Exponential Family
Predictive Representations of State

David Wingate Satinder Singh
Computer Science and Engineering Computer Science and Engineering
University of Michigan University of Michigan
Wi ngat ed@mni ch. edu bavej a@ni ch. edu
Abstract

In order to represent state in controlled, partially observable, stochastic dynamical
systems, some sort of sufficient statistic for history is necessary. Predictive repre-
sentations of state (PSRs) capture state as statistics of the future. We introduce a
new model of such systems called the “Exponential family PSR,” which defines
as state the time-varying parameters of an exponential family distribution which
modelsn sequential observations in the future. This choice of state representation
explicitly connects PSRs to state-of-the-art probabilistic modeling, which allows
us to take advantage of current efforts in high-dimensional density estimation, and
in particular, graphical models and maximum entropy models. We present a pa-
rameter learning algorithm based on maximum likelihood, and we show how a
variety of current approximate inference methods apply. We evaluate the qual-
ity of our model with reinforcement learning by directly evaluating the control
performance of the model.

1 Introduction

One of the basic problems in modeling controlled, partially observable, stochastic dynamical sys-
tems is representing and tracking state. In a reinforcement learning context, the state of the system
is important because it can be used to make predictions about the future, or to control the system
optimally. Often, state is viewed as an unobservable, latent variable, but modetsedittive rep-
resentations of statigl] propose an alternative: PSRs represent stagadistics about the future.

The original PSR models used the probability of specific, detailed futures tedlesds the statistics

of interest. Recent work has introduced the more general notion of using parameters that model the
distribution of lengthn futures as the statistics of interest [8]. To clarify this, consider an agent
interacting with the system. It observes a series of observations;, which we call ahistory

h; (where subscripts denote time). Given any history, there is some distribution over the next
observations:p(Oy;41...014n b)) = p(F™|h:) (WhereO;,, is the random variable representing

an observation steps in the future, and™ is a mnemonic forfuture). We emphasize that this
distribution directly models observable quantities in the system.

Instead of capturing state with tests, the more general idea is to capture state by directly modeling
the distributionp(F™|h;). Our central assumption is that the parameters descrik(ifi§|h;) are
sufficient for history, and therefore constitute state (as the agent interacts with the gy(dtéma,)

changes becaugge changes; therefore the parameters and hence state change). As an example of
this, the Predictive Linear-Gaussian (PLG) model [8] assumespttiat|h,) is jointly Gaussian;

state therefore becomes its mean and covariance. Nothing is lost by defining state in terms of ob-
servable quantities: Rudary et al [8] proved that the PLG is formally equivalent to the latent-variable
approach in linear dynamical systems. In fact, because the parameters are grounded, statistically
consistent parameter estimators are available for PLGs.

Thus, as part of capturing state in a dynamical system in otiedep(F™|h,) must be estimated.

This is a density estimation problem. In systems with rich observations (say, camera images),
p(F™|h;) may have high dimensionality. As in all high-dimensional density estimation problems,
structure must be exploited. It is therefore natural to connect to the large body of recent research
dealing with high-dimensional density estimation, and in particular, graphical models.

In this paper, we introduce tHexponential Family PSREFPSR) which assumes thatf™|h,) is

a standard exponential family distribution. By selecting the sufficient statistics of the distribution
carefully, we can impose graphical structurepdf™ |h;), and therefore make explicit connections to
graphical models, maximum entropy modeling, and Boltzmann machines. The EFPSR inherits both
the advantages and disadvantages of graphical exponential family models: inference and parameter
learning in the model is generally hard, but all existing research on exponential family distributions

is applicable (in particular, work on approximate inference).

Selecting the form of(F" |h;) and estimating its parameters to capture state is only half of the prob-
lem. We must also model the dynamical component, which describes the way that the parameters
vary over time (that is, how the parameter®0F™|h;) andp(F"|h:41) are related). We describe a
method called “extend-and-condition,” which generalizes many state update mechanisms in PSRs.

Importantly, the EFPSR has no hidden variables, but can still capture state, which sets it apart from
other graphical models of sequential data. It is not directly comparable to latent-variable models
such as HMMs, CRFs [3], or Maximum-entropy Markov Models (MEMMSs) [5], for example. In
particular, EM-based procedures used in the latent-variable models for parameter learning are un-
necessary, and indeed, impossible. This is a consequence of the fact that the model is fully observed:
all statistics of interest are directly related to observable quantities.

We refer the reader to [11] for an extended version of this paper.

