
Mining Internet-Scale Software Repositories

Erik Linstead, Paul Rigor, Sushil Bajracharya, Cristina Lopes and Pierre Baldi
Donald Bren School of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3435

{elinstea,prigor,sbajrach,lopes,pfbaldi}@ics.uci.edu

Abstract

Large repositories of source code create new challenges and opportunities for sta-
tistical machine learning. Here we first develop Sourcerer, an infrastructure for
the automated crawling, parsing, and database storage of open source software.
Sourcerer allows us to gather Internet-scale source code. For instance, in one ex-
periment, we gather 4,632 java projects from SourceForge and Apache totaling
over 38 million lines of code from 9,250 developers. Simple statistical analyses
of the data first reveal robust power-law behavior for package, SLOC, and lexical
containment distributions. We then develop and apply unsupervised author-topic,
probabilistic models to automatically discover the topics embedded in the code
and extract topic-word and author-topic distributions. In addition to serving as
a convenient summary for program function and developer activities, these and
other related distributions provide a statistical and information-theoretic basis for
quantifying and analyzing developer similarity and competence, topic scattering,
and document tangling, with direct applications to software engineering. Finally,
by combining software textual content with structural information captured by our
CodeRank approach, we are able to significantly improve software retrieval per-
formance, increasing the AUC metric to 0.84– roughly 10-30% better than pre-
vious approaches based on text alone. Supplementary material may be found at:
http://sourcerer.ics.uci.edu/nips2007/nips07.html.

1 Introduction

Large repositories of private or public software source code, such as the open source projects avail-
able on the Internet, create considerable new opportunities and challenges for statistical machine
learning, information retrieval, and software engineering. Mining such repositories is important, for
instance, to understand software structure, function, complexity, and evolution, as well as to improve
software information retrieval systems and identify relationships between humans and the software
they produce. Tools to mine source code for functionality, structural organization, team structure,
and developer contributions are also of interest to private industry, where these tools can be applied
to such problems as in-house code reuse and project staffing. While some progress has been made
in the application of statistics and machine learning techniques to mine software corpora, empirical
studies have typically been limited to small collections of projects, often on the order of one hundred
projects or less, several orders of magnitude smaller than publicly available repositories(eg. [1]).

Mining large software repositories requires leveraging both the textual and structural aspects of soft-
ware data, as well as any relevant meta data. Here we develop Sourcerer, a large-scale infrastructure
to explore such aspects. We first identify a number of robust power-law behaviors by simple statisti-
cal analyses. We then develop and apply unsupervised author-topic probabilistic models to discover
the topics embedded in the code and extract topic-word and author-topic distributions. Finally, we
leverage the dual textual and graphical nature of software to improve code search and retrieval.

2 Infrastructure and Data

To allow for the Internet-scale analysis of source code we have built Sourcerer, an extensive infras-
tructure designed for the automated crawling, downloading, parsing, organization, and storage of
large software repositories in a relational database. A highly configurable crawler allows us to spec-
ify the number and types of projects desired, as well as the host databases that should be targeted,
and to proceed with incremental updates in an automated fashion. Once target projects are down-
loaded, a depackaging module uncompresses archive files while saving useful metadata (project
name, version, etc). While the infrastructure is general, we apply it here to a sample of projects
in Java. Specifically, for the results reported, we download 12,151 projects from Sourceforge and
Apache and filter out distributions packaged without source code (binaries only). The end result is
a repository consisting of 4,632 projects, containing 244,342 source files, with 38.7 million lines
of code, written by 9,250 developers. For the software author-topic modeling approach we also
employ the Eclipse 3.0 source code as a baseline. Though only a single project, Eclipse is a large,
active open source effort that has been widely studied. In this case, we consider 2,119 source files,
associated with about 700,000 lines of code, a vocabulary of 15,391 words, and 59 programmers.
Methods for extracting and assigning words and programmers to documents are described in the
next sections. A complete list of all the projects contained in our repository is available from the
supplementary materials web pages.

