
Anytime Induction of Cost-sensitive Trees

Saher Esmeir
Computer Science Department

Technion—Israel Institute of Technology
Haifa 32000, Israel

esaher@cs.technion.ac.il

Shaul Markovitch
Computer Science Department

Technion—Israel Institute of Technology
Haifa 32000, Israel

shaulm@cs.technion.ac.il

Abstract

Machine learning techniques are increasingly being used to produce a wide-range
of classifiers for complex real-world applications that involve nonuniform testing
costs and misclassification costs. As the complexity of these applications grows,
the management of resources during the learning and classification processes be-
comes a challenging task. In this work we introduce ACT (Anytime Cost-sensitive
Trees), a novel framework for operating in such environments. ACT is an anytime
algorithm that allows trading computation time for lower classification costs. It
builds a tree top-down and exploits additional time resources to obtain better esti-
mations for the utility of the different candidate splits. Using sampling techniques
ACT approximates for each candidate split the cost of the subtree under it and fa-
vors the one with a minimal cost. Due to its stochastic nature ACT is expected to
be able to escape local minima, into which greedy methods may be trapped. Ex-
periments with a variety of datasets were conducted to compare the performance
of ACT to that of the state of the art cost-sensitive tree learners. The results show
that for most domains ACT produces trees of significantly lower costs. ACT is
also shown to exhibit good anytime behavior with diminishing returns.

1 Introduction

Suppose that a medical center has decided to use machine learning techniques to induce a diagnostic
tool from records of previous patients. The center aims to obtain a comprehensible model, with low
expectedtest costs(the costs of testing attribute values) and high expected accuracy. Moreover, in
many cases there are costs associated with the predictive errors. In such a scenario, the task of the
inducer is to produce a model with low expected test costs and low expectedmisclassification costs.

A good candidate for achieving the goals of comprehensibility and reduced costs is a decision
tree model. Decision trees are easily interpretable because they mimic the way doctors think
[13][chap. 9]. In the context of cost-sensitive classification, decision trees are the natural form
of representation: they ask only for the values of the features along a single path from the root to
a leaf. Indeed, cost-sensitive trees have been the subject of many research efforts. Several works
proposed learners that consider different misclassification costs [7, 18, 6, 9, 10, 14, 1]. These meth-
ods, however, do not consider test costs. Other authors designed tree learners that take into account
test costs, such as IDX [16], CSID3 [22], and EG2 [17]. These methods, however, do not consider
misclassification costs. The medical center scenario exemplifies the need for considering both types
of cost together: doctors do not perform a test before considering both its cost and its importance to
the diagnosis.

Minimal Cost trees, a method that attempts to minimize both types of costs simultaneously has been
proposed in [21]. A tree is built top-down. The immediate reduction in total cost each split results
in is estimated, and a split with the maximal reduction is selected. Although efficient, the Minimal
Cost approach can be trapped into a local minimum and produce trees that are not globally optimal.

1

a1

a7

a9 a9

0 1 1 0

a6

a4 a4

0 1 1 0

a9

a10

1 0

cost(a1-8) = $$

cost(a9,10) = $$$$$$

cost(a1-10) = $$

a10

0 1

Figure 1:A difficulty for greedy learners (left). Importance of context-based evaluation (right).

For example, consider a problem with 10 attributesa1−10, of which onlya9 anda10 are relevant.
The cost ofa9 anda10, however, is significantly higher than the others but lower than the cost
of misclassification. This may hide their usefulness, and mislead the learner to fit a large expensive
tree. The problem is intensified ifa9 anda10 were interdependent with a low immediate information
gain (e.g.,a9 ⊕ a10), as illustrated in Figure 1 (left). In such a case, even if the costs were uniform,
local measures would fail in recognizing the relevance ofa9 anda10 and other attributes might be
preferred. The Minimal Cost method is appealing when resources are very limited. However, it
requires a fixed runtime and cannot exploit additional resources. In many real-life applications, we
are willing to wait longer if a better tree can be induced. For example, due to the importance of the
model, the medical center is ready to allocate 1 week to learn it. Algorithms that can exploit more
time to produce solutions of better quality are called anytime algorithms [5].

One way to exploit additional time when searching for a tree of lower costs is to widen the search
space. In [2] the cost-sensitive learning problem is formulated as a Markov Decision Process (MDP)
and a systematic search is used to solve the MDP. Although the algorithm searches for an optimal
strategy, the time and memory limits prevent it from always finding optimal solutions.

