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Abstract

The notion of algorithmic stability has been used effectively in the past to derive
tight generalization bounds. A key advantage of these bounds is that they are de-
signed for specific learning algorithms, exploiting their particular properties. But,
as in much of learning theory, existing stability analyses and bounds apply only
in the scenario where the samples are independently and identically distributed
(i.i.d.). In many machine learning applications, however, this assumption does
not hold. The observations received by the learning algorithm often have some
inherent temporal dependence, which is clear in system diagnosis or time series
prediction problems. This paper studies the scenario where the observations are
drawn from a stationary mixing sequence, which implies a dependence between
observations that weaken over time. It proves novel stability-based generalization
bounds that hold even with this more general setting. These bounds strictly gen-
eralize the bounds given in the i.i.d. case. It also illustrates their application in the
case of several general classes of learning algorithms, including Support Vector
Regression and Kernel Ridge Regression.

1 Introduction

The notion of algorithmic stability has been used effectively in the past to derive tight generalization
bounds [2—4,6]. A learning algorithm is stable when the hypotheses it outputs differ in a limited way
when small changes are made to the training set. A key advantage of stability bounds is that they are
tailored to specific learning algorithms, exploiting their particular properties. They do not depend
on complexity measures such as the VC-dimension, covering numbers, or Rademacher complexity,
which characterize a class of hypotheses, independently of any algorithm.

But, as in much of learning theory, existing stability analyses and bounds apply only in the scenario
where the samples are independently and identically distributed (i.i.d.). Note that the i.i.d. assump-
tion is typically not tested or derived from a data analysis. In many machine learning applications
this assumption does not hold. The observations received by the learning algorithm often have some
inherent temporal dependence, which is clear in system diagnosis or time series prediction prob-
lems. A typical example of time series data is stock pricing, where clearly prices of different stocks
on the same day or of the same stock on different days may be dependent.

This paper studies the scenario where the observations are drawn from a stationary mixing sequence,
a widely adopted assumption in the study of non-i.i.d. processes that implies a dependence between
observations that weakens over time [8, 10,16, 17]. Our proofs are also based on the independent
block technique commonly used in such contexts [17] and a generalized version of McDiarmid’s
inequality [7]. We prove novel stability-based generalization bounds that hold even with this more
general setting. These bounds strictly generalize the bounds given in the i.i.d. case and apply to all
stable learning algorithms thereby extending the usefulness of stability-bounds to non-i.i.d. scenar-



ios. It also illustrates their application to general classklearning algorithms, including Support
Vector Regression (SVR) [15] and Kernel Ridge Regression [13].

Algorithms such as support vector regression (SVR) [14, 15] have been used in the context of time
series prediction in which the i.i.d. assumption does not hold, some with good experimental re-
sults [9, 12]. To our knowledge, the use of these algorithms in non-i.i.d. scenarios has not been
supported by any theoretical analysis. The stability bounds we give for SVR and many other kernel
regularization-based algorithms can thus be viewed as the first theoretical basis for their use in such
scenarios.

In Section 2, we will introduce the definitions for the non-i.i.d. problems we are considering and
discuss the learning scenarios. Section 3 gives our main generalization bounds based on stabil-
ity, including the full proof and analysis. In Section 4, we apply these bounds to general kernel
regularization-based algorithms, including Support Vector Regression and Kernel Ridge Regression.

2 Preliminaries

We first introduce some standard definitions for dependent observations in mixing theory [5] and
then briefly discuss the learning scenarios in the non-i.i.d. case.

2.1 Non-i.i.d. Definitions

Definition 1. A sequence of random variabl&s= {Z,},° __ is said to bestationaryif for any ¢
and non-negative integers andk, the random vector&Z,, ..., Z; 1) and (Ziik, - - -, Zitm+k)
have the same distribution.

Thus, the index or time, does not affect the distribution of a varialdlgin a stationary sequence.
This does not imply independence however. In particularifer j < k, Pr[Z; | Z;] may not
equalPr[Z; | Z;]. The following is a standard definition giving a measure of the dependence of the
random variableg/; within a stationary sequence. There are several equivalent definitions of this
guantity, we are adopting here that of [17].