2 TheExponential Family PSR

We now present the Exponential Family PSR (EFPSR) model. The next sections discuss the specifics
of the central parts of the model: the state representation, and how we maintain that state.

2.1 Standard Exponential Family Distributions

We first discuss exponential family distributions, which we use because of their close connections
to maximum entropy modeling and graphical models. We refer the reader to Jaynes [2] for detailed
justification, but briefly, he states that the maximum entropy distribution “agrees with everything
that is known, but carefully avoids assuming anything that is not known,” which “is the fundamental
property which justifies its use for inference.” The standard exponential family distribution is the
form of the maximum entropy distribution under certain constraints.

For a random variabl&, a standard exponential family distribution has the faiiX = z;s) =
exp{sT ¢(x) — Z(s)}, wheres is the canonical (or natural) vector of parameters@fd is a vector

of features of variable:. The vectorg(x) also forms the sufficient statistics of the distribution.
The termZ(s) is known as the log-partition function, and is a normalizing constant which ensures
thatp(X; s) defines a valid distributionZ (s) = log [exp{s” ¢(z)}dz. By carefully selecting the
featuresp(x), graphical structure may be imposed on the distribution.

2.2 State Representation and Dynamics

State. The EFPSR defines state as the parameters of an exponential family distribution modeling
p(F"|h:). To emphasize that these parameters represent state, we will refer to them as

p(F™ = ["|h;s0) = exp {s] o(f™) —log Z(s1)} , 1)
with both { ¢(f™), s; } € R*!. We emphasize that changes with history, but(f™) does not.

Maintaining State. In addition to selecting the form @f F'"|h;), there is a dynamical component:
given the parameters pf £ |h,), how can we incorporate a new observation to find the parameters
of p(F™|h, 0.41)? Our strategy is textend and condition, as we now explain.

Extend. We assume that we have the parametens(6f*|h;), denoteds;. We extendthe distribu-

tion of F"|h, to includeO,,,, +1, Which forms a new variabl&”*!|h,, and we assume it has the
distributionp(F™, Oy n11|ht) = p(F™*|h,). This is a temporary distribution wittn + 1)d ran-

dom variables. In order to add the new variable ,, .1, we must add new features which describe
Ot n+1 and its relationship td™. We capture this with a new feature vectpr (f7+1) € RF*1,

and define the vector; € R**! to be the parameters associated with this feature vector. We thus
have the following form for the extended distribution:

p(F"'H _ f"+1|ht;8j) — exp {Sg-‘r¢+(fn+) — log Z(s?‘)} .

To define the dynamics, we define a function which maps the current state vector to the parameters
of the extended distribution. We call this tegtension functions;” = extend(s;;), whered is a
vector of parameters controlling the extension function (and hence, the overall dynamics).

The extension function helps govern the kinds of dynamics that the model can capture. For example,
in the PLG family of work, a linear extension allows the model to capture linear dynamics [8], while
a non-linear extension allows the model to capture non-linear dynamics [11].

Condition. Once we have extended the distribution to modekthe 1'st observation in the future,
we then condition on thactual observatiorv; 1, which results in the parameters of a distribution
over observations from+ 1 throught + n + 1: s;41 = condition(s;", 0,11), which are precisely
the statistics representingF"|h;1), which is our state at time+ 1.

By extending and conditioning, we can maintain state for arbitrarily long periods. Furthermore, for
many choices of features and extension function, the overall extend-and-condition operation does
not involve any inference, mean that tracking state is computationally efficient.

There is only one restriction on the extension function: we must ensure that after extending and con-
ditioning the distribution, the resulting distribution can be expressed(@8! = f"|hi11; St+1) =
exp{s;,10(f™) — log Z(s¢41)}. This looks like exactly like Eq. 1, which is the point: the fea-

ture vectorp did not change between timesteps, which means the form of the distribution does not
change. For example, if F'*|h,) is a Gaussian, thes(F"*|h. 1) will also be a Gaussian.

2.3 Representational Capacity

The EFPSR model is quite general. It has been shown that a number of popular models can be unified
under the umbrella of the general EFPSR: for example, every PSR can be represented as an EFPSR
(implying that every POMDP, MDP, ankkth order Markov model can also be represented as an
EFPSR); and every linear dynamical system (Kalman filter) and some nonlinear dynamical systems
can also be represented by an EFPSR. These different models are obtained with different choices of
the features and the extension function, and are possible because many popular distributions (such
as multinomials and Gaussians) are exponential family distributions [11].

