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Abstract

We present a probability distribution over non-negative integer valued matrices
with possibly an infinite number of columns. We also derive a stochastic process
that reproduces this distribution over equivalence classes. This model can play
the role of the prior in nonparametric Bayesian learning scenarios where multiple
latent features are associated with the observed data and each feature can have
multiple appearances or occurrences within each data point. Such data arise nat-
urally when learning visual object recognition systems from unlabelled images.
Together with the nonparametric prior we consider a likelihood model that ex-
plains the visual appearance and location of local image patches. Inference with
this model is carried out using a Markov chain Monte Carlo algorithm.

1 Introduction

Unsupervised learning using mixture models assumes that one latent cause is associated with each
data point. This assumption can be quite restrictive and a useful generalization is to consider factorial
representations which assume that multiple causes have generated the data [11]. Factorial models
are widely used in modern unsupervised learning algorithms; see e.g. algorithms that model text
data [2, 3, 4]. Algorithms for learning factorial models should deal with the problem of specifying

the size of the representation. Bayesian learning and especially nonparametric methods such as the
Indian buffet process [7] can be very useful for solving this problem.

Factorial models usually assume that each feature occurs once in a given data point. This is inef-
ficient to model the precise generation mechanism of several data such as images. An image can
contain views of multiple object classes such as cars and humans and each class may have multiple
occurrences in the image. To deal with features having multiple occurrences, we introduce a prob-
ability distribution over sparse non-negative integer valued matrices with possibly an unbounded
number of columns. Each matrix row corresponds to a data point and each column to a feature
similarly to the binary matrix used in the Indian buffet process [7]. Each element of the matrix
can be zero or a positive integer and expresses the number of times a feature occurs in a specific
data point. This model is derived by considering a finite gamma-Poisson distribution and taking
the infinite limit for equivalence classes of non-negative integer valued matrices. We also present a
stochastic process that reproduces this infinite model. This process uses the Ewens’s distribution [5]
over integer partitions which was introduced in population genetics literature and it is equivalent to
the distribution over partitions of objects induced by the Dirichlet process [1].

The infinite gamma-Poisson model can play the role of the prior in a nonparametric Bayesian learn-
ing scenario where both the latent features and the number of their occurrences are unknown. Given
this prior, we consider a likelihood model which is suitable for explaining the visual appearance and
location of local image patches. Introducing a prior for the parameters of this likelihood model, we
apply Bayesian learning using a Markov chain Monte Carlo inference algorithm and show results in
some image data.



2 The finite gamma-Poisson model

LetX = {X;,..., Xy} be some data where each data pdiftis a set of attributes. In section

4 we specifyX,, to be a collection of local image patches. We assume that each data point is
associated with a set of latent features and each feature can have multiple occurrencgs. Let
denote the number of times feature@ccurs in the data poinX,,. Given K featuresZ = {z,} is

aN x K non-negative integer valued matrix that collects together alt{hesalues so as each row
corresponds to a data point and each column to a feature. Given,that drawn from a Poisson

with a feature-specific parametgy, Z follows the distribution
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wheremy;, = 27]:[:1 znk- We further assume that eagh parameter follows a gamma distribution
that favors sparsity (in a sense that will be explained shortly):
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The hyperparameter itself is given a vague gamma prigr«; o, 5o). Using the above equations
we can easily integrate out the parameters} as follows
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which shows that given the hyperparametehe columns ofZ are independent. Note that the above
distribution is exchangeable since reordering the row& afoes not alter the probability. Also as
K increases the distribution favors sparsity. This can be shown by taking the expectation of the sum

of all elements ofZ. Since the columns are independent this expectatidti Ef:f:l E(z,;) and
E(z,1) is given by

a 1 a

E(an) = Z an:NB(an:; Ev 5) = E» (4)

Znk=0
where N B(z,;7,p), with » > 0 and0 < p < 1, denotes the negative binomial distribution over
positive integers
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that has a mean equal ez Using Equation (4) the expectation of the sum:gfs isaN and

is independent of the number of features. Rsincreases/Z becomes sparser amdcontrols the
sparsity of this matrix.
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There is an alternative way of deriving the joint distributi®Z|«)) according to the following
generative process:
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where D( ) denotes the symmetric Dirichlet. Marginalizing ofitand A gives rise to the same
distribution P(Z|«). The above process generates a gamma random variable and multinomial pa-
rameters and then samples the rowgdhdependently by using the Poisson-multinomial pair. The
connection with the Dirichlet-multinomial pair implies that the infinite limit of the gamma-Poisson
model must be related to the Dirichlet process. In the next section we see how this connection is
revealed through the Ewens'’s distribution [5].

