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Abstract

Semi-supervised methods use unlabeled data in addition to labeled data to con-
struct predictors. While existing semi-supervised methods have shown some
promising empirical performance, their development has been based largely based
on heuristics. In this paper we study semi-supervised learning from the viewpoint
of minimax theory. Our first result shows that some common methods based on
regularization using graph Laplacians do not lead to faster minimax rates of con-
vergence. Thus, the estimators that use the unlabeled data do not have smaller
risk than the estimators that use only labeled data. We then develop several new
approaches that provably lead to improved performance. The statistical tools of
minimax analysis are thus used to offer some new perspective on the problem of
semi-supervised learning.

1 Introduction

Suppose that we have labeled dataL = {(X1, Y1), . . . (Xn, Yn)} and unlabeled dataU =
{Xn+1, . . . XN} whereN � n and Xi ∈ RD. Ordinary regression and classification techniques
useL to predictY from X. Semi-supervised methods also use the unlabeled dataU in an attempt
to improve the predictions. To justify these procedures, it is common to invoke one or both of the
following assumptions:

Manifold Assumption (M): The distribution ofX lives on a low dimensional manifold.

Semi-Supervised Smoothness Assumption (SSS): The regression functionm(x) =
EY | X = x is very smooth where the densityp(x) of X is large. In particular, if there
is a path connectingXi and X j on which p(x) is large, thenYi andYj should be similar
with high probability.

While these assumptions are somewhat intuitive, and synthetic examples can easily be constructed to
demonstrate good performance of various techniques, there has been very little theoretical analysis
of semi-supervised learning that rigorously shows how the assumptions lead to improved perfor-
mance of the estimators.

In this paper we provide a statistical analysis of semi-supervised methods for regression, and pro-
pose some new techniques that provably lead to better inferences, under appropriate assumptions. In
particular, we explore precise formulations of SSS, which is motivated by the intuition that high den-
sity level sets correspond to clusters of similar objects, but as stated above is quite vague. To the best
of our knowledge, no papers have made the assumption precise and then explored its consequences
in terms of rates of convergence, with the exception of one of the first papers on semi-supervised
learning, by Castelli and Cover (1996), which evaluated a simple mixture model, and the recent
paper of Rigollet (2006) in the context of classification. This situation is striking, given the level
of activity in this area within the machine learning community; for example, the recent survey of
semi-supervised learning by Zhu (2006) contains 163 references.
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Among our findings are:

1. Under the manifold assumption M, the semi-supervised smoothness assumption SSS is
superfluous. This point was made heuristically by Bickel and Li (2006), but we show
that in fact ordinary regression methods are automatically adaptive if the distribution ofX
concentrates on a manifold.

2. Without the manifold assumption M, the semi-supervised smoothness assumption SSS as
usually defined is too weak, and current methods don’t lead to improved inferences. In
particular, methods that use regularization based on graph Laplacians do not achieve faster
rates of convergence.

3. Assuming specific conditions that relatem and p, we develop new semi-supervised meth-
ods that lead to improved estimation. In particular, we propose estimators that reduce bias
by estimating the Hessian of the regression function, improve the choice of bandwidths
using unlabeled data, and estimate the regression function on level sets.

The focus of the paper is on a theoretical analysis of semi-supervised regression techniques, rather
than the development of practical new algorithms and techniques. While we emphasize regression,
most of our results have analogues for classification. Our intent is to bring the statistical perspective
of minimax analysis to bear on the problem, in order to study the interplay between the labeled
sample size and the unlabeled sample size, and between the regression function and the data density.
By studying simplified versions of the problem, our analysis suggests how precise formulations of
assumptions M and SSS can be made and exploited to lead to improved estimators.

2 Preliminaries

The data are(X1, Y1, R1), . . . , (XN, YN, RN) whereRi ∈ {0,1} and we observeYi only if Ri = 1.
The labeled data areL = {(Xi , Yi ) Ri = 1} and the unlabeled data areU = {(Xi , Yi ) Ri = 0}.
For convenience, assume that data are labeled so thatRi = 1 for i = 1, . . . ,n and Ri = 0 for
i = n + 1, . . . , N. Thus, the labeled sample size isn, and the unlabeled sample size isu = N − n.