The ICET algorithm [24] was a pioneer in searching non-greedily for a tree that minimizes both
costs together. ICET uses genetic search to produce a new set of costs that reflects both the original
costs and the contribution each attribute can make to reduce misclassification costs. Then it builds
a tree using the greedy EG2 algorithm but with the evolved costs instead of the original ones. ICET
was shown to produce trees of lowertotal cost. It can use additional time resources to produce more
generations and hence to widen its search in the space of costs. Nevertheless, it is limited in the
way it can exploit extra time. Firstly, it builds the final tree using EG2. EG2 prefers attributes with
high information gain (and low test cost). Therefore, when the concept to learn hides interdepen-
dency between attributes, the greedy measure may underestimate the usefulness of highly relevant
attributes, resulting in more expensive trees. Secondly, even if ICET may overcome the above prob-
lem by reweighting the attributes, it searches the space of parameters globally, regardless of the
context. This imposes a problem if an attribute is important in one subtree but useless in another. To
illustrate the above consider the concept in Figure 1 (right). There are 10 attributes of similar costs.
Depending on the value ofa1, the target concept isa7 ⊕ a9 or a4 ⊕ a6. Due to interdependencies,
all attributes will have a low gain. Because ICET assigns costs globally, they will have similar costs
as well. Therefore, ICET will not be able to recognize which attribute is relevant in what context.

Recently, we have introduced LSID3, a cost-insensitive algorithm, which can induce more accurate
trees when given more time [11]. The algorithm uses stochastic sampling techniques to evaluate
candidate splits. It is not designed, however, to minimize test and misclassification costs. In this
work we build on LSID3 and proposeACT, an Anytime Cost-sensitive Tree learner that can exploit
additional time to produce trees of lower costs. Applying the sampling mechanism to the cost-
sensitive setup, however, is not trivial and imposes several challenges which we address in Section
2. Extensive set of experiments that compares ACT to EG2 and to ICET is reported in Section 3. The
results show that ACT is significantly better for the majority of problems. In addition ACT is shown
to exhibit good anytime behavior with diminishing returns. The major contributions of this paper
are: (1) a non-greedy algorithm for learning trees of lower costs that allows handling complex cost
structures, (2) an anytime framework that allows learning time to be traded for reduced classification
costs, and (3) a parameterized method for automatic assigning of costs for existing datasets.

Note that costs may also be involved during example acquisition [12, 15]. In this work, however,
we assume that the full training examples are in hand. Moreover, we assume that during the test
phase, all tests in the relevant path will be taken. Several test strategies that determine which values
to query for and at what order have been recently studied [21]. These strategies are orthogonal to
our work because they assume a given tree.

2

2 The ACT Algorithm

Offline concept learning consists of two stages: learning from labelled examples; and using the
induced model to classify unlabelled instances. These two stages involve different types of cost
[23]. Our primary goal in this work is to trade the learning time for reduced test and misclassification
costs. To make the problem well defined, we need to specify how to: (1) represent misclassification
costs, (2) calculate test costs, and (3) combine both types of cost.

To answer these questions, we adopt the model described by Turney [24]. In a problem with|C|
different classes, a classification cost matrixM is a |C| × |C| matrix whoseMi,j entry defines the
penalty of assigning the classci to an instance that actually belongs to the classcj . To calculate
the test costs of a particular case, we sum the cost of the tests along the path from the root to the
appropriate leaf. For tests that appear several times we charge only for the first occurrence. The
model handles two special test types, namelygroupedanddelayed. Grouped tests share a common
cost that is charged only once per group. Each test also has an extra cost charged when the test is
actually made. For example, consider a tree path with tests like cholesterol level and glucose level.
For both values to be measured, a blood test is needed. Clearly, once blood samples are taken to
measure the cholesterol level, the cost for measuring the glucose level is lower. Delayed tests are
tests whose outcome cannot be obtained immediately, e.g., lab test results. Such tests force us to
wait until the outcome is available. Alternatively, we can take into account all possible outcomes
and follow several paths in the tree simultaneously (and pay for their costs). Once the result of the
delayed test is available, the prediction is in hand. Note that we might be charged for tests that we
would not perform if the outcome of the delayed tests were available. In this work we do not handle
delayed costs but we do explain how to adapt our framework to scenarios that involve them.

