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Abstract

The notion of algorithmic stability has been used effectively in the past to derive
tight generalization bounds. A key advantage of these bounds is that they are de-
signed for specific learning algorithms, exploiting their particular properties. But,
as in much of learning theory, existing stability analyses and bounds apply only
in the scenario where the samples are independently and identically distributed
(i.i.d.). In many machine learning applications, however, this assumption does
not hold. The observations received by the learning algorithm often have some
inherent temporal dependence, which is clear in system diagnosis or time series
prediction problems. This paper studies the scenario where the observations are
drawn from a stationary mixing sequence, which implies a dependence between
observations that weaken over time. It proves novel stability-based generalization
bounds that hold even with this more general setting. These bounds strictly gen-
eralize the bounds given in the i.i.d. case. It also illustrates their application in the
case of several general classes of learning algorithms, including Support Vector
Regression and Kernel Ridge Regression.

1 Introduction

The notion of algorithmic stability has been used effectively in the past to derive tight generalization
bounds [2–4,6]. A learning algorithm is stable when the hypotheses it outputs differ in a limited way
when small changes are made to the training set. A key advantage of stability bounds is that they are
tailored to specific learning algorithms, exploiting their particular properties. They do not depend
on complexity measures such as the VC-dimension, covering numbers, or Rademacher complexity,
which characterize a class of hypotheses, independently of any algorithm.

But, as in much of learning theory, existing stability analyses and bounds apply only in the scenario
where the samples are independently and identically distributed (i.i.d.). Note that the i.i.d. assump-
tion is typically not tested or derived from a data analysis. In many machine learning applications
this assumption does not hold. The observations received by the learning algorithm often have some
inherent temporal dependence, which is clear in system diagnosis or time series prediction prob-
lems. A typical example of time series data is stock pricing, where clearly prices of different stocks
on the same day or of the same stock on different days may be dependent.

This paper studies the scenario where the observations are drawn from a stationary mixing sequence,
a widely adopted assumption in the study of non-i.i.d. processes that implies a dependence between
observations that weakens over time [8, 10, 16, 17]. Our proofs are also based on the independent
block technique commonly used in such contexts [17] and a generalized version of McDiarmid’s
inequality [7]. We prove novel stability-based generalization bounds that hold even with this more
general setting. These bounds strictly generalize the bounds given in the i.i.d. case and apply to all
stable learning algorithms thereby extending the usefulness of stability-bounds to non-i.i.d. scenar-
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ios. It also illustrates their application to general classes of learning algorithms, including Support
Vector Regression (SVR) [15] and Kernel Ridge Regression [13].

Algorithms such as support vector regression (SVR) [14, 15] have been used in the context of time
series prediction in which the i.i.d. assumption does not hold, some with good experimental re-
sults [9, 12]. To our knowledge, the use of these algorithms in non-i.i.d. scenarios has not been
supported by any theoretical analysis. The stability bounds we give for SVR and many other kernel
regularization-based algorithms can thus be viewed as the first theoretical basis for their use in such
scenarios.

In Section 2, we will introduce the definitions for the non-i.i.d. problems we are considering and
discuss the learning scenarios. Section 3 gives our main generalization bounds based on stabil-
ity, including the full proof and analysis. In Section 4, we apply these bounds to general kernel
regularization-based algorithms, including Support Vector Regression and Kernel Ridge Regression.

2 Preliminaries

We first introduce some standard definitions for dependent observations in mixing theory [5] and
then briefly discuss the learning scenarios in the non-i.i.d. case.

2.1 Non-i.i.d. Definitions

Definition 1. A sequence of random variablesZ = {Zt}∞t=−∞ is said to bestationaryif for any t
and non-negative integersm andk, the random vectors(Zt, . . . , Zt+m) and(Zt+k, . . . , Zt+m+k)
have the same distribution.

Thus, the indext or time, does not affect the distribution of a variableZt in a stationary sequence.
This does not imply independence however. In particular, fori < j < k, Pr[Zj | Zi] may not
equalPr[Zk | Zi]. The following is a standard definition giving a measure of the dependence of the
random variablesZt within a stationary sequence. There are several equivalent definitions of this
quantity, we are adopting here that of [17].

