
Online Linear Regression and Its Application to
Model-Based Reinforcement Learning

Alexander L. Strehl∗

Yahoo! Research
New York, NY

strehl@yahoo-inc.com

Michael L. Littman
Department of Computer Science

Rutgers University
Piscataway, NJ USA

mlittman@cs.rutgers.edu

Abstract

We provide a provably efficient algorithm for learning Markov Decision Processes
(MDPs) with continuous state and action spaces in the online setting. Specifically,
we take a model-based approach and show that a special type of online linear
regression allows us to learn MDPs with (possibly kernalized) linearly parame-
terized dynamics. This result builds on Kearns and Singh’s work that provides a
provably efficient algorithm for finite state MDPs. Our approach is not restricted
to the linear setting, and is applicable to other classes of continuous MDPs.

Introduction

Current reinforcement-learning (RL) techniques hold great promise for creating a general type of
artificial intelligence (AI), specifically autonomous (software) agents that learn difficult tasks with
limited feedback (Sutton & Barto, 1998). Applied RL has been very successful, producing world-
class computer backgammon players (Tesauro, 1994) and model helicopter flyers (Ng et al., 2003).
Many applications of RL, including the two above, utilizesupervised-learning techniquesfor the
purpose ofgeneralization. Such techniques enable an agent to act intelligently in new situations by
learning from past experience in different but similar situations.

Provably efficient RL forfinite state and action spacesis accomplished by Kearns and Singh (2002)
and hugely contributes to our understanding of the relationship betweenexplorationandsequential
decision making. The achievement of the current paper is to provide an efficient RL algorithm that
learns in Markov Decision Processes (MDPs) with continuous state and action spaces. We prove that
it learns linearly-parameterized MDPs, a model introduced by Abbeel and Ng (2005), withsample
(or experience) complexitythat grows only polynomially with the number of state space dimensions.

Our new RL algorithm utilizes a special linear regresser, based on least-squares regression, whose
analysis may be of interest to the online learning and statistics communities. Although our primary
result is for linearly-parameterized MDPs, our technique is applicable to other classes of continuous
MDPs and our framework is developed specifically with such future applications in mind. The lin-
ear dynamics case should be viewed as only an interesting example of our approach, which makes
substantial progress in the goal of understanding the relationship between exploration and general-
ization in RL.

An outline of the paper follows. In Section 1, we discuss online linear regression and pose a new
online learning framework that requires an algorithm to not only provide predictions for new data
points but also provide formal guarantees about its predictions. We also develop a specific algorithm
and prove that it solves the problem. In Section 2, using the algorithm and result from the first
section, we develop a provably efficient RL algorithm. Finally, we conclude with future work.

∗Some of the work presented here was conducted while the author was at Rutgers University.

1

1 Online Linear Regression

Linear Regression (LR) is a well-known and tremendously powerful technique for prediction of
the value of a variable (called the response or output) given the value of another variable (called
the explanatory or input). Suppose we are given some data consisting of input-output pairs:
(x1, y1), (x2, y2), . . . , (xm, ym), wherexi ∈ R

n andyi ∈ R for i = 1, . . . , m. Further, suppose
that the data satisfies a linear relationship, that isyi ≈ θT xi ∀i ∈ {1, . . . , m}, whereθ ∈ R

n is an
n-dimensional parameter vector. When a new inputx arrives, we would like to make a prediction
of the corresponding output by estimatingθ from our data. A standard approach is to approximate
θ with the least-squares estimator̂θ defined byθ̂ = (XT X)−1XT y, whereX ∈ R

m×n is a matrix
whoseith row consists of theith inputxT

i andy ∈ R
n is a vector whoseith component is theith

outputyi.

Although there are many analyses of the linear regression problem, none is quite right for an appli-
cation to model-based reinforcement learning (MBRL). In particular, in MBRL, we cannot assume
thatX is fixed ahead of time and we require more than just a prediction ofθ but knowledge about
whether this prediction is sufficiently accurate. A robust learning agent must not only infer an ap-
proximate model of its environment but also maintain an idea about the accuracy of the parameters
of this model. Without such meta-knowledge, it would be difficult to determine when to explore (or
when to trust the model) and how to explore (to improve the model). We coined the term KWIK
(“know what it knows”) for algorithms that have this special property. With this idea in mind, we
present the following online learning problem related to linear regression. Let||v|| denote the Eu-
clidean norm of a vectorv and letVar [X] denote the variance of a random variableX .