3 Statistical Analysis

During the parsing process our system performs a static analysis on project source code files to
extract code entities and their relationships, storing them in a relational database. For java these en-
tities consist of packages, classes, interfaces, methods, and fields, as well as more specific constructs
such as constructors and static initializers. Relations capture method calls, inheritance, and encap-
sulation, to name a few. The populated database represents a substantial foundation on which to
base statistical analysis of source code. Parsing the multi-project repository described above yields
a repository of over 5 million entities organized into 48 thousand packages, 560 thousand classes,
and 3.2 million methods, participating in over 23.4 million relations. By leveraging the query capa-
bilities of the underlying database we can investigate other interesting statistics. For example, table
1 contains the frequencies of Java keywords across all 4,632 projects. Upon examining this data we
can see that the ’default’ keyword occurs about 6 percent less frequently than the ’switch’ keyword,
despite the fact that best practice typically mandates all switch statements contain a default block.
Moreover, the ’for’ loop is about twice as pervasive as the ’while’ loop, suggesting that the bound on
the number of iterations is more likely to be known or based on the size of a known data structure.

Table 1: Frequency of java keyword occurrence

Keyword Percentage Keyword Percentage Keyword Percentage Keyword Percentage
public 12.53 boolean 2.12 this 0.89 switch 0.19

if 8.44 false 1.69 break 0.85 interface 0.17
new 8.39 case 1.60 while 0.63 continue 0.15

return 7.69 true 1.60 super 0.57 finally 0.14
import 6.89 class 1.36 instanceof 0.56 default 0.13

int 6.54 protected 1.33 double 0.55 native 0.08
null 5.52 catch 1.33 long 0.54 transient 0.06
void 4.94 for 1.22 implements 0.43 do 0.05

private 3.66 try 1.22 char 0.30 assert 0.03
static 3.16 throw 1.16 float 0.28 enum 0.02
final 3.01 package 0.96 abstract 0.25 volatile 0.04
else 2.33 byte 0.93 synchronized 0.25 strictfp 2.49E-06

throws 2.16 extends 0.89 short 0.20

Finally, statistical analyses of distributions also identify several power-law distributions. We have
observed power-law distributions governing package, SLOC, and inside relation (lexical contain-

ment) counts. For instance, Figure 1 shows the log-log plots for the number of packages across
projects. Similar graphs for other distributions are available from the supplemental materials page.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

N
u

m
b

e
r

o
f

P
a

c
k
a

g
e

s

Rank

Distribution of Packages over Projects

Figure 1: Approximate power-law distribution for packages over projects

4 Topic and Author-Topic Probabilistic Modeling of Source Code

Automated topic and author-topic modeling have been successfully used in text mining and infor-
mation retrieval where they have been applied, for instance, to the problem of summarizing large
text corpora. Recent techniques include Latent Dirichlet Allocation (LDA), which probabilistically
models text documents as mixtures of latent topics, where topics correspond to key concepts pre-
sented in the corpus [2] (see also [3]). Author-Topic (AT) modeling is an extension of topic modeling
that captures the relationship of authors to topics in addition to extracting the topics themselves. An
extension of LDA to probabilistic AT modeling has been developed in [4]. In the literature [5],
these more recent approaches have been found to produce better results than more traditional meth-
ods such as latent semantic analysis (LSA) [6]. Despite previous work in classifying code based
on concepts [1], applications of LDA and AT models have been limited to traditional text corpora
such as academic publications, news reports, corporate emails, and historical documents [7, 8]. At
the most basic level, however, a code repository can be viewed as a text corpus, where source files
are analogous to documents and developers to authors. Though vocabulary, syntax, and conventions
differentiate a programming language from a natural language, the tokens present in a source file
are still indicative of its function (ie. its topics). Thus here we develop and apply probabilistic AT
models to software data.

In AT models for text, the data consists of a set of documents. The authors of each documents are
known and each document is treated as a bag of words. We let A be the total number of authors, W
the total number of distinct words (vocabulary size), and T the total number of topics present in the
documents. While non-parametric Bayesian [9] and other [10] methods exist to try to infer T from
the data, here we assume that T is fixed (e.g. T = 100), though we explore different values.