Let p(x) be the density ofX and letm(x) = E(Y | X = x) denote the regression function. Assume
that R ⊥⊥ Y | X (missing at random) and thatRi | Xi ∼ Bernoulli(π(Xi)). Finally, letµ = P(Ri =
1) =

∫
π(x)p(x)dx. For simplicity we assume thatπ(x) = µ for all x. The missing at random

assumptionR ⊥⊥ Y | X is crucial, although this point is rarely emphasized in the machine learning
literature.

It is clear that without some further conditions, the unlabeled data are useless. The key assumption
we need is that there is some correspondence between the shape of the regression functionm and
the shape of the data densityp.

We will use minimax theory to judge the quality of an estimator. LetR denote a class of regression
functions and letF denote a class of density functions. In the classical setting, we observe labeled
data(X1, Y2), . . . , (Xn, Yn). The pointwise minimax risk, or mean squared error (MSE), is defined
by

Rn(x) = inf
m̂n

sup
m∈R,p∈F

E(m̂n(x) − m(x))2 (1)

where the infimum is over all estimators. The global minimax risk is defined by

Rn = inf
m̂n

sup
m∈R,p∈F

E

∫
(m̂n(x) − m(x))2dx. (2)

A typical assumption is thatR is the Sobolev space of order two, meaning essentially thatm has
smooth second derivatives. In this case we have1 Rn � n−4/(4+D). The minimax rate is achieved
by kernel estimators and local polynomial estimators. In particular, for kernel estimators if we use
a product kernel with common bandwidthhn for each variable, choosinghn ∼ n−1/(4+D) yields an

1We writean � bn to mean thatan/bn is bounded away from 0 and infinity for largen. We have suppressed
some technicalities such as moment assumptions onε = Y − m(X).
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estimator with the minimax rate. The difficulty is that the rate Rn � n−4/(4+D) is extremely slow
whenD is large.

In more detail, letC > 0 and letB be a positive definite matrix, and define

R =
{

m
∣∣∣m(x) − m(x0) − (x − x0)

T∇m(x0)
∣∣∣ ≤

C

2
(x − x0)

T B(x − x0)

}
(3)

F =
{

p p(x) ≥ b > 0, |p(x1) − p(x2)| ≤ c‖x1 − x2‖α
2

}
. (4)

Fan (1993) shows that the local linear estimator is asymptotically minimax for this class. This esti-
mator is given bŷmn(x) = a0 where(a0, a1) minimizes

∑n
i=1(Yi −a0−aT

1 (Xi −x))2K (H−1/2(Xi −
x)), whereK is a symmetric kernel andH is a matrix of bandwidths.

The asymptotic MSE of the local linear estimatorm̂(x) using the labeled data is

R(H) =
(

1

2
µ2

2(K )tr(Hm(x)H)

)2

+
1

n|H |1/2

ν0σ
2

p(x)
+ o( tr(H)) (5)

whereHm(x) is the Hessian ofm at x, µ2(K ) =
∫

K 2(u) du andν0 is a constant. The optimal
bandwidth matrixH∗ is given by

H∗ =

(
ν0σ

2|Hm|1/2

µ2
2(K )nDp(x)

)2/(D+4)

(Hm)−1 (6)

andR(H∗) = O(n−4/(4+D)). This result is important to what follows, because it suggests that if the
HessianHm of the regression function is related to the HessianHp of the data density, one may be
able to estimate the optimal bandwidth matrix from unlabeled data in order to reduce the risk.

3 The Manifold Assumption

It is common in the literature to invoke both M and SSS. But if M holds, SSS is not needed. This
is argued by Bickel and Li (2006) who say, “We can unwittingly take advantage of low dimensional
structure without knowing it.”

SupposeX ∈ RD has support on a manifoldM with dimensiond < D. Let m̂h be the local linear
estimator with diagonal bandwidth matrixH = h2I . Then Bickel and Li show that the bias and
variance are

b(x) = h2J1(x)(1 + oP(1)) and v(x) =
J2(x)

nhd
(1 + oP(1)) (7)

for some functionsJ1 andJ2. Choosingh � n−1/(4+d) yields a risk of ordern−4/(4+d), which is the
optimal rate for data that to lie on a manifold of dimensiond.