Definition 1 (KWIK Linear Regression Problem or KLRP) On every timestept = 1, 2, . . . an
input vectorxt ∈ R

nsatisfying||xt|| ≤ 1 and output numberyt ∈ [−1, 1] is provided. The input
xt may be chosen in any way that depends on the previous inputs and outputs(x1, y1), . . . , (xt, yt).
The outputyt is chosen probabilistically from a distribution that depends only onxt and satisfies
E[yt] = θT xt andVar[yt] ≤ σ2, whereθ ∈ R

n is an unknown parameter vector satisfying||θ|| ≤ 1
andσ ∈ R is a known constant. After observingxt and before observingyt, the learning algorithm
must produce an output̂yt ∈ [−1, 1] ∪ {∅} (a prediction ofE[yt|xt]). Furthermore, it should be
able to provide an output̂y(x) for any input vectorx ∈ {0, 1}n.

A key aspect of our problem that distinguishes it from other online learning models is that the
algorithm is allowed to output a special value∅ rather than make avalid prediction(an output other
than∅). An output of∅ signifies that the algorithm is not sure of what to predict and therefore
declines to make a prediction. The algorithm would like to minimize the number of times it predicts
∅, and, furthermore, when it does make a valid prediction the prediction must be accurate, with
high probability. Next, we formalize the above intuition and define the properties of a “solution” to
KLRP.

Definition 2 We define anadmissible algorithm for the KWIK Linear Regression Problem to
be one that takes two inputs0 ≤ ε ≤ 1 and0 ≤ δ < 1 and, with probability at least1 − δ, satisfies
the following conditions:

1. Whenever the algorithm predictsŷt(x) ∈ [−1, 1], we have that|ŷt(x) − θT x| ≤ ε.

2. The number of timestepst for which ŷt(xt) = ∅ is bounded by some functionζ(ε, δ, n),
polynomial inn, 1/ε and1/δ, called the sample complexity of the algorithm.

1.1 Solution

First, we present an algorithm and then a proof that it solves KLRP. LetX denote anm × n matrix
whose rows we interpret as transposed input vectors. We letX(i) denote the transpose of theith
row of X . SinceXT X is symmetric, we can write it as

XT X = UΛUT , (Singular Value Decomposition) (1)

whereU = [v1, . . . , vn] ∈ R
n×n, with v1, . . . , vn being a set of orthonormal eigenvectors ofXT X .

Let the corresponding eigenvalues beλ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1 > λk+1 ≥ · · · ≥ λn ≥ 0. Note that
Λ = diag(λ1, . . . , λn) is diagonal but not necessarily invertible. Now, defineŪ = [v1, . . . , vk] ∈

2

R
n×k and Λ̄ = diag(λ1, . . . , λk) ∈ R

k×k. For a fixed inputxt (a new input provided to the
algorithm at timet), define

q̄ := XŪΛ̄−1ŪT xt ∈ R
m×n, (2)

v̄ = [0, . . . , 0, vT
k+1xt, . . . , v

T
n xt]

T ∈ R
n. (3)

Algorithm 1 KWIK Linear Regression
0: Inputs: α1, α2

1: Initialize X = [] andy = [].
2: for t = 1, 2, 3, · · · do
3: Let xt denote the input at timet.
4: Computeq̄ andv̄ using Equations 2 and 3.
5: if ||q̄|| ≤ α1 and||v̄|| ≤ α2 then
6: Chooseθ̂ ∈ R

n that minimizes
∑

i [y(i) − θ̄T X(i)]2 subject to||θ̄|| ≤ 1, whereX(i) is
the transpose of theith row ofX andy(i) is theith component ofy.

7: Output valid predictionxT θ̂.
8: else
9: Output∅.

10: Receive outputyt.
11: AppendxT

t as a new row to the matrixX .
12: Appendyt as a new element to the vectory.
13: end if
14: end for

Our algorithm for solving the KWIK Linear Regression Problemuses these quantities and is pro-
vided in pseudocode by Algorithm 1. Our first main result of the paper is the following theorem.

Theorem 1 With appropriate parameter settings, Algorithm 1 is an admissible algorithm for the
KWIK Linear Regression Problem with a sample complexity bound ofÕ(n3/ε4).

