it will generally
be very large for smal, such that it may still be intractable, even for small domains. We therefore
favor a faster online solution approach, as described below.

4.2 Approximate Belief Monitoring

As shown in Theorem 3.1, the number of states with non-zero probability grows exponentially in
the planning horizon, thus exact belief monitoring can quickly become intractable. We now discuss
different particle-based approximations that allow polynomial-time belief tracking.

Monte Carlo sampling: Monte Carlo sampling algorithms have been widely used for sequential
state estimation [12]. Given a prior beligffollowed by actiorn and observation, the new belief

b’ is obtained by first samplinfy states from the distributiol then for each sampleda new state

s’ is sampled fron¥'(s, a, ). Finally, the probabilityD(s’, a, z) is added td’(s") and the beliet’

is re-normalized. This will capture at moat states with non-zero probabilities. In the context of



BAPOMDPSs, we use a slight variation of this method, whereb, v) are first sampled frorh, and
then a next state’ € S is sampled from the normalized distributi@ij* O,*. The probabilityl / K

is added directly td'(s’, ¢ + 02,9 + 6%,).

Most Probable: Alternately, we can do the exact belief update at a given time step, but then only
keep theK most probable states in the new beliednd renormalizé’.

Weighted Distance Minimization: The two previous methods only try to approximate the distribu-
tion 7(b, a, z). However, in practice, we only care most about the agent’s expected reward. Hence,
instead of keeping th& most likely states, we can kedp states which best approximate the be-
lief's value. As in the Most Probable method, we do an exact belief update, however in this case
we fit the posterior distribution using a greefymeans procedure, where distance is defined as in
Definition 4.1, weighted by the probability of the state to remove. See [11] for algorithmic details.

4.3 Online planning

While the finite model presented in Section 4.1 can be used to find provably near-optimal policies
offline, this will likely be intractable in practice due to the very large state space required to ensure
good precision. Instead, we turn to online lookahead search algorithms, which have been proposed
for solving standard POMDPs [9]. Our approach simply performs dynamic programming over all the
beliefs reachable within some fixed finite planning horizon from the current belief. The action with
highest return over that finite horizon is executed and then planning is conducted again on the next
belief. To further limit the complexity of the online planning algorithm, we used the approximate
belief monitoring methods detailed above. Its overall complexity 9/ A||Z|)” C;,) whereD is

the planning horizon and;, is the complexity of updating the belief.

5 Empirical Results

We begin by evaluating the different belief approximations introduced above. To do so, we use a
simple onlined-step lookahead search, and compare the overall expected return and model accuracy
in two different problems: the well-known Tiger [5] and a new domain called Follow. GRSt

and O¢'** the exact probabilities of the (unknown) POMDP, the model accuracy is measured in
terms of the weighted sum of L1-distance, dendféd 1, between the exact model and the probable
models in a belief stati

WLl(b) = Z(S,(ﬁ,’(ll)esg b(s7¢aw)L1(¢7w)

/ ’ / , 6
Ll(ﬁbﬂ/’) = ZQEA ZS’ES [ZSES ‘Tgas — TS“S | -+ ZZEZ |sz}az — OS az| ( )

5.1 Tiger

Inthe Tiger problem [5], we consider the case where the transition and reward parameters are known,
but the observation probabilities are not. Hence, there are four unknown paranteters?;,,,

Ogi, Og, (O, stands forPr(z = hear_right|s = tiger_Left,a = Listen)). We define the
observation count vectafr = (Y1, Y1, Yri, ¥ry). We consider a prior afy = (5, 3, 3,5), which
specifies an expected sensor accurac§205% (instead of the corre@5%) in both states. Each
simulation consists of 100 episodes. Episodes terminate when the agent opens a door, at which
point the POMDP state (i.e. tiger's position) is reset, but the distribution over count vector is carried
over to the next episode.