To use the above result we would need to knowd. Bickel and Li argue heuristically that the following
procedure will lead to a reasonable bandwidth. First, estimated using the procedure in Levina
and Bickel (2005). Now letB = {λ1/n1/(d̂+4), . . . , λB/n1/(d̂+4)} be a set of bandwidths, scaling
the asymptotic ordern−1/(d̂+4) by different constants. Finally, choose the bandwidthh ∈ B that
minimizes a local cross-validation score.

We now show that, in fact, one can skip the step of estimatingd. Let E1, . . . , En be independent
Bernoulli (θ = 1

2) random variables. Split the data into two groups, so thatI0 = {i Ei = 0} and
I1 = {i Ei = 1}. LetH = {n−1/(4+d) 1 ≤ d ≤ D}. Construct̂mh for h ∈ H using the data
in I0, and estimate the risk fromI1 by settingR̂(h) = |I1|−1∑

i∈I1 (Yi − m̂h(Xi ))
2. Finally, let ĥ

minimize R̂(h) and set̂m = m̂ĥ. For simplicity, let us assume that bothYi andXi are bounded by a
finite constantB.

Theorem 1. Suppose that and|Yi | ≤ B and|Xi j | ≤ B for all i and j . Assume the conditions in
Bickel and Li (2006). Suppose that the data densityp(x) is supported on a manifold of dimension
d ≥ 4. Then we have that

E(m̂(x) − m(x))2 = Õ

(
1

n4/(4+d)

)
. (8)
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The notationÕ allows for logarithmic factors inn.

Proof. The risk is, up to a constant,R(h) = E(Y − m̂(X))2, where(X, Y) is a new pair
andY = m(X) + ε. Note that(Y − m̂h(X))2 = Y2 − 2Ym̂h(X) + m̂2

h(X), so R(h) = E(Y2) −
2E(Ym̂h(X)) + m̂2

h(X). Let n1 = |I1|. Then,

R̂(h) =
1

n1

∑

i∈I1

Y2
i −

2

n1

∑

i∈I1

Yi m̂h(Xi ) +
1

n1

∑

i∈I1

m̂2
h(Xi ). (9)

By conditioning on the data inI0 and applying Bernstein’s inequality, we have

P

(
max
h∈H

|R̂(h) − R(h)| > ε

)
≤

∑

h∈H
P
(
|R̂(h) − R(h)| > ε

)
≤ De−ncε2

(10)

for somec > 0. Settingεn =
√

C logn/n for suitably largeC, we conclude that

P

(
max
h∈H

|R̂(h) − R(h)| >

√
C logn

n

)
−→ 0. (11)

Let h∗ minimize R(h) overH. Then, except on a set of probability tending to 0,

R(̂h) ≤ R̂(̂h) +
√

C logn

n
≤ R̂(h∗) +

√
C logn

n
(12)

≤ R(h∗) + 2

√
C logn

n
= O

(
1

n4/(4+d)

)
+ 2

√
C logn

n
= Õ

(
1

n4/(4+d)

)
(13)

where we used the assumptiond ≥ 4 in the last equality. Ifd = 4 then O(
√

logn/n) =
Õ(n−4/(4+d)); if d > 4 thenO(

√
logn/n) = o

(
n4/(4+d)

)
. �

We conclude that ordinary regression methods are automatically adaptive, and achieve the low-
dimensional minimax rate if the distribution ofX concentrates on a manifold; there is no need for
semi-supervised methods in this case. Similar results apply to classification.

4 Kernel Regression with Laplacian Regularization

In practice, it is unlikely that the distribution ofX would be supported exactly on a low-dimensional
manifold. Nevertheless, the shape of the data densityp(x) might provide information about the
regression functionm(x), in which case the unlabeled data are informative.