Although the analysis of Algorithm 1 is somewhat complicated, the algorithm itself has a simple
interpretation. Given a new inputxt, the algorithm considers making a prediction of the outputyt

using the norm-constrained least-squares estimator (specifically,θ̂ defined in line 6 of Algorithm1).
The norms of the vectors̄q andv̄ provide a quantitative measure of uncertainty about this estimate.
When both norms are small, the estimate is trusted and a valid prediction is made. When either norm
is large, the estimate is not trusted and the algorithm produces an output of∅.

One may wonder whȳq and v̄ provide a measure of uncertainty for the least-squares estimate.
Consider the case when all eigenvalues ofXT X are greater than1. In this case, note thatx =
XT X(XT X)−1x = XT q̄. Thus,x can be written as a linear combination of the rows ofX , whose
coefficients make up̄q, of previously experienced input vectors. As shown by Auer (2002), this
particular linear combination minimizes||q|| for any linear combinationx = XT q. Intuitively,
if the norm of q̄ is small, then there are many previous training samples (actually, combinations
of inputs) “similar” to x, and hence our least-squares estimate is likely to be accurate forx. For
the case of ill-conditionedXT X (whenXT X has eigenvalues close to0), X(XT X)−1x may be
undefined or have a large norm. In this case, we must consider the directions corresponding to small
eigenvalues separately and this consideration is dealt with byv̄.

1.2 Analysis

We provide a sketch of the analysis of Algorithm 1. Please see our technical report for full details.
The analysis hinges on two key lemmas that we now present.

In the following lemma, we analyze the behavior of the squared error of predictions based on an
incorrect estimator̂θ 6= θ verses the squared error of using the true parameter vectorθ. Specifically,
we show that the squared error of the former is very likely to be larger than the latter when the pre-
dictions based on̂θ (of the formθ̂T x for inputx) are highly inaccurate. The proof uses Hoeffding’s
bound and is omitted.

3

Lemma 1 Let θ ∈ R
n and θ̂ ∈ R

n be two fixed parameter vectors satisfying||θ|| ≤ 1 and ||θ̂|| ≤
1. Suppose that(x1, y1), . . . , (xm, ym) is any sequence of samples satisfyingxi ∈ R

n, yi ∈ R,
||xi|| ≤ 1, yi ∈ [−1, 1], E[yi|xi] = θT xi, andVar[yi|xi] ≤ σ2. For any0 < δ′ < 1 and fixed
positive constantz, if

m
∑

i=1

[(θ − θ̂)T xi]
2 ≥ 2

√

8m ln(2/δ) + z, (4)

then
m

∑

i=1

(yi − θ̂T xi)
2 >

m
∑

i=1

(yi − θT xi)
2 + z (5)

with probability at least1 − 2δ′.

The following lemma, whose proof is fairly straight-forward and therefore omitted, relates the error
of an estimatêθT x for a fixed inputx based on an inaccurate estimatorθ̂ to the quantities||q̄||,
||v̄||, and∆E(θ̂) :=

√

∑m
i=1 [(θ − θ̂)T X(i)]2. Recall that when||q̄|| and||v̄|| are both small, our

algorithm becomes confident of the least-squares estimate. In precisely this case, the lemma shows
that|(θ − θ̂)T x| is bounded by a quantity proportional to∆E(θ̂).

Lemma 2 Let θ ∈ R
n and θ̂ ∈ R

n be two fixed parameter vectors satisfying||θ|| ≤ 1 and ||θ̂|| ≤
1. Suppose that(x1, y1), . . . , (xm, ym) is any sequence of samples satisfyingxi ∈ R

n, yi ∈ R,
||xi|| ≤ 1, yi ∈ [−1, 1]. Let x ∈ R

n be any vector. Let̄q and v̄ be defined as above. Let∆E(θ̂)

denote the error term
√

∑m
i=1 [(θ − θ̂)T xi]2. We have that

|(θ − θ̂)T x| ≤ ||q̄||∆E(θ̂) + 2||v̄||. (6)

Proof sketch: (of Theorem 1)

The proof has three steps. The first is to bound the sample complexity of the algorithm (the number
of times the algorithm makes a prediction of∅), in terms of the input parametersα1 andα2. The
second is to choose the parametersα1 andα2. The third is to show that, with high probability, every
valid prediction made by the algorithm is accurate.