Having measured the test costs and misclassification costs, an important question is how to combine
them. Following [24] we assume that both types of cost are given in the same scale. Alternatively,
Qin et. al. [19] presented a method to handle the two kinds of cost scales by setting a maximal
budget for one kind and minimizing the other.

ACT, our proposed anytime framework for induction of cost-sensitive trees, builds on the recently
introduced LSID3 algorithm [11]. LSID3 adopts the general top-down induction of decision trees
scheme (TDIDT): it starts from the entire set of training examples, partitions it into subsets by testing
the value of an attribute, and then recursively builds subtrees. Unlike greedy inducers, LSID3 invests
more time resources for making better split decisions. For every candidate split, LSID3 attempts to
estimate the size of the resulting subtree were the split to take place and following Occam’s razor
[4] it favors the one with the smallest expected size. The estimation is based on a biased sample
of the space of trees rooted at the evaluated attribute. The sample is obtained using a stochastic
version of ID3, called SID3 [11]. In SID3, rather than choosing an attribute that maximizes the
information gain∆I (as in ID3), the splitting attribute is chosen semi-randomly. The likelihood that
an attribute will be chosen is proportional to its information gain. LSID3 is a contract algorithm
parameterized byr, the sample size. Whenr is larger, the resulting estimations are expected to be
more accurate, therefore improving the final tree. Letm = |E| be the number of examples and
n = |A| be the number of attributes. The runtime complexity of LSID3 isO(rmn3) [11]. LSID3
was shown to exhibit a good anytime behavior with diminishing returns. When applied to hard
concepts, it produced significantly better trees than ID3 and C4.5. ACT takes the same sampling
approach as in LSID3. However, three major components of LSID3 need to be replaced for the
cost-sensitive setup: (1) sampling the space of trees, (2) evaluating a tree, and (3) pruning.

Obtaining the Sample.LISD3 uses SID3 to bias the samples towards small trees. In ACT, however,
we would like to bias our sample towards low cost trees. For this purpose, we designed a stochastic
version of the EG2 algorithm, that attempts to build low cost trees greedily. In EG2, a tree is built
top-down, and the attribute that maximizes ICF (Information Cost Function) is chosen for splitting
a node, where, ICF(a) =

(

2∆I(a) − 1
)

/ ((cost(a) + 1)w).

In Stochastic EG2 (SEG2), we choose splitting attributes semi-randomly, proportionally to their ICF.
Due to the stochastic nature of SEG2 we expect to be able to escape local minima for at least some
of the trees in the sample. To obtain a sample of sizer, ACT uses EG2 once and SEG2r − 1 times.
Unlike ICET, we give EG2 and SEG2 a direct access to context-based costs, i.e., if an attribute has
already been tested its cost would be zero and if another attribute that belongs to the same group
has been tested, a group discount is applied. The parameterw controls the bias towards lower cost

3

attributes. While ICET tunes this parameter using genetic search, we setw inverse proportionally to
the misclassification cost: a high misclassification cost results in a smallerw, reducing the effect of
attribute costs. One direction for future work would be to tunew a priori.

Evaluating a Subtree. As a cost insensitive learner, the main goal of LSID3 is to maximize the
expected accuracy of the learned tree. Following Occam’s razor, it uses the tree size as a preference
bias and favors splits that are expected to reduce the final tree size. In a cost-sensitive setup, our goal
is to minimize the expected cost of classification. Following the same lookahead strategy as LSID3,
we sample the space of trees under each candidate split. However, instead of choosing an attribute
that minimizes the size, we would like to choose one that minimizes costs. Therefore, given a tree,
we need to come up with a procedure that estimates the expected costs when classifying a future
case. This cost consists of two components: the test cost and misclassification cost.

Assuming that the distribution of future cases would be similar to that of the learning examples, we
can estimate the test costs using the training data. Given a tree, we calculate the average test cost
of the training examples and use it to approximate the test cost of new cases. For a treeT and a set
of training examplesE, we denote the average cost of traversingT for an example fromE (average
testing cost) by tst-cost(T, E). Note that group discounts and delayed cost penalties do not need a
special care because they will be incorporated when calculating the average test costs.