Models that combine gamma and Poisson distributions are widely applied in statistics. We point out
that the above finite model shares similarities with the techniques presented in [3, 4] that model text
data.



3 The infinite limit and the stochastic process

To express the probability distribution in (3) for infinite many featukes/e need to consider equiv-

alence classes ¢f matrices similarly to [7]. The association of columns4rwith features defines

an arbitrary labelling of the features. Given that the likelihpod | Z) is not affected by relabelling

the features, there is an equivalence class of matrices that all can be reduced to the same standard
form after column reordering. We define the left-ordered form of non-negative integer valued ma-
trices as follows. We assume that for any possihleholdsz,,. < ¢ — 1, wherec is a sufficiently

large integer. We defink = (215 ... znk) @s the integer number associated with columthat is
expressed in a numeral system with basihe left-ordered form is defined so as the columng of

appear from left to right in a decreasing order according to the magnitude of their numbers.

Starting from Equation (3) we wish to define the probability distribution over matrices constrained in
a left-ordered standard form. Léf;, be the multiplicity of the column with numbeér, for example
Ky is the number of zero columns. An equivalence clagsconsists of%}(' different matri-

ces that they are generated from the distribution in (3) with equal prgkza%\biliti'es and can be reduced
to the same left-ordered form. Thus, the probabilityofis
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We assume that the firsf,; features are represented ixe, > 0for k < K, while the restk — K|
features are unrepresented he, = 0 for £ > K. The infinite limit of (6) is derived by following

a similar strategy with the one used for expressing the distribution over partitions of objects as a
limit of the Dirichlet-multinomial pair [6, 9]. The limit takes the following form:
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wherem = Zngl my. This expression defines an exchangeable joint distribution over non-negative
integer valued matrices with infinite many columns in a left-ordered form. Next we present a se-
guential stochastic process that reproduces this distribution.

3.1 The stochastic process

The distribution in Equation (7) can be derived from a simple stochastic process that constructs
the matrixZ sequentially so as the data arrive one at each time in a fixed order. The steps of this
stochastic process are discussed below.

When the first data point arrives all the features are currently unrepresented. We sample feature
occurrences from the set of unrepresented features as follows. Firstly, we draw an integer number
g1 from the negative binomiaN B(g;; «, %) which has a mean value equal do ¢, is the total
number of feature occurrences for the first data point. Giygrwe randomly select a partition
(211, .., 21K, ) of the integerg; into partd, i.e.z;y + ... + 215, = g1 and1 < K; < gy, by
drawing from Ewens’s distribution [5] over integer partitions which is given by
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Wherevgl) is the multiplicity of integer: in the partition(z11, ..., 21k, ). The Ewens’s distribution

is equivalent to the distribution over partitions of objects induced by the Dirichlet process and the
Chinese restaurant process since we can derive the one from the other using simple combinatorics
arguments. The difference between them is that the former is a distribution over integer partitions
while the latter is a distribution over partitions of objects.