Definition 2. LetZ = {Z,},~___ be a stationary sequence of random variables. For anye
Z U {—00,+o0}, let af denote ther-algebra generated by the random variablgg, i < k£ < j.
Then, for any positive integét, the 5-mixing andp-mixing coefficients of the stochastic proc&ss
are defined as
B(k) =sup E, [A sup |Pr[A | B] — Pr[A] H o(k) = sup ‘Pr[A B - PrlA]l. @
n I o co n
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Z is said to bes-mixing (p-mixing) if 5(k) — 0 (resp. ¢(k) — 0) ask — oco. Itis said to be
algebraicallys-mixing (algebraically,-mixing) if there exist real numbers, > 0 (resp.¢o > 0)
andr > 0 such that3(k) < Gy/k" (resp. p(k) < ¢o/k") for all k, exponentially mixingf there
exist real numberg), (resp.o > 0) andj; (resp.p1 > 0) such thai3(k) < Gy exp(—£1k") (resp.
o(k) < o exp(—¢p1k")) for all k.

Both §(k) and ¢(k) measure the dependence of the events on those that occurred more than
units of time in the past.5-mixing is a weaker assumption thg@amixing. We will be using a
concentration inequality that leads to simple bounds but that appliesniixing processes only.
However, the main proofs presented in this paper are given in the more general ¢cas@xifg
sequences. This is a standard assumption adopted in previous studies of learning in the presence
of dependent observations [8, 10, 16, 17]. As pointed out in [88hixing seems to be “just the

right” assumption for carrying over several PAC-learning results to the case of weakly-dependent
sample points. Several results have also been obtained in the more general conteykiofg but

they seem to require the stronger condition of exponential mixing [11]. Mixing assumptions can be
checked in some cases such as with Gaussian or Markov processes [10]. The mixing parameters can
also be estimated in such cases.



Most previous studies use a technique originally introdumefil] based onindependent blocksf

equal size [8,10,17]. This technique is particularly relevant when dealing with statiGmaiying.

We will need a related but somewhat different technique since the blocks we consider may not have
the same size. The following lemma is a special case of Corollary 2.7 from [17].

Lemma 1 (Yu [17], Corollary 2.7) Let . > 1 and suppose that is measurable function, with
absolute value bounded by, on a product probability spacé]‘[g‘:1 Q;, 1T, aﬁ;) wherer; <
s; < r;yq forall i. Let@ be a probability measure on the product space with marginal measgres
on (2, 0%, and letQ*! be the marginal measure ¢fon (H;ill Q;, T4 crﬁjf) vi=1,...,u—1.

S
i j=1

Let3(Q) = sup,<;<,, B(ki), wherek; = riy 1 — s;, andP = []/_; Q;. Then,
B[] = E[h)| < (u— DMB(Q). @

The lemma gives a measure of the difference between the distributioblotks where the blocks

are independent in one case and dependent in the other case. The distribution within each block
is assumed to be the same in both cases. For a monotonically decreasing fuhotienrhave

B(Q) = B(k*), wherek* = min;(k;) is the smallest gap between blocks.

2.2 Learning Scenarios

We consider the familiar supervised learning setting where the learning algorithm receives a sample
of m labeled pointsS = (z1,...,2m) = (x1,91),- -+, (@m,ym)) € (X x V)™, whereX is the
input space andl” the set of labelsY{ = R in the regression case), both assumed to be measurable.

For a fixed learning algorithm, we denote by the hypothesis it returns when trained on the sample
S. The error of a hypothesis on a paie X xY is measured in terms of a cost functionY xY —
R . Thus,c(h(x),y) measures the error of a hypothésisn a pair(z, y), c(h(z),y) = (h(z)—y)?
in the standard regression cases. We will use the short{and) := ¢(h(x), y) for a hypothesis
andz = (z,y) € X x Y and will assume thatis upper bounded by a constavt > 0. We denote
by R(h) the empirical error of a hypothedisfor a training sample& = (z1, ..., zm):

~ 1 &

R(h) = — h, z;). 3

(h) = — ; c(h, i) (3)

In the standard machine learning scenario, the sample pairs., z,, are assumed to be i.i.d., a
restrictive assumption that does not always hold in practice. We will consider here the more general
case of dependent samples drawn from a stationary mixing seqéeneg X x Y. As in the i.i.d.
case, the objective of the learning algorithm is to select a hypothesis with small error over future
samples. But, here, we must distinguish two versions of this problem.

In the most general version, future samples depend on the training s&napie thus the general-
ization error or true error of the hypothegis trained onS must be measured by its expected error
conditioned on the sample:

R(hs) = Elc(hs, 2) | S]. (4)

This is the most realistic setting in this context, which matches time series prediction problems.
A somewhat less realistic version is one where the samples are dependent, but the test points are
assumed to be independent of the training samipl€he generalization error of the hypothekis
trained onS is then:

R(hs) = Elc(hs, 2) | S] = Ele(hs, 2)]. (5)

This setting seems less natural since if samples are dependent, then future test points must also
depend on the training points, even if that dependence is relatively weak due to the time interval
after which test points are drawn. Nevertheless, it is this somewhat less realistic setting that has
been studied by all previous machine learning studies that we are aware of [8,10,16,17], even when
examining specifically a time series prediction problem [10]. Thus, the bounds derived in these
studies cannot be applied to the more general setting.