As in [7], our model assumes that each topic t is associated with a multinomial distribution φ•t over
words w, and each author a is associated with a multinomial distribution θ•a over topics. More
precisely, the parameters are given by two matrices: a T × A matrix Θ = (θta) of author-topic
distributions, and a W × T matrix Φ = (φwt) of topic-word distributions. Given a document d
containing Nd words with known authors, in generative mode each word is assigned to one of the
authors a of the document uniformly, then the corresponding θ•a is sampled to derive a topic t, and
finally the corresponding φ•t is sampled to derive a word w. A fully Bayesian model is derived by
putting symmetric Dirichlet priors with hyperparameters α and β over the distributions θ•a and φ•t.
So for instance the prior on θ•a is given by

Dα(θ•a) =
Γ(Tα)

(Γ(α))T

T∏
t=1

θα−1
ta

and similarly for φ•t. If A is the set of authors of the corpus and document d has Ad authors, it is
easy to see that under these assumptions the likelihood of a document is given by:

P (d|Θ, Φ,A) =
Nd∏

i=1

1
Ad

∑
a

T∑
t=1

φwitθta

which can be integrated over φ and θ and their Dirichlet distributions to get P (d|α, β,A). The
posterior can be sampled efficiently using Markov Chain Monte Carlo Methods (Gibbs sampling)
and, for instance, the Θ and Φ parameter matrices can be estimated by MAP or MPE methods.

Once the data is obtained, applying this basic AT model to software requires the development of
several tools to facilitate the processing and modeling of source code. In addition to the crawling
infrastructure described above, the primary functions of the remaining tools are to extract and resolve
author names from source code, as well as convert the source code to the bag-of-words format.

4.1 Information Extraction from Source Code

Author-Document: The author-document matrix is produced from the output of our author extrac-
tion tool. It is a binary matrix where entry [i,j]=1 if author i contributed to document j, and 0
otherwise. Extracting author information is ultimately a matter of tokenizing the code and associat-
ing developer names with file (document) names when this information is available. This process is
further simplified for java software due to the prevalence of javadoc tags which present this metadata
in the form of attribute-value pairs.

Exploratory analysis of the Eclipse 3.0 code base, however, shows that most source files are credited
to “The IBM Corporation” rather than specific developers. Thus, to generate a list of authors for
specific source files, we parsed the Eclipse bug data available in [11]. After pruning files not
associated with any author, this input dataset consists of 2,119 Java source files, comprising 700,000
lines of code, from a total of 59 developers.

While leveraging bug data is convenient (and necessary) to generate the developer list for Eclipse
3.0, it is also desirable to develop a more flexible approach that uses only the source code itself,
and not other data sources. Thus to extract author names from source code we also develop a
lightweight parser that examines the code for javadoc ’@author’ tags, as well as free form labels such
as ’author’ and ’developer.’ Occurrences of these labels are used to isolate and identify developer
names. Ultimately author identifiers may come in the form of full names, email addresses, url’s,
or CVS account names. This multitude of formats, combined with the fact that author names are
typically labeled in the code header, is key to our decision to extract developer names using our own
parsing utilities, rather than part-of-speech taggers [12] leveraged in other text mining projects.

A further complication for author name extraction is the fact that the same developer may write
his name in several different ways. For example, “John Q. Developer” alternates between “John
Developer,” “J. Q. Developer,” or simply “Developer.” To account for this effect, we implement
also a two-tiered approach to name resolution using the q-gram algorithm [13]. When an individual
project is parsed, a list of contributing developers (and the files they modified) is created. A pairwise
comparison of author-names is then performed using q-gram similarity, and pairs of names whose
similarity is greater than a threshold t1 are merged. This process continues until all pairwise simi-
larities are below the threshold, and the project list is then added to a global list of authors. When
parsing is complete for all projects, the global author list is resolved using the same process, but
with a new threshold, t2, such that t2 > t1. This approach effectively implements more conser-
vative name resolution across projects in light of the observation that the scope of most developer
activities is limited to a relatively small number (1 in many cases) of open source efforts. In prac-
tice, we set t1 = .65 and t2 = .75. Running our parser on the multi-project repository yields 9,250
distinct authors respectively.