Several recent methods for semi-supervised learning attempt to exploit the smoothness assumption
SSS using regularization operators defined with respect to graph Laplacians (Zhu et al., 2003; Zhou
et al., 2004; Belkin et al., 2005). The technique of Zhu et al. (2003) is based on Gaussian random
fields and harmonic functions defined with respect to discrete Laplace operators. To express this
method in statistical terms, recall that standard kernel regression corresponds to the locally constant
estimator

m̂n(x) = arg min
m(x)

n∑

i=1

Kh(Xi , x)(Yi − m(x))2 =
∑n

i=1 Kh(Xi , x) Yi∑n
i=1 Kh(Xi , x)

(14)

where Kh is a symmetric kernel depending on bandwidth parametersh. In the semi-supervised
approach of Zhu et al. (2003), the locally constant estimatem̂(x) is formed using not only the
labeled data, but also using the estimates at the unlabeled points. Suppose that the firstn data points
(X1, Y1), . . . , (Xn, Yn) are labeled, and the nextu = N − n points are unlabeled,Xn+1, . . . , Xn+u.
The semi-supervised regression estimate is then(m̂(X1), m̂(X2), . . . , m̂(XN)) given by

m̂ = arg min
m

N∑

i=1

N∑

j =1

Kh(Xi , X j ) (m(Xi ) − m(X j ))
2 (15)

4



where the minimization is carried out subject to the constraint m(Xi ) = Yi , i = 1, . . . ,n. Thus,
the estimates are coupled, unlike the standard kernel regression estimate (14) where the estimate at
each pointx can be formed independently, given the labeled data.

The estimator can be written in closed form as a linear smootherm̂ = C−1 B Y = G Y where
m̂ = (m̂(Xn+1), . . . , m(Xn+u))T is the vector of estimates over the unlabeled test points, andY =
(Y1, . . . , Yn)

T is vector of labeled values. The(N−n)×(N−n) matrixC and the(N−n)×n matrix
B denote blocks of the combinatorial Laplacian on the data graph corresponding to the labeled and
unlabeled data:

1 =
(

A BT

B C

)
(16)

where the Laplacian1 = 1i j has entries

1i j =
{∑

k Kh(Xi , Xk) if i = j
−Kh(Xi , X j ) otherwise.

(17)

This expresses theeffective kernel Gin terms of geometric objects such as heat kernels for the
discrete diffusion equations (Smola and Kondor, 2003).

This estimator assumes the noise is zero, sincem̂(Xi ) = Yi for i = 1, . . . ,n. To work in the
standard modelY = m(X) + ε, the natural extension of the harmonic function approach ismani-
fold regularization(Belkin et al., 2005; Sindhwani et al., 2005; Tsang and Kwok, 2006). Here the
estimator is chosen to minimize the regularized empirical risk functional

Rγ (m)=
N∑

i=1

n∑

j =1

KH (Xi , X j )
(
Yj − m(Xi )

)2+γ

N∑

i=1

N∑

j =1

KH (Xi , X j )
(
m(X j ) − m(Xi )

)2 (18)

whereH is a matrix of bandwidths andKH (Xi , X j ) = K (H−1/2(Xi − X j )). Whenγ = 0 the
standard kernel smoother is obtained. The regularization term is

J (m) ≡
N∑

i=1

N∑

j =1

KH (Xi , X j )
(
m(X j ) − m(Xi )

)2 = 2mT1m (19)

where1 is the combinatorial Laplacian associated withKH . This regularization term is motivated
by the semi-supervised smoothness assumption—it favors functionsm for which m(Xi ) is close to
m(X j ) whenXi andX j are similar, according to the kernel function. The name manifold regulariza-
tion is justified by the fact that12J (m) →

∫
M

‖∇m(x)‖2 dMx, the energy ofm over the manifold.
While this regularizer has primarily been used for SVM classifiers (Belkin et al., 2005), it can be
used much more generally. For an appropriate choice ofγ , minimizing the functional (18) can be
expected to give essentially the same results as the harmonic function approach that minimizes (15).