3 Thelinear-Linear EFPSR

We now choose specific features and extension function to generate an example model designed to
be analytically tractable. We select a linear extension function, and we carefully choose features
so that conditioning is always a linear operation. We restrict the model to domains in which the
observations are vectors of binary random variables. The result is named the Linear-Linear EFPSR.

Features. Recall that the features() and¢™ () do not depend on time. This is equivalent to saying
that the form of the distribution does not vary over time. If the features impose graphical structure
on the distribution, it is also equivalent to saying that the form of the graph does not change over
time. Because of this, we will now discuss how we can use a graph whose form is independent of
time to help define structure on our distributions.

We construct the feature vectasg) and¢™ () as follows. Let eactd), € {0, 1}4; therefore, each

F"|hy € {0,1}". Let (F™)" be thei'th random variable inf"|h;. We assume that we have an
undirected graplz which we will use to create the features in the veet¢y, and that we have
another graplt:* which we will use to define the features in the veetor(). DefineG = (V, E)

whereV = {1,...,nd} are the nodes in the graph (one for edchlh,"), and(i,j) € E are the

L

= @,

‘C—U' . R

QL

5 - - => 0

9 — o

K

c p

: O O @, O
(2]

Qo

© t+1 t+2 t+n t+1 t+2 t+n tHn+l t+1 t+2 t+n t+n+l
Distribution of next n observations Extended distribution Conditioned distribution

p(F"[hy) P(EF™, Ognsi|he) P(E™|he, 0441)

Figure 1: An illustration of extending and conditioning the distribution.

edges. Similarly, we defin6+ = (V+, E+) whereV+ = {1,..., (n + 1)d} are the nodes in the
graph (one for eactF"*!|h;)"), and(i, j) € E+ are the edges. Neither graph depends on time.

To use the graph to define our distribution, we will let entrieg ime conjunctions of atomic obser-
vation variables (like the standard Ising model): fex V/, there will be some featurein the vector
such thatp(f;)* = fi. We also create one feature for each edgéi,if) € E, then there will be

some featuré in the vector such that(f;)* = fgff Similarly, we useG™ to definep™ ().

As discussed previously, neith@mor G (equivalentlyg and¢™) can be arbitrary. We must ensure
that after conditioning=*, we recovel’. To accomplish this, we ensure that both temporally shifted
copies and conditioned versions of each feature exist in the graphs (seen pictorially in Fig. 1).

Because all features are either atomic variables or conjunctions of variables, conditioning the dis-
tribution can be done with an operation which is linear in the state (this is true even if the random
variables are discrete or real-valued). We therefore define the linear conditioning og&i@tor)

to be a matrix which transforms™ into s, 1: s;11 = G(0s+1)s;". See [11] for details.

Linear extension. In general, the functioaxtend can take any form. We choose a linear extension:
S:r = ASt + B

whereA € RF*! andB € R**! are our model parameters. The combination of a linear extension
and a linear conditioning operator can be rolled together into a single operation. Without loss of
generality, we can permute the indices in our state vector suchsthat= G(o:+1) (As: + B).

Note that although this is linear in the state, it is nonlinear in the observation.

4 Modéd Learning

We have defined our concept of state, as well as our method for tracking that state. We now address
the question of learning the model from data. There are two things which can be learned in our
model: the structure of the graph, and the parameters governing the state update. We briefly address
each in the next two subsections. We assume we are given a sequéhcksefrvationsjo; - - - or],

which we stack to create a sequence of samples from'the,’s: fi|hy = [0141 -+ - 04| P

4.1 StructureLearning

To learn the graph structure, we make the approximation of ignoring the dynamical component of
the model. That is, we treat ea¢gh as an observation, and try to estimate the density of the re-
sulting unordered set, ignoring theubscripts (we appeal to density estimation because many good
algorithms have been developed for structure induction). We therefore ignore temporal relationships
acrosssamples, but we preserve temporal relationshiisin samples. For example, if observation

a 1s always followed by observatidn this fact will be captured within thé,’s.

The problem therefore becomes one of inducing graphical structure for a non-sequential data set,
which is a problem that has already received considerable attention. In all of our experiments, we
used the method of Della Pietra et. al [7]. Their method iteratively evaluates a set of candidate
features and adds the one with highest expected gain in log-likelihood. To enforce the temporal

invariance property, whenever we add a feature, we also adfithe temporally shifted copies of
that feature, as well as the conditioned versions of that feature.