Word-Document: To produce the word-document matrix for our input data we have developed a
comprehensive tokenization tool tuned to the Java programming language. This tokenizer includes
language-specific heuristics that follow the commonly practiced naming conventions. For example,
the Java class name “QuickSort” will generate the words “quick” and “sort”. All punctuation is
ignored. As an important step in processing source files our tool removes commonly occurring stop
words. We augment a standard list of stop words used for the English language (e.g. and, the, but,
etc) to include the names of all classes from the Java SDK (eg. ArrayList, HashMap, etc). This is
done to specifically avoid extracting common topics relating to the Java collections framework.We
run the LDA-based AT algorithm on the input matrices and set the total number of topics (100)
and the number of iterations by experimentation. For instance, the number of iterations, i, to run the
algorithm is determined empirically by analyzing results for i ranging from 500 to several thousands.
The results presented in the next section are derived using 3,000 iterations, which were found to

produce interpretable topics in a reasonable amount of time (a week or so). Because the algorithm
contains a stochastic component we also verified the stability of the results across multiple runs.

4.2 Topic and Author-Topic Modeling Results

A representative subset of 6 topics extracted via Author-Topic modeling on the selected 2,119 source
files from Eclipse 3.0 is given in Table 2. Each topic is described by several words associated with
the topic concept. To the right of each topic is a list of the most likely authors for each topic with
their probabilities. Examining the topic column of the table it is clear that various functions of the
Eclipse framework are represented. For example, topic 1 clearly corresponds to unit testing, topic
2 to debugging, topic 4 to building projects, and topic 6 to automated code completion. Remaining
topics range from package browsing to compiler options.

Table 2: Representative topics and authors from Eclipse 3.0

Topic Author Probabilities # Topic Author Probabilities
junit egamma 0.97065 nls-1 darins 0.99572
run wmelhem 0.01057 ant dmegert 0.00044

listener darin 0.00373 manager nick 0.00044
1 item krbarnes 0.00144 4 listener kkolosow 0.00036

suite kkolosow 0.00129 classpath maeschli 0.00031
target jaburns 0.96894 type kjohnson 0.59508
source darin 0.02101 length jlanneluc 0.32046
debug lbourlier 0.00168 names darin 0.02286

2 breakpoint darins 0.00113 5 match johna 0.00932
location jburns 0.00106 methods pmulet 0.00918

ast maeschli 0.99161 token daudel 0.99014
button mkeller 0.00097 completion teicher 0.00308
cplist othomann 0.00055 current jlanneluc 0.00155

3 entries tmaeder 0.00055 6 identifier twatson 0.00084
astnode teicher 0.00046 assist dmegert 0.00046

Table 3 presents 6 representative author-topic assignments from the multi-project repository. This
dataset yields a substantial increase in topic diversity. Topics representing major sub-domains of
software development are clearly represented, with the first topic corresponding to web applica-
tions, the second to databases, the third to network applications, and the fourth to file processing.
Topics 5 and 6 are especially interesting, as they correspond to common examples of crosscutting
concerns from aspect-oriented programming [14], namely security and logging. Topic 5 is also
demonstrative of the inherent difficulty of resolving author names, and the shortcomings of the q-
gram algorithm, as the developer “gert van ham” and the developer “hamgert” are most likely the
same person documenting their name in different ways.

Several trends reveal themselves when all results are considered. Though the majority of topics
can be intuitively mapped to their corresponding domains, some topics are too noisy to be able to
associate any functional description to them. For example, one topic extracted from our repository
consists of Spanish words unrelated to software engineering which seem to represent the subset
of source files with comments in Spanish. Other topics appear to be very project specific, and
while they may indeed describe a function of code, they are not easily understood by those who
are only casually familiar with the software artifacts in the codebase. This is especially true with
Eclipse, which is limited in both the number and diversity of source files. In general noise appears to
diminish as repository size grows. Noise can be controlled to some degree with tuning the number
of topics to be extracted, but of course can not be eliminated completely.