Theorem 2. Suppose thatD ≥ 2. Let m̃H,γ minimize (18), and let1p,H be the differential
operator defined by

1p,H f (x) =
1

2
trace(Hf (x)H) +

∇ p(x)T H∇ f (x)

p(x)
. (20)

Then the asymptotic MSE of̃mH,γ (x) is

M̃ =
c1µσ 2

n(µ + γ )p(x)|H |1/2
+

(
c2(µ + γ )

µ

(
I −

γ

µ
1p,H

)−1

1p,H m(x)

)2

+ o( tr(H)) (21)

whereµ = P(Ri = 1).

Note that the bias of the standard kernel estimator, in the notation of this theorem, isb(x) =
c21p,H m(x), and the variance isV(x) = c1/np(x)|H |1/2. Thus, this result agrees with the standard
supervised MSE in the special caseγ = 0. It follows from this theorem that̃M = M + o( tr(H))
where M is the usual MSE for a kernel estimator. Therefore, the minimum ofM̃ has the same
leading order inH as the minimum ofM .

The proof is given in the full version of the paper. The implication of this theorem is that the
estimator that uses Laplacian regularization has the same rate of convergence as the usual kernel
estimator, and thus the unlabeled data have not improved the estimator asymptotically.
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5 Semi-Supervised Methods With Improved Rates

The previous result is negative, in the sense that it shows unlabeled data do not help to improve the
rate of convergence. This is because the bias and variance of a manifold regularized kernel esti-
mator are of the same order inH as the bias and variance of standard kernel regression. We now
demonstrate how improved rates of convergence can be obtained by formulating and exploiting ap-
propriate SSS assumptions. We describe three different approaches: semi-supervised bias reduction,
improved bandwidth selection, and averaging over level sets.

5.1 Semi-Supervised Bias Reduction

We first show a positive result by formulating an SSS assumption that links the shape ofp to the
shape ofm by positing a relationship between the HessianHm of m and the HessianHp of p. Under
this SSS assumption, we can improve the rate of convergence by reducing the bias.

To illustrate the idea, takep(x) known (i.e.,N = ∞) and suppose thatHm(x) = Hp(x). Define

m̃n(x) = m̂n(x) −
1

2
µ2

2(K )tr(Hm(x)H) (22)

wherem̂n(x) is the local linear estimator.

Theorem 3. The risk ofm̃n(x) is O
(
n−8/(8+D)

)
.

Proof. First note that the variance of the estimatorm̃n, conditional on X1, . . . , Xn, is
Var(m̃n(x)|X1, . . . , Xn) = Var(m̂n(x)|X1, . . . , Xn). Now, the term1

2µ2
2(K )tr(Hm(x)H) is pre-

cisely the bias of the local linear estimator, under the SSS assumption thatHp(x) = Hm(x). Thus,
the first order bias term has been removed. The result now follows from the fact that the next term
in the bias of the local linear estimator is of orderO(tr(H)4). �

By assuming 2 d̀erivatives are matched, we get the raten−(4+4`)/(4+4`+D). When p is estimated
from the data, the risk will be inflated byN−4/(4+D) assuming standard smoothness assumptions
on p. This term will not dominate the improved raten−(4+4`)/(4+4`+D) as long asN > n`. The
assumption thatHm = Hp can be replaced by the more realistic assumption thatHm = g(p; β)
for some parameterized family of functionsg(·; β). Semiparametric methods can then be used to
estimateβ. This approach is taken in the following section.

5.2 Improved Bandwidth Selection

Let Ĥ be the estimated bandwidth using the labeled data. We will now show how a bandwidth
Ĥ∗ can be estimated using the labeled and unlabeled data together, such that, under appropriate
assumptions,

lim sup
n→∞

|R(Ĥ∗) − R(H∗)|
|R(Ĥ) − R(H∗)|

= 0, whereH∗ = arg min
H

R(H). (23)

Therefore, the unlabeled data allow us to construct an estimator that gets closer to the oracle risk.
The improvement is weaker than the bias adjustment method. But it has the virtue that the optimal
local linear rate is maintained even if the proposed model linkingHm to p is incorrect.