Step 1

We derive an upper bound̄m on the number of timesteps for which either||q̄|| > α1 holds or
||v̄|| > α2 holds. Observing that the algorithm trains on only those samples experienced during
pricisely these timesteps and applying Lemma 13 from the paper by Auer (2002) we have that

m̄ = O

(

n ln(n/α1)

α2
1

+
n

α2
2

)

. (7)

Step 2We chooseα1 = C ·Q ln Q, whereC is a constant andQ = ε2

n
√

ln(1/(εδ)) ln(n)
, andα2 = ε/4.

Step 3Consider some fixed timestept during the execution of Algorithm 1 such that the algorithm
makes a valid prediction (not∅). Let θ̂ denote the solution of the norm-constrained least-squares
minimization (line6 in the pseudocode). By definition, since∅ was not predicted, we have that
q̄ ≤ α1 andv̄ ≤ α2. We would like to show that|θ̂T x−θT x| ≤ ε so that Condition 1 of Definition 2
is satisfied. Suppose not, namely that|(θ̂ − θ)T x| > ε. Using Lemma 2, we can lower bound the
quantity∆E(θ̂)2 =

∑m
i=1[(θ − θ̂)T X(i)]2, wherem denotes the number of rows of the matrixX

(equivalently, the number of samples obtained used by the algorithm for training, which we upper-
bounded bym̄), andX(i) denotes the transpose of theith row of X . Finally, we would like to
apply Lemma 1 to prove that, with high probability, the squared error ofθ̂ will be larger than the
squared error of predictions based on the true parameter vectorθ, which contradicts the fact that̂θ
was chosen to minimize the term

∑m
i=1(yi − θ̂T X(i))2. One problem with this approach is that

Lemma 1 applies to a fixed̂θ and the least-squares computation of Algorithm 1 may choose anyθ̂ in
the infinite set{θ̂ ∈ R

n such that ||θ̂|| ≤ 1}. Therefore, we use a uniform discretization to form a

4

finite cover of[−1, 1]n and apply the theorem to the member of the cover closest toθ̂. To guarantee
that the total failure probability of the algorithm is at mostδ, we apply the union bound over all
(finitely many) applications of Lemma 1.2

1.3 Notes

In our formulation of KLRP we assumed an upper bound of1 on the the two-norm of the inputsxi,
outputsyi, and the true parameter vectorθ. By appropriate scaling of the inputs and/or outputs, we
could instead allow a larger (but still finite) bound.

Our analysis of Algorithm 1 showed that it is possible to solve KLRP with polynomialsample com-
plexity (where the sample complexity is defined as the number of timestepst that the algorithm
outputs∅ for the current inputxt), with high probability. We note that the algorithm also has poly-
nomial computational complexityper timestep, given the tractability of solving norm-constrained
least-squares problems (see Chapter 12 of the book by Golub and Van Loan (1996)).

1.4 Related Work

Work on linear regression is abundant in the statistics community (Seber & Lee, 2003). The use
of the quantities̄v andq̄ to quantify the level of certainty of the linear estimator was introduced by
Auer (2002). Our analysis differs from that by Auer (2002) because we do not assume that the input
vectorsxi are fixed ahead of time, but rather that they may be chosen in an adversarial manner. This
property is especially important for the application of regression techniques to the full RL problem,
rather than the Associative RL problem considered by Auer (2002). Our analysis has a similar flavor
to some, but not all, parts of the analysis by Abbeel and Ng (2005). However, a crucial difference
of our framework and analysis is the use of output∅ to signify uncertainty in the current estimate,
which allows for efficient exploration in the application to RL as described in the next section.

2 Application to Reinforcement Learning

The general reinforcement-learning (RL) problem is how to enable an agent (computer program,
robot,etc.) to maximize an external reward signal by acting in an unknown environment. To ensure
a well-defined problem, we make assumptions about the types of possible worlds. To make the
problem tractable, we settle for near-optimal (rather than optimal) behavior on all but a polynomial
number of timesteps, as well as a small allowable failure probability. This type of performance
metric was introduced by Kakade (2003), in the vein of recent RL analyses (Kearns & Singh, 2002;
Brafman & Tennenholtz, 2002).