Definition 2. Let Z = {Zt}∞t=−∞ be a stationary sequence of random variables. For anyi, j ∈
Z ∪ {−∞, +∞}, let σj

i denote theσ-algebra generated by the random variablesZk, i ≤ k ≤ j.
Then, for any positive integerk, theβ-mixing andϕ-mixing coefficients of the stochastic processZ

are defined as

β(k) = sup
n

E
B∈σn

−∞

[
sup

A∈σ∞

n+k

∣∣∣Pr[A | B] − Pr[A]
∣∣∣
]

ϕ(k) = sup
n

A∈σ∞

n+k

B∈σn
−∞

∣∣∣Pr[A | B] − Pr[A]
∣∣∣. (1)

Z is said to beβ-mixing (ϕ-mixing) if β(k) → 0 (resp. ϕ(k) → 0) as k → ∞. It is said to be
algebraicallyβ-mixing (algebraicallyϕ-mixing) if there exist real numbersβ0 > 0 (resp.ϕ0 > 0)
andr > 0 such thatβ(k) ≤ β0/kr (resp. ϕ(k) ≤ ϕ0/kr) for all k, exponentially mixingif there
exist real numbersβ0 (resp.ϕ0 > 0) andβ1 (resp.ϕ1 > 0) such thatβ(k) ≤ β0 exp(−β1k

r) (resp.
ϕ(k) ≤ ϕ0 exp(−ϕ1k

r)) for all k.

Both β(k) and ϕ(k) measure the dependence of the events on those that occurred more thank
units of time in the past.β-mixing is a weaker assumption thanφ-mixing. We will be using a
concentration inequality that leads to simple bounds but that applies toφ-mixing processes only.
However, the main proofs presented in this paper are given in the more general case ofβ-mixing
sequences. This is a standard assumption adopted in previous studies of learning in the presence
of dependent observations [8, 10, 16, 17]. As pointed out in [16],β-mixing seems to be “just the
right” assumption for carrying over several PAC-learning results to the case of weakly-dependent
sample points. Several results have also been obtained in the more general context ofα-mixing but
they seem to require the stronger condition of exponential mixing [11]. Mixing assumptions can be
checked in some cases such as with Gaussian or Markov processes [10]. The mixing parameters can
also be estimated in such cases.
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Most previous studies use a technique originally introducedby [1] based onindependent blocksof
equal size [8,10,17]. This technique is particularly relevant when dealing with stationaryβ-mixing.
We will need a related but somewhat different technique since the blocks we consider may not have
the same size. The following lemma is a special case of Corollary 2.7 from [17].

Lemma 1 (Yu [17], Corollary 2.7). Let µ ≥ 1 and suppose thath is measurable function, with

absolute value bounded byM , on a product probability space
(∏µ

j=1 Ωj ,
∏µ

i=1 σsi
ri

)
whereri ≤

si ≤ ri+1 for all i. LetQ be a probability measure on the product space with marginal measuresQi

on (Ωi, σ
si
ri

), and letQi+1 be the marginal measure ofQ on
(∏i+1

j=1 Ωj ,
∏i+1

j=1 σ
sj

rj

)
, i = 1, . . . , µ−1.

Letβ(Q) = sup1≤i≤µ−1 β(ki), whereki = ri+1 − si, andP =
∏µ

i=1 Qi. Then,

|E
Q
[h] − E

P
[h]| ≤ (µ − 1)Mβ(Q). (2)

The lemma gives a measure of the difference between the distribution ofµ blocks where the blocks
are independent in one case and dependent in the other case. The distribution within each block
is assumed to be the same in both cases. For a monotonically decreasing functionβ, we have
β(Q) = β(k∗), wherek∗ = mini(ki) is the smallest gap between blocks.

2.2 Learning Scenarios

We consider the familiar supervised learning setting where the learning algorithm receives a sample
of m labeled pointsS = (z1, . . . , zm) = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y )m, whereX is the
input space andY the set of labels (Y = R in the regression case), both assumed to be measurable.