Examining the author assignments (and probabilities) for the various topics provides a simple means
by which to discover developer contributions and infer their competencies. It should come as no
surprise that the most probable developer assigned to the JUnit framework topic is “egamma”, or
Erich Gamma. In this case, there is a 97% chance that any source file in our dataset assigned
to this topic will have him as a contributor. Based on this rather high probability, we can also
infer that he is likely to have extensive knowledge of this topic. This is of course a particularly

Table 3: Representative topics and authors from the multi-project repository

Topic Author Probabilities # Topic Author Probabilities
servlet craig r mcclanahan 0.19147 file adam murdoch 0.02466
session remy maucherat 0.08301 path peter donald 0.02056

1 response peter rossbach 0.04760 4 dir ludovic claude 0.01496
request greg wilkins 0.04251 directory matthew hawthorne 0.01170

http amy roh 0.03100 stream lk 0.01106
sql mark matthews 0.33265 token werner dittmann 0.09409

column ames 0.02640 key apache software foundation 0.06117
2 jdbc mike bowler 0.02033 5 security gert van ham 0.05153

type manuel laflamme 0.02027 param hamgert 0.05144
result gavin king 0.01813 cert jcetaglib.sourceforge.net 0.05133
packet brian weaver 0.14015 service wayne m osse 0.44638
type apache directory project 0.10066 str dirk mascher 0.07339

3 session opennms 0.08667 6 log david irwin 0.04928
snmpwalkmv matt whitlock 0.06508 config linke 0.02823

address trustin lee 0.04752 result jason 0.01505

attractive example because Erich Gamma is widely known for being a founder of the JUnit project,
a fact which lends credibility to the ability of the topic modeling algorithm to assign developers to
reasonable topics. One can interpret the remaining author-topic assignments along similar lines. For
example, developer “daudel” is assigned to the topic corresponding to automatic code completion
with probability .99. Referring back to the Eclipse bug data it is clear that the overwhelming majority
of bug fixes for the codeassist framework were made by this developer. One can infer that this is
likely to be an area of expertise of the developer.

In addition to determining developer contributions, one may also be curious to know the scope
of a developer’s involvement. Does a developer work across application areas, or are his contri-
butions highly focused? How does the breadth of one developer compare to another? These are
natural questions that arise in the software development process. To answer these questions within
the framework of author-topic models, we can measure the breadth of an author a by the entropy
H(a) = −∑

t θta log θta of the corresponding distribution over topics. Applying the measure to
our multi-project dataset, we find that the average measure is 2.47 bits. The developer with the low-
est entropy is “thierry danard,” with .00076 bits. The developer with the highest entropy is “wdi”
with 4.68 bits, with 6.64 bits being the maximum possible score for 100 topics. While the entropy

egamma
jeromel

kjohnson

dmegert

kmaetzel

cwong

ptff

lbourlier

jfogell
prapicau

dwilson

jburns

maeschlimann

kkolosow

bbaumgart
akiezun

daudel

mkeller

mrennie

jaburns

darins

othomann

mfarajsfranklin

johna

jeem

dejan

tmaeder

aweinand

mvanmeek tod

bbokowski

twatson

khorne

dpollock

oliviert

bbiggs

darin

jeff

dbirsan

krbarnes

ffusier

ikhelifi

sxenos

pmulet

jdesrivieres

wmelhem

schan

rchaves

maeschli

dj

cmarti

sarsenau

kent

teicher

jlanneluc
twidmer

dbaeumer

nick

Figure 2: All 59 Eclipse 3.0 authors clustered by KL divergence

of the distribution of an author over topics measures the author’s breadth, the similarity between two
authors can be measured by comparing their respective distributions over topics. Several metrics
are possible for this purpose, but one of the most natural measures is provided by the symmetrized
Kullback-Leibler (KL) divergence. Multidimensional scaling (MDS) is employed to further visual-