Estimating the cost of errors is not obvious. One can no longer use the tree size as a heuristic for pre-
dictive errors. Occam’s razor allows to compare two consistent trees but does not provide a mean to
estimate accuracy. Moreover, tree size is measured in a different currency than accuracy and hence
cannot be easily incorporated in the cost function. Instead, we propose using a different estimator:
the expected error [20]. For a leaf withm training examples, of whiche are misclassified the ex-
pected error is defined as the upper limit on the probability for error, i.e.,EE(m, e, cf) = Ucf(e, m)
wherecf is the confidence level andU is the confidence interval for binomial distribution. The ex-
pected error of a tree is the sum of the expected errors in its leafs. Originally, the expected error was
used by C4.5 to predict whether a subtree performs better than a leaf. Although it lacks theoretical
basis, it was shown experimentally to be a good heuristic. In ACT we use the expected error to
approximate the misclassification cost. Assume a problem with|C| classes and a misclassification
cost matrixM . Let c be the class label in a leafl. Let m be the total number of examples inl and
mi be the number of examples inl that belong to classi. The expected misclassification cost inl is
(the right most expression assumes uniform misclassification costMi,j = mc)

mc-cost(l) = EE(m, m−mc, cf) ·
1

|C| − 1

∑

i6=c

Mc,i = EE(m, m−mc, cf) ·mc

The expected error of a tree is the sum of the expected errors in its leafs. In our experiments we use
cf = 0.25, as in C4.5. In the future, we intend to tunecf if the allocated time allows. Alternatively,
we also plan to estimate the error using a set-aside validation set, when the training set size allows.
To conclude, letE be the set of examples used to learn a treeT , and letm be the size ofE. Let L
be the set of leafs inT . The expected total cost ofT when classifying an instance is:

tst-cost(T, E) +
1

m
·
∑

l∈L

mc-cost(l).

Having decided about the sampler and the tree utility function we are ready to formalize the tree
growing phase in ACT. A tree is built top-down. The procedure for selecting splitting test at each
node is listed in Figure 2 (left), and exemplified in Figure 2 (right). The selection procedure, as
formalized is Figure 2 (left) needs to be slightly modified when an attribute is numeric: instead
of iterating over the values the attribute can take, we examiner cutting points, each is evaluated
with a single invocation of EG2. This guarantees that numeric and nominal attributes get the same
resources. Ther points are chosen dynamically, according to their information gain.

Costs-sensitive Pruning. Pruning plays an important role in decision tree induction. In cost-
insensitive environments, the main goal of pruning is to simplify the tree in order to avoid overfitting.
A subtree is pruned if the resulting tree is expected to yield a lower error. When test costs are taken
into account, pruning has another important role: reducing costs. It is worthwhile to keep a subtree
only if its expected reduction to the misclassification cost is larger that the cost of its tests. If the
misclassification cost was zero, it makes no sense to keep any split in the tree. If, on the other hand,

4

ProcedureACT-CHOOSE-ATTRIBUTE(E, A, r)
If r = 0 Return EG2-CHOOSE-ATTRIBUTE(E, A)
Foreacha ∈ A

Foreachvi ∈ domain(a)
Ei ← {e ∈ E | a(e) = vi}
T ← EG2(a, Ei, A− {a})
mini ← COST(T, Ei)
Repeatr − 1 times

T ← SEG2(a, Ei, A− {a})
mini ← min (mini, COST(T, Ei))

totala ← COST(a) +
∑|domain(a)|

i=1 mini

Return a for which totala is minimal

a

cost(EG2)

=4.1

cost(EG2)

=8.9

cost(SEG2)

=5.1

cost(SE
G
2)

=4.9

Figure 2:Attribute selection (left) and evaluation (right) in ACT (left). Assume that the cost ofa in the current
context is 1. The estimated cost of a subtree rooted ata is therefore1 + min(4.1, 5.1) + min(8.9, 4.9) = 9.

the misclassification cost was very large, we would expect similar behavior to the cost-insensitive
setup. To handle this challenge, we propose a novel approach for cost-sensitive pruning. Similarly
to error-based pruning [20], we scan the tree bottom-up. For each subtree, we compare its expected
total cost to that of a leaf. Formally, assume thate examples inE do not belong to the default class.1

We prune a subtreeT into a leaf if:

1

m
·mc-cost(l) ≤ tst-cost(T, E) +

1

m
·
∑

l∈L

mc-cost(l).

3 Empirical Evaluation

A variety of experiments were conducted to test the performance and behavior of ACT. First we
describe and motivate our experimental methodology. We then present and discuss our results.