4.2 Maximum Likelihood Parameter Estimation

With the structure of the graph in place, we are left to learn the paramétensl B of the state ex-
tension. It is now useful that our state is defined in terms of observable quantities, for two reasons:
first, because everything in our model is observed, EM-style procedures for estimating the parame-
ters of our model are not needed, simply because there are no unobserved variables over which to
take expectations. Second, when trying to learn a sequence of stédggifen a long trajectory

of futures (j's), eachf; is a sample of information directly from the distribution we're trying to
model. Given a parameter estimate, an initial stgtend a sequence of observations, the sequence

of s4’s is completely determined. This will be a key element to our proposed maximum-likelihood
learning algorithm.

Although the sequence of state vecteysare the parameters defining the distributiggg™|h,),

they arenot the model parameters — that is, we cannot freely select them. Instead, the model pa-
rameters are the parametéra/hich govern the extension function. This is a significant difference
from standard maximum entropy models, and stems from the fact that our overall problem is that of
modeling a dynamical system, rather than just density estimation.

The likelihood of the training data i%(01, 02...01) = Hthlp(ot|ht). We will find it more conve-

nient to measure the likelihood of the correspondfiig: p(o1, 02...0r) =~ nHthlp(ft|ht) (the
likelihoods are not the same because the likelihood offtlsecounts a single observationtimes;
the approximate equality is because the firsind last, are counted fewer thamtimes).

The expected log-likelihood of the traininfg's under the model defined in Eq. 1 is
T
1
LL= (Z —s{ ¢(fe) — log Z(&)) @)
t=1

Our goal is to maximize this quantity. Any optimization method can be used to maximize the log-
likelihood. Two popular choices are gradient ascent and quasi-Newton methods, such as (L-)BFGS.
We use both, for different problems (as discussed later). However, both methods require the gradient
of the likelihood with respect to the parameters, which we will now compute.

Using the chain rule of derivatives, we can compute the derivative with respect to the paraneters
OLL ~~OLLT Ds,

9A ~ £~ 9s, 0A)
First, we compute the derivative of the log-likelihood with respect to each state:
OLL 0
sy = 8_(% [_Sjﬁb(ft) — log Z(St)] = Es, [¢(Fn|ht)] —o(fr) =0, (4)

whereE,, [¢(F"|h;)] € R*! is the vector of expected sufficient statistics at timeComputing

this is a standard inference problem in exponential family models, as discussed in Section 5. This
gradient tells us that we wish to adjust each state to make the expected features of themext
servations closer to the observed features however, we cannot adgistctly; instead, we must
adjust it implicitly by adjusting the transition parameterand B.

We now compute the gradients of the state with respect to each parameter:

Jds 0 0si_
a—/i = 571G (0r1) (Asi1 + B) = G(or1) <Aﬁf +5,® 1) .
where® is the Kronecker product, andis an identity matrix the same size 4s The gradients of
the state with respect tB are given by
0s 0 08—
8—Bt = 8_BG(Ot+1) (Ast_l + B) = G(OH—I) <A atBl + I)
These gradients are temporally recursive — they implicitly depend on gradients from all previous
timesteps. It might seem prohibitive to compute them: must an algorithm examine all past_,
data points to compute the gradient at titReFortunately, the answer is no: the necessary statistics
can be computed in a recursive fashion as the algorithm walks through the data.

—— Training LL|

- = =Testing LL -2.07 p 1- q
§ ----- True LL - /K
2 ©+ Naive LL ~- e
©
=
S -2.08
0 10 20
0 10 20 O 10 20 0 10 20
Iterations of optimization
(@) (b)

Figure 2: Results on two-state POMDPs. The right shows the generic model used. By varying the
transition and observation probabilities, three different POMDPs were generated. The left shows
learning performance on the three models. Likelihoods for naive predictions are shown as a dotted
line near the bottom; likelihoods for optimal predictions are shown as a dash-dot line near the top.

of #of | #of Naive | True || Training set Test set
Problem || states| obs. | actions| LL LL LL [% LL [%
Paint 16 2 4 6.24 | 466 || 4.67 | 99.7 | 4.66 | 99.9
Network || 7 2 4 6.24 | 449 || 450 | 995 | 452 | 98.0
Tiger 2 2 3 6.24 | 523 || 5.24 | 924 | 5.25| 86.0

Figure 3: Results on standard POMDPs. See text for explanatio

5 Inference

In order to compute the gradients needed for model learning, the expected sufficient statistics
E[¢(F™|h)] at each timestep must be computed (see Eq. 4):

E [6(F"|hy)] = / (fp(E" he)dfs = VZ(5).