We will consider instead the most general setting with the definition of the generalization error based
on Eq. 4. Clearly, our analysis applies to the less general setting just discussed as well.



3 Non-i.i.d. Stability Bounds

This section gives generalization bounds flestable algorithms over a mixing stationary distribu-
tion.! The first two sections present our main proofs which hold/fanixing stationary distri-
butions. In the third section, we will be using a concentration inequality that appligsrixing
processes only.

The condition of3-stability is an algorithm-dependent property first introduced in [4] and [6]. It has
been later used successfully by [2, 3] to show algorithm-specific stability bounds for i.i.d. samples.
Roughly speaking, a learning algorithm is said toshableif small changes to the training set do

not produce large deviations in its output. The following gives the precise technical definition.

Definition 3. A learning algorithm is said to be (uniformly)-stableif the hypotheses it returns for
any two training sample§ and.S’ that differ by a single point satisfy

\V/ZEXXK |C(h’Saz)_C(hS’72)| SB (6)

Many generalization error bounds rely on McDiarmid’s inequality. But this inequality requires the
random variables to be i.i.d. and thus is not directly applicable in our scenario. Instead, we will
use a theorem that extends McDiarmid’s inequality to general mixing distributions (Theorem 1,
Section 3.3).

To obtain a stability-based generalization bound, we will apply this theoreb{$) = R(hs) —
R(hs). To do so, we need to show, as with the standard McDiarmid’s inequalityptisas Lipschitz
function and, to make it useful, boufid®]. The next two sections describe how we achieve both of

these in this non-i.i.d. scenario.

3.1 Lipschitz Condition

As discussed in Section 2.2, in the most general scenario, test points depend on the training sample.
We first present a lemma that relates the expected value of the generalization error in that scenario
and the same expectation in the scenario where the test point is independent of the training sample.

We denote byR(hs) = E.[c(hs, 2)|S] the expectation in the dependent case and?blys,) =
Ezlc(hs,, )] that expectation when the test points are assumed independent of the training, with
Sy denoting a sequence similar gobut with the last points removed. Figure 1(a) illustrates that
sequence. The bloc¥, is assumed to have exactly the same distribution as the corresponding block
of the same size ifs.

Lemma 2. Assume that the learning algorithm #sstable and that the cost functieris bounded
by M. Then, for any samplg of sizem drawn from ag-mixing stationary distribution and for any
b€ {0,...,m}, the following holds:

| E[R(hs)] ~ E[R(hs,)]| < b5 + 5(0)M. @
Proof. The 3-stability of the learning algorithm implies that
BR(hs)] = E [c(hs, 2)] < B [c(hs,, )] + b. ®)
The application of Lemma 1 yields
BIR(hs)) < Ele(hs,, )] + b3 + BOM = Es[R(hs,)] + b3 + B(b)M. ©)
The other side of the inequality of the lemma can be shown following the same steps. [

We can now prove a Lipschitz bound for the functibn

1The standard variable used for the stability coefficienf.isTo avoid the confusion with thg-mixing
coefficient, we will use3 instead.



(c)

(b)

Figure 1: lllustration of the sequences derived frSrthat are considered in the proofs.

Lemma 3. LetS = (z1,22,...,2m) @and S? = (z2},25,...,2/) be two sequences drawn from a
(3-mixing stationary process that differ only in poing [1,m], and leths andhg: be the hypotheses

returned by as-stable algorithm when trained on each of these samples. Then, farary, m],
the following inequality holds:

D(S) — B(ST)| < (b+1)28 + 26(b)M + % (10)

Proof. To prove this inequality, we first bound the difference of the empirical errors as in [3], then
the difference of the true errors. Bounding the difference of costs on agreeing points aviththe
one that disagrees with/ yields

~ ~ 1 &
|R(hs) — R(hgi)| = EZ|c(hs,zj)—c(hsi,z;)| (11)
j=1
1 1 . M
= E;w(hsazj)—c(hsi,z;ﬂ+E|c(h5,zi)—c(h51,z£)| B+ —
JF

Now, applying Lemma 2 to both generalization error terms and usisgbility result in
|R(hs) — R(hs:)| < |R(hs,) — R(hs;)| +2b3 + 25(b) (12)
= Elelhs,,2) — clhs;, 2)] + 263+ 28(b)M < 3+ 203+ 28(b) M

The lemma’s statement is obtained by combining inequalities 11 and 12. O

3.2 Bound onE[®]

As mentioned earlier, to make the bound useful, we also need to Bogdd S)]. This is done by
analyzing independent blocks using Lemma 1.