Let K,,_1 be the number of represented features whemthedata point arrives. For each feature
k, with k < K,,_1, we choose,,;, based on the popularity of this feature in the previgous 1 data

1The partition of a positive integer is a way of writing this integer as a sum of positive integers where order
does not matter, e.g. the partitions of 3 are: (3),(2,1) and (1,1,1).



points. This popularity is expressed by the total number alioences for the feature which is
1

given bymy, = >~} z;,. Particularly, we draw,,;, from N B(z,,; mu, nil) which has a mean
value equal to”=. Once we have sampled from all represented features we need to consider a
sample from the set of unrepresented features. Similarly to the first data point, we first draw an
integerg,, from N B(g,; «, n+1) and subsequently we select a partition of that integer by drawing

from the Ewens’s formula. This process produces the following distribution:
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where{v§">} are the integer-multiplicities for theth data point which arise when we draw from

the Ewens’s distribution. Note that the above expression does not have exactly the same form as the
distribution in Equation (7) and is not exchangeable since it depends on the order the data arrive.
However, if we consider only the left-ordered class of matrices generated by the stochastic process
then we obtain the exchangeable distribution in Equation (7). Note that a similar situation arises
with the Indian buffet process.

3.2 Conditional distributions

When we combine the prioP(Z|«) with a likelihood modelp(X|Z) and we wish to do in-
ference overZ using Gibbs-type sampling, we need to express the conditionals of the form
P(znk|Z_(niy, ) Where Z_,1y = Z \ z,,. We can derive such conditionals by taking limits
of the conditionals for the finite model or by using the stochastic process.

Suppose that for the current value &f there exist/, represented features i.e1;, > 0 for

k< Ky. Letm_, = Zﬁ;ﬁn znk. Whenm_, ; > 0, the conditional ofz,; is given by
NB(zpk; M—n NLH). In all different cases, we need a special conditional that samples from
new featuresand accounts for alt such thatn_,, ,, = 0. This conditional draws an integer num-

ber fromN B(g,; a, N+1) and then determines the occurrences for the new features by choosing a

partition of the integey,, using the Ewens'’s distribution. Finally the conditiopéd|Z), which can
be directly expressed from Equation (7) and the priotpis given by

af+
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Typically the likelihood model does not depend®@and thus the above quantity is also the posterior
conditional ofa given data and’.

(10)

4 A likelihood model for images

An image can contain multiple objects of different classes. Each object class can have more than
one occurrences, i.e. multiple instances of the class may appear simultaneously in the image. Un-
supervised learning should deal with the unknown number of object classes in the images and also
the unknown number of occurrences of each class in each image separately. If object classes are the
latent features, what we wish to infer is the underlying feature occurrence nzathie consider

an observation model that is a combination of latent Dirichlet allocation [2] and Gaussian mixture
models. Such a combination has been used before [12]. Each imisgepresented by,, local
patches that are detected in the image s&as= (Y,,,W,,) = {(¥yni> Wni), i = 1,...,dn}. Yni

is the two-dimensional location of patélandw,,; is an indicator vector (i.e. is binary and satisfies
Zle w’, = 1) that points into a set of. possible visual appearanceX., Y, andW denote all

the data the locations and the appearances, respectively. We will describe the probabilistic model
starting from the joint distribution of all variables which is given by

joint = p(c) P(Z])p({01}]2) x
N dy,
H p(ﬂ'n|Zn)p(mn;En|Zn)HP(Snz|7rn>P(an|Snza{Gk})p(ynz|snzamn7zn) . (11)
n=1
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2Features of this kind are the unrepresented features () as well as all the unique features that occur
only in the data point (i.e.m_,_, = 0, butz,; > 0).



Figure 1: Graphical model for the joint distribution in Eqosit(11).

The graphical representation of this distribution is depicted in Figure 1. We now explain all the
pieces of this joint distribution following the causal structure of the graphical model. Firstly, we
generatex from its prior and then we draw the feature occurrence maffixsing the infinite
gamma-Poisson prioP(Z|«). The matrixZ defines the structure for the remaining part of the
model. The parameter vect8f, = {01, ..., 0} describes the appearance of the local patéties

for the feature (object clas#) Each@; is generated from a symmetric Dirichlet so as the whole

set of {0} vectors is drawn fronp({0:}|2) = Hngl D(0y|v), where is the hyperparameter of

the symmetric Dirichlet and it is common for all features. Note that the feature appearance param-
eters{6;} depend orZ only through the number of represented featukgswhich is obtained by
counting the non-zero columns &f