In this section, we formalize a specific RL problem where the environment is mathematically mod-
eled by a continuous MDP taken from a rich class of MDPs. We present an algorithm and prove
that it learns efficiently within this class. The algorithm is “model-based” in the sense that it con-
structs an explicit MDP that it uses to reason about future actions in the true, but unknown, MDP
environment. The algorithm uses, as a subroutine, any admissible algorithm for the KWIK Linear
Regression Problem introduced in Section 1. Although our main result is for a specific class of con-
tinuous MDPs, albeit an interesting and previously studied one, our technique is more general and
should be applicable to many other classes of MDPs as described in the conclusion.

2.1 Problem Formulation

The model we use is slightly modified from the model described by Abbeel and Ng (2005). The
main difference is that we consider discounted rather than undiscounted MDPs and we don’t require
the agent to have a “reset” action that takes it to a specified start state (or distribution). LetPS denote
the set of all (measurable) probability distributions over the setS. The environment is described by
a discounted MDPM = 〈S, A, T, R, γ〉, whereS = R

nS is the state space,A = R
nA is the action

space,T : S × A → PS is the unknown transition dynamics,γ ∈ [0, 1) is the discount factor, and
R : S × A → R is the known reward function.1 For each timestept, let xt ∈ S denote the current

1All of our results can easily be extended to the case of an unknown reward function with a suitable linearity
assumption.

5

state andut ∈ A the current action. The transition dynamicsT satisfy

xt+1 = Mφ(xt, ut) + wt, (8)

wherext+1 ∈ S, φ(·, ·) : R
nS+nA → R

n is a (basis or kernel) function satisfying||φ(·, ·)|| ≤ 1,
andM is annS × n matrix. We assume that the2-norm of each row ofM is bounded by1.2 Each
component of the noise termwt ∈ R

nS is chosen i.i.d. from a normal distribution with mean0
and varianceσ2 for a known constantσ. If an MDP satisfies the above conditions we say that it
is linearly parameterized, because the next-statext+1 is a linear function of the vectorφ(xt, ut)
(which describes the current state and action) plus a noise term.

We assume that the learner (also called theagent) receivesnS , nA, n, R, φ(·, ·), σ, andγ as input,
with T initially being unknown. The learning problem is defined as follows. The agent always
occupies a single states of the MDPM . The agent is givens and chooses an actiona. It then
receives animmediate rewardr ∼ R(s, a) and is transported to anext states′ ∼ T (s, a). This
procedure then repeats forever. The first state occupied by the agent may be chosen arbitrarily.

A policy is any strategy for choosing actions. We assume (unless noted otherwise) that rewards all lie
in the interval[0, 1]. For any policyπ, letV π

M (s) (Qπ
M (s, a)) denote the discounted, infinite-horizon

value (action-value) function forπ in M (which may be omitted from the notation) from states.
Specifically, letst andrt be thetth encountered state and received reward, respectively, resulting
from execution of policyπ in some MDPM from states0. Then,V π

M (s) = E[
∑∞

j=0 γjrj |s0 = s].
The optimal policy is denotedπ∗ and has value functionsV ∗

M (s) andQ∗
M (s, a). Note that a policy

cannot have a value greater thanvmax := 1/(1 − γ) by the assumption of a maximum reward of1.

2.2 Algorithm

First, we discuss how to use an admissible learning algorithm for KLRP to construct an MDP model.
We proceed by specifying the transition model for each of the (infinitely many) state-action pairs.
Given a fixed state-action pair(s, a), we need to estimate the next-state distribution of the MDP from
past experience, which consists of input state-action pairs (transformed by the nonlinear functionφ)
and output next states. For each state componenti ∈ {1, . . . , nS}, we have a separate learning
problem that can be solved by any instanceAi of an admissible KLRP algorithm.3 If each instance
makes a valid prediction (not∅), then we simply construct an approximate next-state distribution
whoseith component is normally distributed with varianceσ2 and whose mean is given by the
prediction ofAi (this procedure is equivalent to constructing an approximate transition matrixM̂

whoseith row is equal to the transpose of the approximate parameter vectorθ̂ learned byAi).