This quantity, also known as tlmean parameters, is of central interest in standard exponential fam-
ilies, and has several interesting properties. For example, each possible set of canonical parameters
s induces one set of mean parameters; assuming that the features are linearly independent, each set
of valid mean parameters is uniquely determined by one set of canonical parameters [9].

Computing these marginals is an inference problem. This is rep@atiates (the number of sam-

ples) in order to get one gradient, which is then used in an outer optimization loop; because inference
must be repeatedly performed in our model, computational efficiency is a more stringent require-
ment than accuracy. In terms of inference, our model inherits all of the properties of graphical
models, for better and for worse. Exact inference in our model is generally intractable, except in
the case of fully factorized or tree-structured graphs. However, many approximate algorithms ex-
ist: there are variational methods such as naive mean-field, tree-reweighted belief propagation, and
log-determinant relaxations [10]; other methods include Bethe-Kikuchi approximations, expectation
propagation, (loopy) belief propagation, MCMC methods, and contrastive divergence [1].

6 Experimentsand Results

Two sets of experiments were conducted to evaluate the quality of our model and learning algorithm.
The first set tested whether the model could capture exact state, given the correct features and exact
inference. We evaluated the learned model using exact inference to compute the exact likelihood of
the data, and compared to the true likelihood. The second set tested larger models, for which exact
inference is not possible. For the second set, bounds can be provided for the likelihoods, but may be
so loose as to be uninformative. How can we assess the quality of the final model? One objective
gauge is control performance: if the model has a reward signal, reinforcement learning can be used
to determine an optimal policy. Evaluating the reward achieved becomes an objective measure of
model quality, even though approximate likelihood is the learning signal.

0.2

T o EFPSRIVMF | B
£ 015 / - - —EFPSRILBP | 3
% 01— == EFPSRILDR | 3
g / POMDP g
o 0.05 g
> . >
S A Reactive <<
o 2 3 4 5 6 | Random
Steps of optimization Steps of optimization

Figure 4: Results on Cheesemaze (left) and Maze 4x3 (right)ifierent inference methods.

First set. We tested on three two-state problems, as well as three small, standard POMDPs. For
each problem, training and test sets were generated (using a uniformly random policy for controlled
systems). We used 10,000 samplespset3 and used structure learning as explained in Section 4.1.
We used exact inference to compute Bi{e(F"|h;)] term needed for the gradients. We optimized

the likelihood using BFGS. For each dataset, we computed the log-likelihood of the data under the
true model, as well as the log-likelihood of a “naive” model, which assigns uniform probability

to every possible observation. We then learned the best model possible, and compared the final
log-likelihood under the learned and true models.

Figure 2 (a) shows results for three two-state POMDPs with binary observations. The left panel of
Fig. 2 (a) shows results for a two-state MDP. The likelihood of the learned model closely approaches
the likelihood of the true model (although it does not quite reach it; this is because the model
has trouble modeling deterministic observations, because the weights in the exponential need to be
infinitely large [or small] to generate a probability of one [or zero]). The middle panel shows results
for a moderately noisy POMDP; again, the learned model is almost perfect. The third panel shows
results for a very noisy POMDP, in which the naive and true LLs are very close; this indicates that
prediction is difficult, even with a perfect model.

Figure 3 shows results for three standard POMDPs, named Paint, Network antl Tider ta-

ble conveys similar information to the graphs: naive and true log-likelihoods, as well as the log-
likelihood of the learned models (on both training and test sets). To help interpret the results, we
also report a percentage (highlighted in bold), which indicates the amount of the likelihood gap (be-
tween the naive and true models) that was captured by the learned model. Higher is better; again we
see that the learned models are quite accurate, and generalize well.

Second set. We also tested on a two more complicated POMDPs called Cheesemaze and Maze
4x3t. For both problems, exact inference is intractable, and so we used approximate inference. We
experimented with loopy belief propagation (LBP) [12], naive mean field (or variational mean field,
VMF), and log-determinant relaxations (LDR) [10]. Since the VMF and LDR bounds on the log-
likelihood were so loose (and LBP provides no bound), it was impossible to assess our model by an
appeal to likelihood. Instead, we opted to evaluate the models based on control performance.