For a fixed learning algorithm, we denote byhS the hypothesis it returns when trained on the sample
S. The error of a hypothesis on a pairz ∈ X×Y is measured in terms of a cost functionc : Y ×Y →
R+. Thus,c(h(x), y) measures the error of a hypothesish on a pair(x, y), c(h(x), y) = (h(x)−y)2

in the standard regression cases. We will use the shorthandc(h, z) := c(h(x), y) for a hypothesish
andz = (x, y) ∈ X × Y and will assume thatc is upper bounded by a constantM > 0. We denote
by R̂(h) the empirical error of a hypothesish for a training sampleS = (z1, . . . , zm):

R̂(h) =
1

m

m∑

i=1

c(h, zi). (3)

In the standard machine learning scenario, the sample pairsz1, . . . , zm are assumed to be i.i.d., a
restrictive assumption that does not always hold in practice. We will consider here the more general
case of dependent samples drawn from a stationary mixing sequenceZ overX × Y . As in the i.i.d.
case, the objective of the learning algorithm is to select a hypothesis with small error over future
samples. But, here, we must distinguish two versions of this problem.

In the most general version, future samples depend on the training sampleS and thus the general-
ization error or true error of the hypothesishS trained onS must be measured by its expected error
conditioned on the sampleS:

R(hS) = E
z
[c(hS , z) | S]. (4)

This is the most realistic setting in this context, which matches time series prediction problems.
A somewhat less realistic version is one where the samples are dependent, but the test points are
assumed to be independent of the training sampleS. The generalization error of the hypothesishS

trained onS is then:
R(hS) = E

z
[c(hS , z) | S] = E

z
[c(hS , z)]. (5)

This setting seems less natural since if samples are dependent, then future test points must also
depend on the training points, even if that dependence is relatively weak due to the time interval
after which test points are drawn. Nevertheless, it is this somewhat less realistic setting that has
been studied by all previous machine learning studies that we are aware of [8,10,16,17], even when
examining specifically a time series prediction problem [10]. Thus, the bounds derived in these
studies cannot be applied to the more general setting.

We will consider instead the most general setting with the definition of the generalization error based
on Eq. 4. Clearly, our analysis applies to the less general setting just discussed as well.
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3 Non-i.i.d. Stability Bounds

This section gives generalization bounds forβ̂-stable algorithms over a mixing stationary distribu-
tion.1 The first two sections present our main proofs which hold forβ-mixing stationary distri-
butions. In the third section, we will be using a concentration inequality that applies toφ-mixing
processes only.

The condition ofβ̂-stability is an algorithm-dependent property first introduced in [4] and [6]. It has
been later used successfully by [2, 3] to show algorithm-specific stability bounds for i.i.d. samples.
Roughly speaking, a learning algorithm is said to bestableif small changes to the training set do
not produce large deviations in its output. The following gives the precise technical definition.

Definition 3. A learning algorithm is said to be (uniformly)̂β-stableif the hypotheses it returns for
any two training samplesS andS′ that differ by a single point satisfy

∀z ∈ X × Y, |c(hS , z) − c(hS′ , z)| ≤ β̂. (6)

Many generalization error bounds rely on McDiarmid’s inequality. But this inequality requires the
random variables to be i.i.d. and thus is not directly applicable in our scenario. Instead, we will
use a theorem that extends McDiarmid’s inequality to general mixing distributions (Theorem 1,
Section 3.3).

To obtain a stability-based generalization bound, we will apply this theorem toΦ(S) = R(hS) −
R̂(hS). To do so, we need to show, as with the standard McDiarmid’s inequality, thatΦ is a Lipschitz
function and, to make it useful, boundE[Φ]. The next two sections describe how we achieve both of
these in this non-i.i.d. scenario.

3.1 Lipschitz Condition

As discussed in Section 2.2, in the most general scenario, test points depend on the training sample.
We first present a lemma that relates the expected value of the generalization error in that scenario
and the same expectation in the scenario where the test point is independent of the training sample.
We denote byR(hS) = Ez [c(hS , z)|S] the expectation in the dependent case and byR̃(hSb

) =
Eez[c(hSb

, z̃)] that expectation when the test points are assumed independent of the training, with
Sb denoting a sequence similar toS but with the lastb points removed. Figure 1(a) illustrates that
sequence. The blockSb is assumed to have exactly the same distribution as the corresponding block
of the same size inS.

Lemma 2. Assume that the learning algorithm iŝβ-stable and that the cost functionc is bounded
byM . Then, for any sampleS of sizem drawn from aβ-mixing stationary distribution and for any
b ∈ {0, . . . , m}, the following holds:

|E
S
[R(hS)] − E

S
[R̃(hSb

)]| ≤ bβ̂ + β(b)M. (7)

Proof. Theβ̂-stability of the learning algorithm implies that

E
S
[R(hS)] = E

S,z
[c(hS , z)] ≤ E

S,z
[c(hSb

, z)] + bβ̂. (8)

The application of Lemma 1 yields

E
S
[R(hS)] ≤ E

S,ez
[c(hSb

, z̃)] + bβ̂ + β(b)M = ẼS [R(hSb
)] + bβ̂ + β(b)M. (9)

The other side of the inequality of the lemma can be shown following the same steps.