If any instance of our KLRP algorithm predicts∅ for state-action pair(s, a), then we cannot estimate
the next-state distribution. Instead, we makes highly rewarding in the MDP model to encourage
exploration, as done in the R-MAX algorithm (Brafman & Tennenholtz, 2002). Following the ter-
minology introduced by Kearns and Singh (2002), we call such a state (state-action) an “unknown”
state (state-action) and we ensure that the value function of our model assignsvmax (maximum pos-
sible) to states. The standard way to satisfy this condition for finite MDPs is to make the transition
function for actiona from states a self-loop with reward1 (yielding a value ofvmax = 1/(1−γ) for
states). We can affect the exact same result in a continuous MDP by adding a component to each
state vectors and to each vectorφ(s, a) for every state-action pair(s, a). If (s, a) is “unknown” we
set the value of the additional components (ofφ(s, a) ands) to 1, otherwise we set it to0. We add an
additional row and column toM that preserves this extra component (during the transformation from
φ(s, a) to the next states′) and otherwise doesn’t change the next-state distribution. Finally, we give
a reward of1 to any unknown state, leaving rewards for the known states unchanged. Pseudocode
for the resulting KWIK-RMAX algorithm is provided in Algorithm 2.

Theorem 2 For anyε andδ, theKWIK-RMAX algorithm executes anε-optimal policy on at most
a polynomial (inn, nS , 1/ε, 1/δ, and1/(1 − γ)) number of steps, with probability at least1 − δ.

2The algorithm can be modified to deal with bounds (on the norms of the rows ofM) that are larger than
one.

3One minor technical detail is that our KLRP setting requires bounded outputs (see Definition 1) while our
application to MBRL requires dealing with normal, and hence unbounded outputs. This is easily dealt with by
ignoring any extremely large (or small) outputs and showing that the resulting norm of thetruncated normal
distribution learned by the each instanceAi is very close to the norm of the untruncated distribution.

6

Algorithm 2 KWIK-RMAX Algorithm

0: Inputs: nS , nA, n, R, φ(·, ·), σ, γ, ε, δ, and admissible learning algorithmModelLearn.
1: for all state componentsi ∈ {1, . . . , nS} do

2: Initialize a new instantiation ofModelLearn, denotedAi, with inputsC ε(1−γ)2

2
√

n
and δ/nS,

for inputsε andδ, respectively, in Definition 2, and whereC is some constant determined by
the analysis.

3: end for
4: Initialize an MDPModel with state spaceS, action spaceA, reward functionR, discount factor

γ and transition function specified byAi for i ∈ {1, . . . , nS} as described above.
5: for t = 1, 2, 3, · · · do
6: Let s denote the state at timet.
7: Choose actiona := π̂∗(s) whereπ̂∗ is the optimal policy of the MDPModel.
8: Let s′ be the next state after executing actiona.
9: for all factorsi ∈ {1, . . . , n} do

10: Present input-output pair(φ(s, a), s′(i)) toAi,a.
11: end for
12: Update MDPModel.
13: end for

2.3 Analysis

Proof sketch: (of Theorem 2)

It can be shown that, with high probability, policŷπ∗ is either anε-optimal policy (V π̂∗

(s) ≥
V ∗(s) − ε) or it is very likely to lead to an unknown state. However, the number of times the latter
event can occur is bounded by the maximum number of times the instancesAi can predict∅, which
is polynomial in the relevant parameters.2

2.4 The Planning Assumption

We have shown that the KWIK-RMAX Algorithm acts near-optimally on all but a small (poly-
nomial) number of timesteps, with high probability. Unfortunately, to do so, the algorithm must
solve its internal MDP model completely and exactly. It is easy to extend the analysis to allowε-
approximate solution. However, it is not clear whether even this approximate computation can be
done efficiently. In any case, discretization of the state space can be used, which yields computa-
tional complexity that is exponential in the number of (state and action) dimensions of the problem,
similar to the work of Chow and Tsitsiklis (1991). Alternatively, sparse sampling can be used, whose
complexity has no dependence on the size of the state space but depends exponentially on the time
horizon (≈ 1/(1 − γ)) (Kearns et al., 1999). Practically, there are many promising techniques that
make use of value-function approximation for fast and efficient solution (planning) of MDPs (Sutton
& Barto, 1998). Nevertheless, it remains future work to fully analyze the complexity of planning.