3.1 Methodology

We start our experimental evaluation by comparing ACT, given a fixed resource allocation, with
EG2 and ICET. EG2 was selected as a representative for greedy learners. We also tested the per-
formance of CSID3 and IDX but found the results very similar to EG2, confirming the report in
[24]. Our second set of experiments compares the anytime behavior of ACT to that of ICET. Be-
cause the code of EG2 and ICET is not publicly available we have reimplemented them. To verify
the reimplementation results, we compared them with those reported in literature. We followed the
same experimental setup and used the same 5 datasets. The results are indeed similar with the basic
version of ICET achieving an average cost of 49.9 in our reimplementation vs. 49 in Turney’s paper
[24]. One possible reason for the slight difference may be the randomization involved in the genetic
search as well as in data partitioning into training, validating, and testing sets.

Datasets.Typically, machine learning researchers use datasets from the UCI repository [3]. Only
five UCI datasets, however, have assigned test costs [24]. To gain a wider perspective, we developed
an automatic method that assigns costs to existing datasets randomly. The method is parameterized
with: (1) cr the cost range, (2)g the number of desired groups as a percentage of the number of
attributes, and (3)sc the group shared cost as a percentage of the maximal marginal cost in the
group. Using this method we assigned costs to 25 datasets: 21 arbitrarily chosen UCI datasets2

and 4 datasets that represent hard concept and have been used in previous research. The online
appendix3 gives detailed descriptions of these datasets. Two versions of each dataset have been
created, both with cost range of 1-100. In the firstg andsc were set to20% and in the second
they were set to80%. These parameters were chosen arbitrarily, in attempt to cover different types
of costs. In total we have 55 datasets: 5 with costs assigned as in [24] and 50 with random costs.
Cost-insensitive learning algorithms focus on accuracy and therefore are expected to perform well

1The default class is the one that minimizes the misclassification cost in the node.
2The chosen UCI datasets vary in their size, type of attributes and dimension.
3http://www.cs.technion.ac.il/∼esaher/publications/nips07

5

Table 1:Average cost of classification as a percentage of the standard cost of classification. The table also lists
for each of ACT and ICET the number of significant wins they had using t-test. The last row shows the winner,
if any, as implied by a Wilcoxon test over all datasets withα = 5%.

mc = 10 mc = 100 mc = 1000 mc = 10000

EG2 ICET ACT EG2 ICET ACT EG2 ICET ACT EG2 ICET ACT

AVERAGE 22.37 10.23 2.21 25.93 17.15 11.86 38.69 35.28 34.38 54.22 47.47 41.62
BETTER 0 34 0 25 3 11 10 12
WILCOXON

√ √ √

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Figure 3: Illustration of the differences in performance between ACT and ICET for misclassification costs
(from left to right: 10, 100, 1000, and 10000). Each point represents a dataset. Thex-axis represents the cost
of ICET while they-axis represents that of ACT. The dashed line indicates equality. Points are below it if ACT
performs better and above it if ICET is better.

when testing costs are negligible relative to misclassification costs. On the other hand, when testing
costs are significant, ignoring them would result in expensive classifiers. Therefore, to evaluate a
cost-sensitive learner a wide spectrum of misclassification costs is needed. For each problem out of
the 55, we created 4 instances, with uniform misclassification costsmc = 10, 100, 1000, 10000.

Normalized Cost. As pointed out by Turney [24], using the average cost is problematic because:
(1) the differences in costs among the algorithms become small as misclassification cost increases,
(2) it is difficult to combine the results for the multiple datasets, and (3) it is difficult to com-
bine average costs for different misclassification costs. To overcome these problems, Turney sug-
gests to normalize the average cost of classification by dividing it by thestandard cost, defined as
(TC + mini (1− fi) ·maxi,j (Mi,j)), The standard cost is an approximation for the maximal cost
in a given problem. It consists of two components: (1)TC, the cost if we take all tests, and (2) the
misclassification cost if the classifier achieves only the base-line accuracy.fi denotes the frequency
of classi in the data and hence(1− fi) would be the error if the response would always be classi.

Statistical Significance.For each problem, one 10 fold cross-validation experiment has been con-
ducted. The same partition to train-test sets was used for all compared algorithms. To test the
statistical significance of the differences between ACT and ICET we used two tests. The first is
t-test with aα = 5% confidence: for each method we counted how many times it was a signifi-
cant winner. The second is Wilcoxon test [8], which compares classifiers over multiple datasets and
states whether one method is significantly better than the other (α = 5%).