We can now prove a Lipschitz bound for the functionΦ.

1The standard variable used for the stability coefficient isβ. To avoid the confusion with theβ-mixing
coefficient, we will usêβ instead.
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Figure 1: Illustration of the sequences derived fromS that are considered in the proofs.

Lemma 3. Let S = (z1, z2, . . . , zm) andSi = (z′1, z
′
2, . . . , z

′
m) be two sequences drawn from a

β-mixing stationary process that differ only in pointi ∈ [1, m], and lethS andhSi be the hypotheses
returned by aβ̂-stable algorithm when trained on each of these samples. Then, for anyi ∈ [1, m],
the following inequality holds:

|Φ(S) − Φ(Si)| ≤ (b + 1)2β̂ + 2β(b)M +
M

m
. (10)

Proof. To prove this inequality, we first bound the difference of the empirical errors as in [3], then
the difference of the true errors. Bounding the difference of costs on agreeing points withβ̂ and the
one that disagrees withM yields

|R̂(hS) − R̂(hSi)| =
1

m

m∑

j=1

|c(hS , zj) − c(hSi , z′j)| (11)

=
1

m

∑

j 6=i

|c(hS , zj) − c(hSi , z′j)| +
1

m
|c(hS , zi) − c(hSi , z′i)| ≤ β̂ +

M

m
.

Now, applying Lemma 2 to both generalization error terms and usingβ̂-stability result in

|R(hS) − R(hSi)| ≤ |R̃(hSb
) − R̃(hSi

b
)| + 2bβ̂ + 2β(b) (12)

= E
ez
[c(hSb

, z̃) − c(hSi
b
, z̃)] + 2bβ̂ + 2β(b)M ≤ β̂ + 2bβ̂ + 2β(b)M.

The lemma’s statement is obtained by combining inequalities 11 and 12.

3.2 Bound onE[Φ]

As mentioned earlier, to make the bound useful, we also need to boundES [Φ(S)]. This is done by
analyzing independent blocks using Lemma 1.

Lemma 4. LethS be the hypothesis returned by âβ-stable algorithm trained on a sampleS drawn
from a stationaryβ-mixing distribution. Then, for allb ∈ [1, m], the following inequality holds:

E
S
[|Φ(S)|] ≤ (6b + 1)β̂ + 3β(b)M. (13)

Proof. We first analyze the termES [R̂(hS)]. Let Si be the sequenceS with theb points before and
after pointzi removed. Figure 1(b) illustrates this definition.Si is thus made of three blocks. LetS̃i

denote a similar set of three blocks each with the same distribution as the corresponding block inSi,
but such that the three blocks are independent. In particular, the middle block reduced to one point
z̃i is independent of the two others. By theβ̂-stability of the algorithm,

E
S
[R̂(hS)] = E

S

[
1

m

m∑

i=1

c(hS , zi)

]
≤ E

Si

[
1

m

m∑

i=1

c(hSi
, zi)

]
+ 2bβ̂. (14)

Applying Lemma 1 to the first term of the right-hand side yields

E
S
[R̂(hS)] ≤ E

eSi

[
1

m

m∑

i=1

c(heSi
, z̃i)

]
+ 2bβ̂ + 2β(b)M. (15)
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Combining the independent block sequences associated toR̂(hS) andR(hS) will help us prove the
lemma in a way similar to the i.i.d. case treated in [3]. LetSb be defined as in the proof of Lemma 2.
To deal with independent block sequences defined with respect to the same hypothesis, we will
consider the sequenceSi,b = Si ∩Sb, which is illustrated by Figure 1(c). This can result in as many
as four blocks. As before, we will consider a sequenceS̃i,b with a similar set of blocks each with
the same distribution as the corresponding blocks inSi,b, but such that the blocks are independent.