2.5 Related Work

The general exploration problem in continuous state spaces was considered by Kakade et al. (2003),
and at a high level our approach to exploration is similar in spirit. However, a direct application
of Kakade et al.’s (2003) algorithm to linearly-parameterized MDPs results in an algorithm whose
sample complexity scales exponentially, rather than polynomially, with the state-space dimension.
That is because the analysis uses a factor of the size of the “cover” of the metric space. Reinforce-
ment learning in continuous MDPs with linear dynamics was studied by Fiechter (1997). However,
an exact linear relationship between the current state and next state is required for this analysis to
go through, while we allow the current state to be transformed (for instance, adding non-linear state
features) through non-linear functionφ. Furthermore, Fiechter’s algorithm relied on the existence
of a “reset” action and a specific form of reward function. These assumptions admit a solution
that follows a fixed policy and doesn’t depend on the actual history of the agent or the underlying
MDP. The model that we consider, linearly parameterized MDPs, is taken directly from the work by
Abbeel and Ng (2005), where it was justified in part by an application to robotic helicopter flight. In

7

that work, a provably efficient algorithm was developed in theapprenticeship RLsetting. In this set-
ting, the algorithm is given limited access (polynomial number of calls) to a fixed policy (called the
teacher’s policy). With high probably, a policy is learned that is nearly as good as the teacher’s pol-
icy. Although this framework is interesting and perhaps more useful for certain applications (such as
helicopter flying), it requiresa priori expert knowledge (to construct the teacher) and alleviates the
problem of exploration altogether. In addition, Abbeel and Ng’s (2005) algorithm also relies heavily
on a reset assumption, while ours does not.

Conclusion

We have provided a provably efficient RL algorithm that learns a very rich and important class of
MDPs with continuous state and action spaces. Yet, many real-world MDPs do not satisfy the lin-
earity assumption, a concern we now address. Our RL algorithm utilized a specific online linear
regression algorithm. We have identified certain interesting and general properties (see Definition 2)
of this particular algorithm that support online exploration. These properties are meaningful without
the linearity assumption and should be useful for development of new algorithms for different mod-
eling assumptions. Our real goal of the paper is to work towards developing a general technique for
applying regression algorithms (as black boxes) to model-based reinforcement-learning algorithms
in a robust and formally justified way. We believe the approach used with linear regression can be
repeated for other important classes, but we leave the details as interesting future work.

Acknowledgements

We thank NSF and DARPA IPTO for support.

References

Abbeel, P., & Ng, A. Y. (2005). Exploration and apprenticeship learning in reinforcement learning.ICML ’05:
Proceedings of the 22nd international conference on Machine learning(pp. 1–8). New York, NY, USA:
ACM Press.

Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs.Journal of Machine Learning
Research, 3, 397–422.

Brafman, R. I., & Tennenholtz, M. (2002). R-MAX—a general polynomial time algorithm for near-optimal
reinforcement learning.Journal of Machine Learning Research, 3, 213–231.

Chow, C.-S., & Tsitsiklis, J. N. (1991). An optimal one-way multigrid algorithmfor discrete time stochastic
control. IEEE Transactions on Automatic Control, 36, 898–914.

Fiechter, C.-N. (1997). PAC adaptive control of linear systems.Tenth Annual Conference on Computational
Learning Theory (COLT)(pp. 72–80).

Golub, G. H., & Van Loan, C. F. (1996).Matrix computations. Baltimore, Maryland: The Johns Hopkins
University Press. 3rd edition.

Kakade, S. M. (2003).On the sample complexity of reinforcement learning. Doctoral dissertation, Gatsby
Computational Neuroscience Unit, University College London.

Kakade, S. M. K., Kearns, M. J., & Langford, J. C. (2003). Exploration in metric state spaces.Proceedings of
the 20th International Conference on Machine Learning (ICML-03).

Kearns, M., Mansour, Y., & Ng, A. Y. (1999). A sparse sampling algorithm for near-optimal planning in
large Markov decision processes.Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI-99)(pp. 1324–1331).

Kearns, M. J., & Singh, S. P. (2002). Near-optimal reinforcement learning in polynomial time.Machine
Learning, 49, 209–232.

Ng, A. Y., Kim, H. J., Jordan, M. I., & Sastry, S. (2003). Autonomous helicopter flight via reinforcement
learning.Advances in Neural Information Processing Systems 16 (NIPS-03).

Seber, G. A. F., & Lee, A. J. (2003).Linear regression analysis. Wiley-Interscience.

Sutton, R. S., & Barto, A. G. (1998).Reinforcement learning: An introduction. The MIT Press.

Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program, achieves master-level play.Neural
Computation, 6, 215–219.

8