We used the Natural Actor Critic (or NAC) algorithm [6] to test our model (see [11] for further
experiments). The NAC algorithm requires two things: a stochastic, parameterized policy which
operates as a function of state, and the gradients of the log probability of that policy. We used a
softmax function of a linear projection of the state: the probability of taking actidrom states;

given the policy parametersis: p(a;; s¢,0) = exp {s/ 6;} / Z‘j“ill exp {s{ 0;}. The parameters

0 are to be determined. For comparison, we also ran the NAC planner with the POMDP belief
state: we used the same stochastic policy and the same gradients, but we used the belief state of the
true POMDP in place of the EFPSR’s statg)(sWe also tested NAC with the first-order Markov
assumption (or reactive policy) and a totally random policy.

Results. Figure 4 shows the results for Cheesemaze. The left panel shows the best control perfor-
mance obtained (average reward per timestep) as a function of steps of optimization. The “POMDP”
line shows the best reward obtained using the true belief state as computed under the true model,
the “Random” line shows the reward obtained with a random policy, and the “Reactive” line shows
the best reward obtained by using the observation as input to the NAC algorithm. The lines “VMF,”
“LBP,” and “LDR” correspond to the different inference methods.

'From Tony Cassandra’s POMDP repository at http://www.cs.brown.edu/research/ai/pomdp/index.html

The EFPSR models all start out with performance equivalethitoandom policy (average reward of
0.01), and quickly hop to of 0.176. This is close to the average reward of using the true POMDP state
at 0.187. The EFPSR policy closes about 94% of the gap between a random policy and the policy
obtained with the true model. Surprisingly, only a few iterations of optimization were necessary to
generate a usable state representation. Similar results hold for the Maze 4x3 domain, although the
improvement over the first order Markov model is not as strong: the EFPSR closes about 77.8% of
the gap between a random policy and the optimal policy. We conclude that the EFPSR has learned
a model which successfully incorporates information from history into the state representation, and
that it is this information which the NAC algorithm uses to obtain better-than-reactive performance.
This implies that the model and learning algorithm are useful even with approximate inference
methods, and even in cases where we cannot compare to the exact likelihood.

7 Conclusions

We have presented the Exponential Family PSR, a new model of controlled, stochastic dynamical
systems which provably unifies other models with predictively defined state. We have also discussed
a specific member of the EFPSR family, the Linear-Linear EFPSR, and a maximum likelihood learn-
ing algorithm. We were able to learn almost perfect models of several small POMDP systems, both
from a likelihood perspective and from a control perspective. The biggest drawback is computa-
tional: the repeated inference calls make the learning process very slow. Improving the learning
algorithm is an important direction for future research. While slow, the learning algorithm generates
models which can be accurate in terms of likelihood and useful in terms of control performance.

Acknowledgments

David Wingate was supported under a National Science Foundation Graduate Research Fellowship.
Satinder Singh was supported by NSF grant 11S-0413004. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the NSF.

References
[1] G. E. Hinton. Training products of experts by minimizing contrastive divergeNeiral Computation,
14(8):1771-1800, 2002.

[2] E. T.Jaynes. Notes on present status and future prospects. In W. Grandy and L. Schick Maitionsim
Entropy and Bayesian Methodsages 1-13, 1991.

[3] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting
and labeling sequence data.liternational Conference on Machine Learning (ICML), 2001.

[4] M. L. Littman, R. S. Sutton, and S. Singh. Predictive representations of stateural Information
Processing Systems (NIPS), pages 1555-1561, 2002.

[5] A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for information extraction
and segmentation. limternational Conference on Machine Learning (ICML), pages 591-598, 2000.

[6] J. Peters, S. Vijayakumar, and S. Schaal. Natural amitic. In European Conference on Machine
Learning (ECML), pages 280-291, 2005.

[7] S. D. Pietra, V. D. Pietra, and J. Lafferty. Inducing features of random fielHEE Transactions on
Pattern Analysis and Machine Intelligence, 19(4):380-393, 1997.

[8] M. Rudary, S. Singh, and D. Wingate. Predictive linear-Gaussian models of stochastic dynamical systems.
In Uncertainty in Artificial Intelligence (UAl)pages 501-508, 2005.

[9] M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference.
Technical Report 649, UC Berkeley, 2003.

[10] M. J. Wainwright and M. I. Jordan. Log-determinant relaxation for approximate inference in discrete
Markov random fieldsIEEE Transactions on Signal Processing, 54(6):2099-2109, 2006.

[11] D. Wingate.Exponential Family Predictive Representations of State. PhD thesis, University of Michigan,
2008.

[12] J. S. Yedida, W. T. Freeman, and Y. Weiss. Understanding belief propagation and its generalizations.
Technical Report TR-2001-22, Mitsubishi Electric Research Laboratories, 2001.