Since three blocks of at mostb points are removed from each hypothesis, by theβ̂-stability of the
learning algorithm, the following holds:

E
S
[Φ(S)] = E

S
[R̂(hS) − R(hS)] = E

S,z

[
1

m

m∑

i=1

c(hS , zi) − c(hS , z)

]
(16)

≤ E
Si,b,z

[
1

m

m∑

i=1

c(hSi,b
, zi) − c(hSi,b

, z)

]
+ 6bβ̂. (17)

Now, the application of Lemma 1 to the difference of two cost functions also bounded byM as in
the right-hand side leads to

E
S
[Φ(S)] ≤ E

eSi,b,ez

[
1

m

m∑

i=1

c(heSi,b
, z̃i) − c(heSi,b

, z̃)

]
+ 6bβ̂ + 3β(b)M. (18)

Sincez̃ andz̃i are independent and the distribution is stationary, they have the same distribution and
we can replacẽzi with z̃ in the empirical cost and write

E
S
[Φ(S)] ≤ E

eSi,b,ez

[
1

m

m∑

i=1

c(heSi
i,b

, z̃) − c(heSi,b
, z̃)

]
+ 6bβ̂ + 3β(b)M ≤ β̂ + 6bβ̂ + 3β(b)M, (19)

whereS̃i
i,b is the sequence derived from̃Si,b by replacingz̃i with z̃. The last inequality holds by

β̂-stability of the learning algorithm. The other side of the inequality in the statement of the lemma
can be shown following the same steps.

3.3 Main Results

This section presents several theorems that constitute the main results of this paper. We will use the
following theorem which extends McDiarmid’s inequality toϕ-mixing distributions.

Theorem 1(Kontorovich and Ramanan [7], Thm. 1.1). LetΦ : Zm → R be a function defined over
a countable spaceZ. If Φ is l-Lipschitz with respect to the Hamming metric for somel > 0, then
the following holds for allǫ > 0:

Pr
Z

[|Φ(Z) − E[Φ(Z)]| > ǫ] ≤ 2 exp

( −ǫ2

2ml2||∆m||2∞

)
, (20)

where||∆m||∞ ≤ 1 + 2
m∑

k=1

ϕ(k).

Theorem 2 (General Non-i.i.d. Stability Bound). Let hS denote the hypothesis returned by aβ̂-
stable algorithm trained on a sampleS drawn from aϕ-mixing stationary distribution and letc be
a measurable non-negative cost function upper bounded byM > 0, then for anyb ∈ [0, m] and any
ǫ > 0, the following generalization bound holds

Pr
S

h˛̨
˛R(hS) − bR(hS)

˛̨
˛ > ǫ + (6b + 1)β̂ + 6Mϕ(b)

i
≤ 2 exp

 
−ǫ2(1 + 2

P
m

i=1
ϕ(i))−2

2m((b + 1)2β̂ + 2Mϕ(b) + M/m)2

!
.

Proof. The theorem follows directly the application of Lemma 3 and Lemma 4 to Theorem 1.

The theorem gives a general stability bound forϕ-mixing stationary sequences. If we further
assume that the sequence is algebraicallyϕ-mixing, that is for allk, ϕ(k) = ϕ0k

−r for somer > 1,
then we can solve for the value ofb to optimize the bound.
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Theorem 3 (Non-i.i.d. Stability Bound for Algebraically Mixing Sequences). Let hS denote the
hypothesis returned by âβ-stable algorithm trained on a sampleS drawn from an algebraically
ϕ-mixing stationary distribution,ϕ(k) = ϕ0k

−r with r > 1 and letc be a measurable non-negative
cost function upper bounded byM > 0, then for anyǫ > 0, the following generalization bound
holds

Pr
S

h˛̨
˛R(hS) − bR(hS)

˛̨
˛ > ǫ + β̂ + (r + 1)6Mϕ(b)

i
≤ 2 exp

 
−ǫ2(4 + 2/(r − 1))−2

2m(2β̂ + (r + 1)2Mϕ(b) + M/m)2

!
,

whereϕ(b) = ϕ0

(
β̂

rϕ0M

)r/(r+1)

.

Proof. For an algebraically mixing sequence, the value ofb minimizing the bound of Theorem 2

satisfiesβ̂b = rMϕ(b), which givesb =
(

β̂
rϕ0M

)−1/(r+1)

andϕ(b) = ϕ0

(
β̂

rϕ0M

)r/(r+1)

. The

following term can be bounded as

1 + 2

m∑

i=1

ϕ(i) = 1 + 2

m∑

i=1

i−r ≤ 1 + 2

(
1 +

∫ m

1

i−rdi

)
= 1 + 2

(
1 +

m1−r − 1

1 − r

)
. (21)

For r > 1, the exponent ofm is negative, and so we can bound this last term by3 + 2/(r − 1).
Plugging in this value and the minimizing value ofb in the bound of Theorem 2 yields the statement
of the theorem.