Figures 1 and 2 show how the average return and model accuracy evolve over the 100 episodes
(results are averaged over 1000 simulations), using an online 3-step lookahead search with varying
belief approximations and parameters. Returns obtained by planning directly with the prior and ex-
act model (without learning) are shown for comparison. Model accuracy is measured on the initial
belief of each episode. Figure 3 compares the average planning time per action taken by each ap-
proach. We observe from these figures that the results for the Most Probable and Weighted Distance
approximations are very similar and perform well even with few particles (lines are overlapping in
many places, making Weighted Distance results hard to see). On the other hand, the performance
of Monte Carlo is significantly affected by the number of particles and had to use much more par-
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ticles (64) to obtain an improvement over the prior. This may be due to the sampling error that is
introduced when using fewer samples.

5.2 Follow

We propose a new POMDP domain, called Follow, inspired by an interactive human-robot task. It
is often the case that such domains are particularly subject to parameter uncertainty (due to the dif-
ficulty in modelling human behavior), thus this environment motivates the utility of Bayes-Adaptive
POMDP in a very practical way. The goal of the Follow task is for a robot to continuously follow one

of two individuals in a 2D open area. The two subjects have different motion behavior, requiring the
robot to use a different policy for each. At every episode, the target person is selected randomly with
Pr = 0.5 (and the other is not present). The person’s identity is not observable (except through their
motion). The state space has two features: a binary variable indicating which person is being fol-
lowed, and a position variable indicating the person’s position relative to the rokét ¢guare grid

with the robot always at the center). Initially, the robot and person are at the same position. Both the
robot and the person can perform five motion acti¢n& Action, North, Fast, South, West}.

The person follows a fixed stochastic policy (stationary over space and time), but the parameters of
this behavior are unknown. The robot perceives observations indicating the person’s position rela-
tive to the robot:{ Same, North, East, South, West,Unseen}. The robot perceives the correct
observationPr = 0.8 andUnseen with Pr = 0.2. The rewardR = +1 if the robot and person

are at the same position (central grid celf)= 0 if the person is one cell away from the robot, and

R = —1 if the person is two cells away. The task terminates if the person reaches a distance of 3
cells away from the robot, also causing a reward of -20. We use a discount factor of 0.9.

When formulating the BAPOMDP, the robot's motion model (deterministic), the observation
probabilities and the rewards are assumed to be known. We maintain a separate count vec-
tor for each person, representing the number of times they move in each directiomi.e:

(¢}VA7 (ZS}Va ¢%€7 ¢%‘7 ¢11/V)! ¢2 = ((b?\[/h (b?\]a ¢2Ev %‘7 (ZS%/V) We assume a prlaﬁé = (27 37 ]-7 27 2)

for person 1 and? = (2,1, 3,2, 2) for person 2, while in reality person 1 moves with probabilities

Pr = (0.3,0.4,0.2,0.05,0.05) and person 2 wittPr = (0.1,0.05,0.8,0.03,0.02). We run 200
simulations, each consisting of 100 episodes (of at most 10 time steps). The count vectors’ distri-
butions are reset after every simulation, and the target person is reset after every episode. We use a
2-step lookahead search for planning in the BAPOMDP.

Figures 4 and 5 show how the average return and model accuracy evolve over the 100 episodes (aver-
aged over the 200 simulations) with different belief approximations. Figure 6 compares the planning
time taken by each approach. We observe from these figures that the results for the Weighted Dis-
tance approximations are much better both in terms of return and model accuracy, even with fewer
particles (16). Monte Carlo fails at providing any improvement over the prior model, which indi-
cates it would require much more particles. Running Weighted Distance with 16 particles require
less time than both Monte Carlo and Most Probable with 64 particles, showing that it can be more
time efficient for the performance it provides in complex environment.
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6 Conclusion

The objective of this paper was to propose a preliminary decision-theoretic framework for learning
and acting in POMDPs under parameter uncertainty. This raises a number of interesting challenges,
including (1) defining the appropriate model for POMDP parameter uncertainty, (2) approximating
this model while maintaining performance guarantees, (3) performing tractable belief updating, and
(4) planning action sequences which optimally trade-off exploration and exploitation.

We proposed a new model, the Bayes-Adaptive POMDP, and showed that it can be approximated
to e-precision by a finite POMDP. We provided practical approaches for belief tracking and online
planning in this model, and validated these using two experimental domains. Results in the Follow
problem, showed that our approach is able to learn the motion patterns of two (simulated) individu-
als. This suggests interesting applications in human-robot interaction, where it is often essential that
we be able to reason and plan under parameter uncertainty.
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