We begin in one dimension to make the ideas clear. Letm̂H denote the local linear estimator with
bandwidthH ∈ R, H > 0. To use the unlabeled data, note that the optimal (global) bandwidth
is H∗ = (c2B/(4nc1A))1/5 whereA =

∫
m′′(x)2dx and B =

∫
dx/p(x). Let p̂(x) be the kernel

density estimator ofp usingX1, . . . , XN and bandwidthh = O(N−1/5). We assume

(SSS) m′′(x) = Gθ (p) for some functionG depending on finitely many parametersθ .

Now let m̂′′(x) = Gθ̂ ( p̂), and defineĤ∗ =
(

c2B̂
4nc1 Â

)1/5
where Â =

∫
(m̂′′(x))2 dx and B̂ =∫

dx/ p̂(x).
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Theorem 4. Suppose that̂m′′(x) − m′′(x) = OP(N−β) whereβ > 2
5. Let N = N(n) → ∞ as

n → ∞. If N/n1/4 → ∞, then

lim sup
n→∞

|R(Ĥ∗) − R(H∗)|
|R(Ĥ) − R(H∗)|

= 0. (24)

Proof. The risk is

R(H) = c1H4
∫

(m′′(x))2dx +
c2

nH

∫
dx

p(x)
+ o

(
1

nH

)
. (25)

The oracle bandwidth isH∗ = c3/n1/5 and thenR(H∗) = O(n−4/5). Now let Ĥ be the bandwidth
estimated by cross-validation. Then, sinceR′(H∗) = 0 andH∗ = O(n−1/5), we have

R(Ĥ) =
(Ĥ − H∗)2

2
R′′(H∗) + O(|Ĥ − H∗|3) (26)

=
(Ĥ − H∗)2

2
O(n−2/5) + O(|Ĥ − H∗|3). (27)

From Girard (1998),̂H − H∗ = OP(n−3/10). Hence,R(Ĥ) − R(H∗) = OP(n−1). Also, p̂(x) −
p(x) = O(N−2/5). Sincem̂′′(x) − m′′(x) = OP(N−β),

Ĥ∗ − H∗ = OP

(
N−2/5

n1/5

)
+ OP

(
N−β

n1/5

)
. (28)

The first term isoP(n−3/10) sinceN > n1/4. The second term isoP(n−3/10) sinceβ > 2/5. Thus
R(Ĥ∗) − R(H∗) = oP(1/n) and the result follows. �

The proof in the multidimensional case is essentially the same as in the one dimensional case, except
that we use the multivariate version of Girard’s result, namely,H∗ − Ĥ = OP(n−(D+2)/(2(D+4))).
This leads to the following result.

Theorem 5. Let N = N(n). If N/nD/4 → ∞, θ̂ − θ = OP(N−β) for someβ > 2
4+D then

lim sup
n→∞

|R(Ĥ∗) − R(H∗)|
|R(Ĥ) − R(H∗)|

= 0. (29)

5.3 Averaging over Level Sets

Recall that SSS is motivated by the intuition that high density level sets should correspond to clusters
of similar objects. Another approach to quantifying SSS is to make this cluster assumption explicit.
Rigollet (2006) shows one way to do this in classification. Here we focus on regression.

Suppose thatL = {x p(x) > λ} can be decomposed into a finite number of connected, compact,
convex setsC1, . . . , Cg whereλ is chosen so thatLc has negligible probability. ForN large we can
replaceL with L = {x p̂(x) > λ} with small loss in accuracy, wherêp is an estimate ofp using
the unlabeled data; see Rigollet (2006) for details. Letk j =

∑n
i=1 I (Xi ∈ C j ) and forx ∈ C j

define

m̂(x) =
∑n

i=1 Yi I (Xi ∈ C j )

k j
. (30)

Thus, m̂(x) simply averages the labels of the data that fall in the set to whichx belongs. If the
regression function is slowly varying in over this set, the risk should be small. A similar estimator
is considered by Cortes and Mohri (2006), but they do not provide estimates of the risk.