ize author similarities, resulting in Figure 2 for the Eclipse project. The boxes represent individual
developers, and are arranged such that developers with similar topic distributions are nearest one an-
other. A similar figure, displaying only a subset of the 4,500 SourceForge and Apache authors due to
space and legibility constraints, is available in the supplementary materials. This information is es-
pecially useful when considering how to form a development team, choosing suitable programmers
to perform code updates, or deciding to whom to direct technical questions. Two other important
distributions that can be retrieved from the AT modeling approach are the distribution of topics
across documents, and the distribution of documents across topics (not shown). The corresponding
entropies provide an automated and novel way to precisely formalize and measure topic scattering
and document tangling, two fundamental concepts of software design [14], which are important to
software architects when performing activities such as code refactoring.

5 Code Search and Retrieval

Sourcerer relies on a deep analysis of code to extract pertinent textual and structural features that can
be used to improve the quality and performance of source code search, as well as augment the ways
in which code can be searched. By combining standard text information retrieval techniques with
source-specific heuristics and a relational representation of code, we have available a comprehensive
platform for searching software components. While there has been progress in developing source-
code-specific search engines in recent years (e.g. Koders, Krugle, and Google’s CodeSearch), these
systems continue to focus strictly on text information retrieval, and do not appear to leverage the
copious relations that can be extracted and analyzed from code.

Programs are best modeled as graphs, with code entities comprising the nodes and various relations
the edges. As such, it is worth exploring possible ranking methods that leverage the underlying
graphs. A natural starting point is Google’s PageRank [15], which considers hyperlinks to formulate
a notion of popularity among web pages. This can be applied to source as well, as it is likely that a
code entity referenced by many other entities are more robust than those with few references.

We used Google’s PageRank [15] almost verbatim. The Code Rank of a code entity (package, class,
or method) A is given by: CR(A) = (1− d) + d(CR(T1)/C(T1) + ... + CR(Tn)/C(Tn)) where
T1...Tn are the code entities referring to A, C(A) is the number of outgoing links of A, and d is a
damping factor.

Using the CodeRank algorithm as a basis it is possible to devise many ranking schemes by building
graphs from the many entities and relations stored in our database, or subsets thereof. For example,
one may consider the graph of only method call relationships, package dependencies, or inheritance
hierarchies. Moreover, graph-based techniques can be combined with a variety of heuristics to
further improve code search. For example, keyword hits to the right of the fully-qualified name can
be boosted, hits in comments can be discounted, and terms indicative of test articles can be ignored.

We are conducting detailed experiments to assess the effectiveness of graph-based algorithms in con-
junction with standard IR techniques to search source code. Current evidence strongly indicates that
best results are ultimately obtained by combining term-based ranking with source-specific heuris-
tics and coderank. After defining a set of 25 control queries with known ”best” hits, we compared
performances using standard information retrieval metrics, such as area under curve (AUC). Queries
were formulated to represent users searching for specific algorithms, such as ’depth first search,’ as
well as users looking to reuse complete components, such as ’database connection manager.’ Best
hits were determined manually with a team of 3 software engineers serving as human judges of re-
sult quality, modularity, and ease of reuse. Results clearly indicate that the general Google search
engine is ineffective for locating relevant source code, with a mean AUC of .31 across the queries.
By restricting its corpus to code alone, Google’s code search engine yields substantial improvement
with an AUC of approximately .66. Despite this improvement this system essentially relies only
on regular expression matching of code keywords. Using a Java-specific keyword and comment
parser our infrastructure yields an immediate improvement with an AUC of .736. By augmenting
this further with the heuristics above and CodeRank (consisting of class and method relations), the
mean AUC climbs to .841. At this time we have conducted extensive experiments for 12 ranking
schemes corresponding to various combinations of graph-based and term-based heuristics, and have
observed similar improvements. While space does not allow their inclusion, additional results are
available from our supplementary materials page.