The parameter vectar,, = {m,;} defines the image-specific mixing proportions for the mixture
model associated with image To see how this mixture model arises, notice that a local patch in
imagen belongs to a certain occurrence of a feature. We use the double iridexdenote the

occurrence of featuré wherej = 1,..., 2, andk € {% D 2E > 0}. This mixture model has
M, = ZkKjl zZnk COMponents, i.e. as many as the total number of feature occurrences invimage

The assignment variabkg,; = {sfg}, which takesM,, values, indicates the feature occurrence of
patchi. m, is drawn from a symmetric Dirichlet given by(=,|Z,,) = D(x,|8/M,), whereZ,
denotes thexth row of Z and g is a hyperparameter shared by all images. Notice #hatlepends
only on thenth row of Z.

The parameterém,,, 3,,) determine the image-specific distribution for the locatidgs; } of the

local patches in image. We assume that each occurrence of a feature forms a Gaussian cluster
of patch locations. Thug,,; follows a image-specific Gaussian mixture with, components. We
assume that the componénthas meam,,;; and covarianc&,, ;. m,,; describes object location
and,;; object shapem,, andX,, collect all the means and covariances of the clusters in the image
n. Given that any object can be anywhere in the image and have arbitrary scale and orientation,
(myxj, Xnk;) Should be drawn from a quite vague prior. We use a conjugate normal-Wishart prior
for the pair(m,,x;, X,;) SO as

Znk

(mnaznlz H HN m'nkj‘uaTEnkj) ( nkj|v V) (12)
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where(u, 7,v, V') are the hyperparameters shared by all features and images. The assigfnment
which determines the allocation of a local patch in a certain feature occurrence follows a multino-

mial: P(spilmn) = [li... >0 Hj’;"“l(wnkj)sﬁ. Similarly the observed data paiw.,;, y.;) of a
local image patch is generated according to
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and
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The hyperparametersy, 3, u, 7,v, V') take fixed values that give vague priors and they are not
depicted in the graphical model shown in Figure 1.

Since we have chosen conjugate priors, we can analytically marginalize out from the joint distri-
bution all the parametergr,,}, {0:}, {m,} and{%, } and obtainp(X, S, Z, «). Marginalizing

out the assignmentS is generally intractable and the MCMC algorithm discussed next produces
samples from the posterid?(.S, Z, a|X).

4.1 MCMC inference

Inference with our model involves expressing the posteR06, Z, | X) over the feature occur-
rencesZ, the assignment§' and the parametex. Note that the jointP(S, Z, o, X) factorizes
according top(«) P(Z|a) P(W|S, Z) HQ;I P(S,|Z:)p(Ys|Sn, Z,) whereS,, denotes the assign-
ments associated with image Our algorithm uses mainly Gibbs-type sampling from conditional
posterior distributions. Due to space limitations we briefly discuss the main points of this algorithm.

The MCMC algorithm processes the rowsXfiteratively and updates its values. A single step can

change an element & by one so ag"¢" — 22| < 1. Initially Z is such that\f,, = ZkKjl Znk >
1, for anyn which means that at least one mixture component explains the data of each image. The
proposal distribution for changing, ;s ensures that this constraint is satisfied.

Suppose we wish to sample a new valuezgr using the joint modeb(S, Z, o, X). Simply witting
P(2nk|S, Z_(nry, o, X) is not useful since when, ;. changes the number of states the assignments
S,, can take also changes. This is clear singgis a structural variable that affects the number of

componentsV/,, = ZkK:*l zni Of the mixture model associated with imagend assignments,, .
On the other hand the dimensionality of the assignménts = S \ S,, of all other images is not
affected when,,;, changes. To deal with the above we marginalize$uand we sample,,;, from
the marginalized posterior conditionBz,,|S_ ., Z_(,.1), , X' ) Which is computed according to

P(2nk] Sy Z—(nk)s @ X) o P(znk| Z— iy, @) > P(WIS, Z)p(Yn| S Zn) P(Snl|Z0),  (13)
Sn

whereP(z,x|Z_, k, ) for the infinite case is computed as described in section 3.2 while computing
the sum requires an approximation. This sum is a marginal likelihood and we apply importance
sampling using as an importance distribution the posterior conditiB8y,|S_,,, Z, W, Y,,) [10].
Sampling fromP(S,,|S_,, Z,W,Y,,) is carried out by applying local Gibbs sampling moves and
global Metropolis moves that allow two occurrences of different features to exchange their data
clusters. In our implementation we consider a single sample drawn from this posterior distribution
so that the sum is approximated B(W S}, S_,, Z)p(Y,|S%, Z,) and S’ is a sample accepted
after a burn in period. Additionally to scans that upd4dtand.S we add few Metropolis-Hastings
steps that update the hyperparameteising the posterior conditional given by Equation (10).