Theorem 6. The risk ofm̂(x) for x ∈ L ∩ C j is bounded by

O

(
1

nπ j

)
+ O

(
δ2

j ξ
2
j

)
(31)

whereδ j = supx∈C j
‖∇m(x)‖, ξ j = diameter(C j ) andπ j = P(X ∈ C j ).
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Proof. Since thek j are Binomial,k j = nπ j + o(1) almost surely. Thus, the variance ofm̂(x)
is O(1/(nπ j )). The mean, givenX1, . . . , Xn, is

1

k j

∑

i Xi ∈C j

m(Xi ) = m(x) +
1

k j

∑

i Xi ∈C j

(m(Xi ) − m(x)). (32)

Now m(Xi )−m(x) = (X j − x)T∇m(ui ) for someui betweenx andXi . Hence,|m(Xi )−m(x)| ≤
‖X j − x‖ supx∈C j

‖∇m(x)‖ and so the bias is bounded byδ j ξ j . �

This result reveals an interesting bias-variance tradeoff. Makingλ smaller decreases the variance
and increases the bias. Suppose the two terms are balanced atλ = λ∗. Then we will beat the usual
rate of convergence ifπ j (λ∗) > n−D/(4+D).

6 Conclusion

Semi-supervised methods have been very successful in many problems. Our results suggest that the
standard explanations for this success are not correct. We have indicated some new approaches to
understanding and exploiting the relationship between the labeled and unlabeled data. Of course, we
make no claim that these are the only ways of incorporating unlabeled data. But our results indicate
that decoupling the manifold assumption and the semi-supervised smoothness assumption is crucial
to clarifying the problem.

7 Acknowlegments

We thank Partha Niyogi for several interesting discussions. This work was supported in part by NSF
grant CCF-0625879.

References
BELKIN , M., NIYOGI , P. and SINDHWANI , V. (2005). On manifold regularization. InProceedings of the Tenth

International Workshop on Artificial Intelligence and Statistics (AISTAT 2005).
BICKEL , P. and LI , B. (2006). Local polynomial regression on unknown manifolds. Tech. rep., Department of

Statistics, UC Berkeley.
CASTELLI , V. and COVER, T. (1996). The relative value of labeled and unlabeled samples in pattern recogni-

tion with an unknown mixing parameter.IEEE Trans. on Info. Theory42 2101–2117.
CORTES, C. and MOHRI, M. (2006). On transductive regression. InAdvances in Neural Information Process-

ing Systems (NIPS), vol. 19.
FAN , J. (1993). Local linear regression smoothers and their minimax efficiencies.The Annals of Statistics21

196–216.
GIRARD, D. (1998). Asymptotic comparison of (partial) cross-validation, gcv and randomized gcv in nonpara-

metric regression.Ann. Statist.12 315–334.
LEVINA , E. and BICKEL , P. (2005). Maximum likelihood estimation of intrinsic dimension. InAdvances in

Neural Information Processing Systems (NIPS), vol. 17.
NIYOGI , P. (2007). Manifold regularization and semi-supervised learning: Some theoretical analyses. Tech.

rep., Departments of Computer Science and Statistics, University of Chicago.
RIGOLLET, P. (2006). Generalization error bounds in semi-supervised classification under the cluster assump-

tion. arxiv.org/math/0604233.
SINDHWANI , V., NIYOGI , P., BELKIN , M. and KEERTHI, S. (2005). Linear manifold regularization for large

scale semi-supervised learning. InProc. of the 22nd ICML Workshop on Learning with Partially Classified
Training Data.

SMOLA , A. and KONDOR, R. (2003). Kernels and regularization on graphs. InConference on Learning
Theory, COLT/KW.

TSANG, I. and KWOK, J. (2006). Large-scale sparsified manifold regularization. InAdvances in Neural
Information Processing Systems (NIPS), vol. 19.

ZHOU, D., BOUSQUET, O., LAL , T., WESTON, J. and SCHÖLKOPF, B. (2004). Learning with local and global
consistency. InAdvances in Neural Information Processing Systems (NIPS), vol. 16.

ZHU, X. (2006). Semi-supervised learning literature review. Tech. rep., University of Wisconsin.
ZHU, X., GHAHRAMANI , Z. and LAFFERTY, J. (2003). Semi-supervised learning using Gaussian fields and

harmonic functions. InICML-03, 20th International Conference on Machine Learning.

8