Lemma 4. Lethg be the hypothesis returned bylastable algorithm trained on a sampfedrawn
from a stationary3-mixing distribution. Then, for ab € [1, m], the following inequality holds:

E[[R(S)]] < (6b+1)5 + 36(0) M. (13)

Proof. We first analyze the termis[R(hg)]. Let S; be the sequencé with theb points before and

after pointz;, removed. Figure 1(b) illustrates this definitiaf).is thus made of three blocks. L&t
denote a similar set of three blocks each with the same distribution as the corresponding Block in
but such that the three blocks are independent. In particular, the middle block reduced to one point

%, is independent of the two others. By tHestability of the algorithm,

m 1 m .
E[R(hs Zj c(hs,z)| < B lm zgcmsi,zi) +2b. (14)
Applying Lemma 1 to the first term of the right-hand side yields
~ 1 X
< —
E[R(hs)] < B | — Zj 5020 | + 208 +28(0)M (15)




Combining the independent block sequences associaﬁdﬂ;@) and R(hg) will help us prove the
lemma in a way similar to the i.i.d. case treated in [3]. Bgbe defined as in the proof of Lemma 2.

To deal with independent block sequences defined with respect to the same hypothesis, we will
consider the sequenég;, = S; NSy, which is illustrated by Figure 1(c). This can resultin as many

as four blocks. As before, we will consider a sequeficgwith a similar set of blocks each with
the same distribution as the corresponding blockS; jin but such that the blocks are independent.

Since three blocks of at mostpoints are removed from each hypothesis, by kgtability of the
learning algorithm, the following holds:

E[@(S)] = E[R(hs) = R(hs) l Zj c(hs, zi) = c(hs, >] (16)
= Si,E137Z %i (hszb7 i) — C(hsi,b’z) +6bB (17)

i=1
Now, the application of Lemma 1 to the difference of two cost functions also boundéf &y in
the right-hand side leads to

1 « .

—> b, %)~ clhg, . 7)

=1

Eo(s)) < _E + 6b3 + 36(b) M. (18)

Siby2

Sincez andz; are independent and the distribution is stationary, they have the same distribution and
we can replace; with z in the empirical cost and write

Z 51 ’ B hgi,b’z)

Ig[@( +6b6 + 33(b)M < 3+ 6b3 + 36(b)M, (19)

S

WhereS;_’b is the sequence derived froﬁ;,b by replacingz; with z. The last inequality holds by

[3-stability of the learning algorithm. The other side of the inequality in the statement of the lemma
can be shown following the same steps. O

3.3 Main Results

This section presents several theorems that constitute the main results of this paper. We will use the
following theorem which extends McDiarmid’s inequalityjtemixing distributions.

Theorem 1(Kontorovich and Ramanan [7], Thm. 1.1)et® : Z™ — R be a function defined over
a countable spac€. If ¢ is [-Lipschitz with respect to the Hamming metric for same 0, then
the following holds for alk > 0:

Pr{|9(2) ~ E[2(2)]] > < 2exp (m) , (20)

where|| Ay |loo <1+2) " o(k)
k=1

Theorem 2 (General Non-i.i.d. Stability Bound)Let hs denote the hypothesis returned bysa
stable algorithm trained on a sampkdrawn from ap-mixing stationary distribution and letbe
a measurable non-negative cost function upper boundéd by 0, then for any € [0, m| and any
e > 0, the following generalization bound holds

P |

R(hs) — R(hs)| > e+ (6b+ 1) + 6M<p(b)} < 2exp ( —C(LH 2508, e(i) ) .

2m((b+ 1)206 + 2M(b) + M/m)?
Proof. The theorem follows directly the application of Lemma 3 and Lemma 4 to Theorent1.

The theorem gives a general stability bound §@mixing stationary sequences. If we further
assume that the sequence is algebraigaliyixing, that is for allk, p(k) = pok~" for somer > 1,
then we can solve for the value bfo optimize the bound.



Theorem 3 (Non-i.i.d. Stability Bound for Algebraically Mixing Sequenced)et hg denote the

hypothesis returned by &-stable algorithm trained on a sampl drawn from an algebraically
p-mixing stationary distributionp(k) = ok~ with » > 1 and letc be a measurable non-negative
cost function upper bounded By > 0, then for anye > 0, the following generalization bound
holds

Bl > et datr . —E 4+ 2/(r 1)
Pr HR(hs) R(hs)]> + B+ +1)6M¢(b)}gz p<2m(2ﬁ+(r+1)2M¢(b)+M/m)2>’

r/(r+1)

wherep(b) = ¢ (W) .