5 Experiments

In the first experiment we use a set 4f artificial images. We consider four features that have

the regular shapes shown in Figure 2. The discrete patch appearances correspond to pixels and
can take20 possible grayscale values. Each feature has its own multinomial distribution over the
appearances. To generate an image we first decide to include each feature with probability
Then for each included feature we randomly select the number of occurrences from thE r8hge

For each feature occurrence we select the pixels using the appearance multinomial and place the
respective feature shape in a random location so that feature occurrences do not occlude each other.
The first row of Figure 2 shows a training image (left), the locations of pixels (middle) and the
discrete appearances (right). The MCMC algorithm was initialized With = 1, « = 1 and

zZn1 = 1,n = 1,...,10. The third row of Figure 2 shows how (left) and the sum of alt,,;.S

(right) evolve through the firsi00 MCMC iterations. The algorithm in the firQ0 iterations has
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Figure 2: The first row shows a training image (left), the lomag of pixels (middle) and the discrete
appearances (right). The second row shows the localizations of all feature occurrences in three
images. Below of each image the corresponding roi @ also shown. The third row shows how

K (left) and the sum of alt,,;;s (right) evolve through the fir§t)0 MCMC iterations.

Figure 3: The left most plot on the first row shows the locatioidetected patches and the bounding
boxes in one of the annotated images. The remaining five plots show examples of detections and
localizations of the three most dominant features (including the car-category) in five non-annotated
images.



visited the matrixZ that was used to generate the data and then stabilizes6%oof the samples

K is equal to four. For the sta{e?, .S) that is most frequently visited, the second row of Figure

2 shows the localizations of all different feature occurrences in three images. Each ellipse is drawn
using the posterior mean values for a pait,,;, >,x;) and illustrates the predicted location and
shape of a feature occurrence. Note that ellipses with the same color correspond to the different
occurrences of the same feature.

In the second experiment we consider 25 real images from the 8J8d@ database. We used the
patch detection method presented in [8] and we constructed a dictionary of 200 visual appearances
by clustering the SIFT [8] descriptors of the patches using K-means. Locations of detected patches
are shown in the first row (left) of Figure 3. We partially labelled some of the images. Particularly,
for 7 out of 25 images we annotated the car views using bounding boxes (Figure 3). This allows
us to specify seven elements of the first column of the matrix Z (the first feature will correspond
to the car-category). Thesg,s values plus the assignments of all patches inside the boxes do not
change during sampling. Also the patches that lie outside the boxes in all annotated images are not
allowed to be part of car occurrences. This is achieved by applying partial Gibbs sampling updates
and Metropolis moves when sampling the assignm&niEhe algorithm is initialized with, = 1,

after 30 iterations stabilizes and then fluctuates between nine to twelve features. To keep the plots
uncluttered, Figure 3 shows the detections and localizations of only the three most dominant features
(including the car-category) in five non-annotated images. The red ellipses correspond to different
occurrences of the car-feature, the green ones to a tree-feature and the blue ones to a street-feature.

6 Discussion

We presented the infinite gamma-Poisson model which is a nonparametric prior for non-negative
integer valued matrices with infinite number of columns. We discussed the use of this prior for
unsupervised learning where multiple features are associated with our data and each feature can
have multiple occurrences within each data point. The infinite gamma-Poisson prior can be used for
other purposes as well. For example, an interesting application can be Bayesian matrix factorization
where a matrix of observations is decomposed into a product of two or more matrices with one of
them being a non-negative integer valued matrix.
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