In the case of a zero mixing coefficient (ϕ = 0 andb = 0), the bounds of Theorem 2 and Theorem 3
coincide with the i.i.d. stability bound of [3]. In order for the right-hand side of these bounds to
converge, we must havêβ = o(1/

√
m) and ϕ(b) = o(1/

√
m). For several general classes of

algorithms,β̂ ≤ O(1/m) [3]. In the case of algebraically mixing sequences withr > 1 assumed in
Theorem 3,̂β ≤ O(1/m) impliesϕ(b) = ϕ0(β̂/(rϕ0M))(r/(r+1)) < O(1/

√
m). The next section

illustrates the application of Theorem 3 to several general classes of algorithms.

4 Application

We now present the application of our stability bounds to several algorithms in the case of an al-
gebraically mixing sequence. Our bound applies to all algorithms based on the minimization of a
regularized objective function based on the norm‖ ·‖K in a reproducing kernel Hilbert space, where
K is a positive definite symmetric kernel:

argmin
h∈H

1

m

m∑

i=1

c(h, zi) + λ‖h‖2
K , (22)

under some general conditions, since these algorithms are stable withβ̂ ≤ O(1/m) [3]. Two specific
instances of these algorithms are SVR, for which the cost function is based on theǫ-insensitive cost:

c(h, z) = |h(x) − y|ǫ =

{
0 if |h(x) − y| ≤ ǫ,

|h(x) − y| − ǫ otherwise,
(23)

and Kernel Ridge Regression [13], for whichc(h, z) = (h(z) − y)2.
Corollary 1. Assume a bounded outputY = [0, B], for someB > 0, and assume thatK(x, x) ≤ κ
for all x for someκ > 0. LethS denote the hypothesis returned by the algorithm when trained on
a sampleS drawn from an algebraicallyϕ-mixing stationary distribution. Then, with probability at
least1 − δ, the following generalization bounds hold for

a. Support vector regression (SVR):

R(hS) ≤ bR(hS) +
13κ2

2λm
+ 5

 
3κ2

λ
+ κ

r
B

λ

!r
2 ln(1/δ)

m
; (24)

b. Kernel Ridge Regression (KRR):

R(hS) ≤ bR(hS) +
26κ2B2

λm
+ 5

 
12κ2B2

λ
+ κ

r
B

λ

!r
2 ln(1/δ)

m
. (25)
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Proof. It has been shown in [3] that for SVR̂β ≤ κ2/(2λm) and thatM < κ
√

B/λ and for KRR,
β̂ ≤ 2κ2B2/(λm) andM < κ

√
B/λ. Plugging in these values in the bound of Theorem 3 and

using the lower bound onr, r > 1, yield the statement of the corollary.

These bounds give, to the best of our knowledge, the first stability-based generalization bounds for
SVR and KRR in a non-i.i.d. scenario. Similar bounds can be obtained for other families of algo-
rithms such as maximum entropy discrimination, which can be shown to have comparable stability
properties [3]. Our bounds have the same convergence behavior as those derived by [3] in the i.i.d.
case. In fact, they differ only by some constants. As in the i.i.d. case, they are non-trivial when the
conditionλ ≫ 1/

√
m on the regularization parameter holds for all large values ofm. It would be

interesting to give a quantitative comparison of our bounds and the generalization bounds of [10]
based on covering numbers for mixing stationary distributions, in the scenario where test points
are independent of the training sample. In general, because the bounds of [10] are not algorithm-
dependent, one can expect tighter bounds using stability, provided that a tight bound is given on
the stability coefficient. The comparison also depends on how fast the covering number grows with
the sample size and trade-off parameters such asλ. For a fixedλ, the asymptotic behavior of our
stability bounds for SVR and KRR is tight.

5 Conclusion

Our stability bounds for mixing stationary sequences apply to large classes of algorithms, including
SVR and KRR, extending to weakly dependent observations existing bounds in the i.i.d. case. Since
they are algorithm-specific, these bounds can often be tighter than other generalization bounds.
Weaker notions of stability might help further improve or refine them.
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