3.2 Fixed-time Comparison

For each of the55 × 4 problem instances, we run the seeded version of ICET with its default
parameters (20 generations),4 EG2, and ACT withr = 5. We chooser = 5 so the average runtime
of ACT would be shorter than ICET for all problems. EG2 and ICET use the same post-pruning
mechanism as in C4.5. In EG2 the default confidence factor is used (0.25) while in ICET this value
is tuned using the genetic search.

Table 1 lists the average results, Figure 3 illustrates the differences between ICET and ACT, and
Figure 4 (left) plots the average cost for the different values ofmc. The full results are available
in the online appendix. Similarly to the results reported in [24] ICET is clearly better than EG2,
because the latter does not consider misclassification costs. Whenmc is set to 10 and to 100 ACT
significantly outperforms ICET for most datasets. In these cases ACT was able to produce very
small trees, sometimes consist of one node, neglecting the accuracy of the learned model. Formc
set to 1000 and 10000 there are fewer significant wins, yet it is clear that ACT is dominating: the

4Seeded ICET includes the true costs in the initial population and was reported to perform better [24].

6

 0

 10

 20

 30

 40

 50

 10 100 1000 10000

A
ve

ra
ge

 C
os

t

Misclassification Cost

EG2
ICET
ACT

 50

 55

 60

 65

 70

 75

 80

 85

 10 100 1000 10000

A
ve

ra
ge

 A
cc

ur
ac

y

Misclassification Cost

C4.5
ICET
ACT

 40

 42

 44

 46

 48

 50

 0 1 2 3 4 5

A
ve

ra
ge

 C
os

t

Time [sec]

EG2
ICET
ACT

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6

A
ve

ra
ge

 C
os

t

Time [sec]

EG2
ICET
ACT

Figure 4:Average cost (left most) and accuracy (mid-left) as a function of misclassification cost. Average cost
as a function of time for Breast-cancer-20 (mid-right) and Multi-XOR-80 (right most).

number of ACT wins is higher and the average results indicate that ACT trees are cheaper. The
Wilcoxon test, states that formc = 10, 100, 10000, ACT is significantly better than ICET, and that
for mc = 1000 no significant winner was found.

When misclassification costs are low, an optimal algorithm would produce a very shallow tree.
When misclassification costs are dominant, an optimal algorithm would produce a highly accurate
tree. Some concepts, however, are not easily learnable and even cost-insensitive algorithms fail
to achieve perfect accuracy on them. Hence, with the increase in the importance of accuracy the
normalized cost increases: the predictive errors affect the cost more dramatically. To learn more
about the effect of accuracy, we compared the accuracy of ACT to that of C4.5 and ICETmc
values. Figure 4 (mid-left) shows the results. An important property of both ICET and ACT is their
ability to compromise on accuracy when needed. ACT’s flexibility, however, is more noteworthy:
from the least accurate method it becomes the most accurate one. Interestingly, when accuracy is
extremely important both ICET and ACT achieves even better accuracy than C4.5. The reason is
their non-greedy nature. ICET performs an implicit lookahead by reweighting attributes according
to their importance. ACT performs lookahead by sampling the space of subtrees under every split.
Among the two, the results indicates that ACT’s lookahead is more efficient in terms of accuracy.
We also compared ACT to LSID3. As expected, ACT was significantly better formc ≤ 1000.
For mc = 10000 their performance was similar. In addition, we compared the studied methods on
nonuniform misclassification costs and found ACT’s advantage to be consistent.

3.3 Anytime Comparison

Both ICET and ACT are anytime algorithms that improve their performance with time. ICET is
expected to exploit extra time by producing more generations and hence better tuning the parameters
for the final invocation of EG2. ACT can use additional time to acquire larger samples and hence
achieve better cost estimations. A typical anytime algorithm would produce improved results with
the increase in resources. The improvements diminish with time, reaching a stable performance.

To examine the anytime behavior of ICET and ACT, we run each of them on 2 problems, namely
Breast-cancer-20 and Multi-XOR-80, with exponentially increasing time allocation. ICET was run
with 2, 4, 8 . . . generations and ACT with a sample size of1, 2, 4, Figure 4 plots the results. The
results show a good anytime behavior of both ICET and ACT. For both algorithms, it is worthwhile
to allocate more time. ACT dominates ICET for both domains and is able to produce trees of lower
costs in shorter time. The Multi-XOR dataset is an example for a concept with attributes being
important only in one sub-concept. As we expected, ACT outperforms ICET significantly because
the latter cannot assign context-based costs. Allowing ICET to produce more and more generations
(up to 128) does not result in trees comparable to those obtained by ACT.