6 Conclusion

Here we have leveraged a comprehensive code processing infrastructure to facilitate the mining of
large-scale software repositories. We conduct a statistical analysis of source code on a previously un-
reported scale, identifying robust power-law behavior among several code entities. The development
and application of author-topic probabilistic modeling to source code allows for the unsupervised ex-
traction of program organization, functionality, developer contributions, and developer similarities,
thus providing a new direction for research in this area of software engineering. The methods de-
veloped are applicable at multiple scales, from single projects to Internet-scale repositories. Results
indicate that the algorithm produces reasonable and interpretable automated topics and author-topic
assignments. The probabilistic relationships between author, topics, and documents that emerge
from the models naturally provide an information-theoretic basis to define and compare developer
and program similarity, topic scattering, and document tangling with potential applications in soft-
ware engineering ranging from bug fix assignments and staffing to software refactoring. Finally,
by combining term-based information retrieval techniques with graphical information derived from
program structure, we are able to significantly improve software search and retrieval performance.

Acknowledgments: Work in part supported by NSF MRI grant EIA-0321390 and a Microsoft
Faculty Research Award to PB, as well as NSF grant CCF-0725370 to CL and PB.

References
[1] S. Ugurel, R. Krovetz, and C. L. Giles. What’s the code?: automatic classification of source code archives.

In KDD ’02: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 632–638, New York, NY, USA, 2002. ACM Press.

[2] D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research,
3:993–1022, January 2003.

[3] W. Buntine. Open source search: a data mining platform. SIGIR Forum, 39(1):4–10, 2005.
[4] M. Steyvers, P. Smyth, M. Rosen-Zvi, and T. Griffiths. Probabilistic author-topic models for information

discovery. In KDD ’04: Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 306–315, New York, NY, USA, 2004. ACM Press.

[5] D. Newman, C. Chemudugunta, P. Smyth, and M. Steyvers. Analyzing entities and topics in news articles
using statistical topic models. In ISI, pages 93–104, 2006.

[6] S. Deerwester, S. Dumais, T. Landauer, G. Furnas, and R. Harshman. Indexing by latent semantic analysis.
Journal of the American Society of Information Science, 41(6):391–407, 1990.

[7] Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and Padhraic Smyth. The author-topic model for
authors and documents. In UAI ’04: Proceedings of the 20th conference on Uncertainty in artificial
intelligence, pages 487–494, Arlington, Virginia, United States, 2004. AUAI Press.

[8] D. Newman and S. Block. Probabilistic topic decomposition of an eighteenth-century american newspa-
per. J. Am. Soc. Inf. Sci. Technol., 57(6):753–767, 2006.

[9] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of the
American Statistical Association, 101(476):1566–1581, 2006.

[10] T. L. Griffiths and M. Steyvers. Finding scientific topics. Proc Natl Acad Sci U S A, 101 Suppl 1:5228–
5235, April 2004.

[11] A. Schröter, T. Zimmermann, R. Premraj, and A. Zeller. If your bug database could talk. . . . In Proceedings
of the 5th International Symposium on Empirical Software Engineering, Volume II: Short Papers and
Posters, pages 18–20, September 2006.

[12] E. Brill. Some advances in transformation-based part of speech tagging. In National Conference on
Artificial Intelligence, pages 722–727, 1994.

[13] E. Ukkonen. Approximate string-matching with q-grams and maximal matches. Theor. Comput. Sci.,
92(1):191–211, 1992.

[14] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin. Aspect-oriented
programming. In Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings European Conference on
Object-Oriented Programming, volume 1241, pages 220–242. Springer-Verlag, Berlin, Heidelberg, and
New York, 1997.

[15] R. Motwani L. Page, S. Brin and T. Winograd. The pagerank citation ranking: Bringing or-
der to the web. Stanford Digital Library working paper SIDL-WP-1999-0120 of 11/11/1999 (see:
http://dbpubs.stanford.edu/pub/1999-66).