Proof. For an algebraically mixing sequence, the valué afinimizing the bound of Theorem 2
C . . 3 —1/(r+1) 3 r/(r+1)

satisfiessb = rM¢(b), which givesh = (W) andy(b) = po (WOM) .

following term can be bounded as

S U "o mi=m—1
1+2) (@) =1+2) i §1+2(1+/1 i dz):1+2(1+ﬁ). (21)
i=1

i=1

The

Forr > 1, the exponent ofn is negative, and so we can bound this last tern8by 2/(r — 1).
Plugging in this value and the minimizing valuetah the bound of Theorem 2 yields the statement
of the theorem. O

In the case of a zero mixing coefficient & 0 andb = 0), the bounds of Theorem 2 and Theorem 3
coincide with the i.i.d. stability bound of [3]. In order for the right-hand side of these bounds to

converge, we must havé = o(1/y/m) and ¢(b) = o(1/y/m). For several general classes of
algorithms,3 < O(1/m) [3]. In the case of algebraically mixing sequences with 1 assumed in
Theorem 33 < O(1/m) implies(b) = ¢o(3/(reo M)/ +1) < O(1/1/m). The next section
illustrates the application of Theorem 3 to several general classes of algorithms.

4  Application

We now present the application of our stability bounds to several algorithms in the case of an al-
gebraically mixing sequence. Our bound applies to all algorithms based on the minimization of a
regularized objective function based on the ndlriix in a reproducing kernel Hilbert space, where
K is a positive definite symmetric kernel:

m

1
argmin — c(h, z) + M|h||%, 22
g m;< )+ MlhlE (22)

under some general conditions, since these algorithms are stablé with(1/m) [3]. Two specific
instances of these algorithms are SVR, for which the cost function is based emsensitive cost:

e(h, 2) = |h(z) — gl = {0 it [h(x) - y| < e,

|h(z) —y| — e otherwise
and Kernel Ridge Regression [13], for whicth, z) = (h(z) — y)?.
Corollary 1. Assume a bounded outpiit= [0, B], for someB > 0, and assume thadt (z, z) < x
for all x for somex > 0. Lethg denote the hypothesis returned by the algorithm when trained on
a sampleS drawn from an algebraicallyp-mixing stationary distribution. Then, with probability at
leastl — 9, the following generalization bounds hold for
a. Support vector regression (SVR):

(23)

=N 132 2
R(hs) < R(hs) + Qi’:n +5 <3% + ’f\/g) 21“2/5); (24)
b. Kernel Ridge Regression (KRR):
=N 2 2 2 2
R(hs) < R(hs) + 250 5 (12’13 ; #?) 2n(1/3) (25)



Proof. It has been shown in [3] that for SVR< x2/(2Am) and thatM < x+/B/X and for KRR,

B < 262B2/(Am) andM < k+/B/X. Plugging in these values in the bound of Theorem 3 and
using the lower bound on, r > 1, yield the statement of the corollary. O

These bounds give, to the best of our knowledge, the firstigyabased generalization bounds for

SVR and KRR in a non-i.i.d. scenario. Similar bounds can be obtained for other families of algo-
rithms such as maximum entropy discrimination, which can be shown to have comparable stability
properties [3]. Our bounds have the same convergence behavior as those derived by [3] in the i.i.d.
case. In fact, they differ only by some constants. As in the i.i.d. case, they are non-trivial when the
condition\ > 1/+/m on the regularization parameter holds for all large values:.oft would be
interesting to give a quantitative comparison of our bounds and the generalization bounds of [10]
based on covering numbers for mixing stationary distributions, in the scenario where test points
are independent of the training sample. In general, because the bounds of [10] are not algorithm-
dependent, one can expect tighter bounds using stability, provided that a tight bound is given on
the stability coefficient. The comparison also depends on how fast the covering number grows with
the sample size and trade-off parameters such. d@or a fixed), the asymptotic behavior of our
stability bounds for SVR and KRR s tight.

5 Conclusion

Our stability bounds for mixing stationary sequences apply to large classes of algorithms, including
SVR and KRR, extending to weakly dependent observations existing bounds in the i.i.d. case. Since
they are algorithm-specific, these bounds can often be tighter than other generalization bounds.
Weaker notions of stability might help further improve or refine them.
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