4 Conclusions

Machine learning techniques are increasingly being used to produce a wide-range of classifiers for
real-world applications that involve nonuniform testing costs and misclassification costs. As the
complexity of these applications grows, the management of resources during the learning and clas-
sification processes becomes a challenging task. In this work we introduced a novel framework for
operating in such environments. Our framework has 4 major advantages: (1) it uses a non-greedy
approach to build a decision tree and therefore is able to overcome local minima problems, (2) it
evaluates entire trees and therefore can be adjusted to any cost scheme that is defined over trees. (3)
it exhibits good anytime behavior and produces significantly better trees when more time is avail-
able, and (4) it can be easily parallelized and hence can benefit from distributed computer power.

7

To evaluate ACT we have designed an extensive set of experiments with a wide range of costs. The
experimental results show that ACT is superior over ICET and EG2. Significance tests found the
differences to be statistically strong. ACT also exhibited good anytime behavior: with the increase
in time allocation, there was a decrease in the cost of the learned models. ACT is a contract anytime
algorithm that requires its sample size to be pre-determined. In the future we intend to convert
ACT into an interruptible anytime algorithm, by adopting the IIDT general framework [11]. In
addition, we plan to apply monitoring techniques for optimal scheduling of ACT and to examine
other strategies for evaluating subtrees.

References

[1] N. Abe, B. Zadrozny, and J. Langford. An iterative method for multi-class cost-sensitive
learning. InKDD, 2004.

[2] V. Bayer-Zubek and Dietterich. Integrating learning from examples into the search for diag-
nostic policies.Artificial Intelligence, 24:263–303, 2005.

[3] C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998.

[4] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s Razor.Information
Processing Letters, 24(6):377–380, 1987.

[5] M. Boddy and T. L. Dean. Deliberation scheduling for problem solving in time constrained
environments.Artificial Intelligence, 67(2):245–285, 1994.

[6] J. Bradford, C. Kunz, R. Kohavi, C. Brunk, and C. Brodley. Pruning decision trees with
misclassification costs. InECML, 1998.

[7] L. Breiman, J. Friedman, R. Olshen, and C. Stone.Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA, 1984.

[8] J. Demsar. Statistical comparisons of classifiers over multiple data sets.Journal of Machine
Learning Research, 7:1–30, 2006.

[9] P. Domingos. Metacost: A general method for making classifiers cost-sensitive. InKDD, 1999.

[10] C. Elkan. The foundations of cost-sensitive learning. InIJCAI, 2001.

[11] S. Esmeir and S. Markovitch. Anytime learning of decision trees.Journal of Machine Learning
Research, 8, 2007.

[12] R. Greiner, A. J. Grove, and D. Roth. Learning cost-sensitive active classifiers.Artificial
Intelligence, 139(2):137–174, 2002.

[13] T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. New York: Springer-Verlag, 2001.

[14] D. Margineantu. Active cost-sensitive learning. InIJCAI, 2005.

[15] P. Melville, M. Saar-Tsechansky, F. Provost, and R. J. Mooney. Active feature acquisition for
classifier induction. InICDM, 2004.

[16] S. W. Norton. Generating better decision trees. InIJCAI, 1989.

[17] M. Nunez. The use of background knowledge in decision tree induction.Machine Learning,
6:231–250, 1991.

[18] F. Provost and B. Buchanan. Inductive policy: The pragmatics of bias selection.Machine
Learning, 20(1-2):35–61, 1995.

[19] Z. Qin, S. Zhang, and C. Zhang. Cost-sensitive decision trees with multiple cost scales.Lecture
Notes in Computer Science, AI, Volume 3339/2004:380–390, 2004.

[20] J. R. Quinlan.C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[21] S. Sheng, C. X. Ling, A. Ni, and S. Zhang. Cost-sensitive test strategies. InAAAI, 2006.

[22] M. Tan and J. C. Schlimmer. Cost-sensitive concept learning of sensor use in approach and
recognition. InProceedings of the 6th international workshop on Machine Learning, 1989.

[23] P. Turney. Types of cost in inductive concept learning. InWorkshop on Cost-Sensitive Learning
at ICML, 2000.

[24] P. D. Turney. Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision
tree induction algorithm.Journal of Artificial Intelligence Research, 2:369–409, 1995.

8

