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Abstract

Active learning sequentially selects unlabeled instances to label with the goal of
reducing the effort needed to learn a good classifier. Most previous studies in ac-
tive learning have focused on selecting one unlabeled instance to label at a time
while retraining in each iteration. Recently a few batch mode active learning
approaches have been proposed that select a set of most informative unlabeled
instances in each iteration under the guidance of heuristic scores. In this paper,
we propose a discriminative batch mode active learning approach that formulates
the instance selection task as a continuous optimization problem over auxiliary
instance selection variables. The optimization is formulated to maximize the dis-
criminative classification performance of the target classifier, while also taking
the unlabeled data into account. Although the objective is not convex, we can
manipulate a quasi-Newton method to obtain a good local solution. Our empirical
studies on UCI datasets show that the proposed active learning is more effective
than current state-of-the art batch mode active learning algorithms.

1 Introduction

Learning a good classifier requires a sufficient number of labeled training instances. In many cir-
cumstances, unlabeled instances are easy to obtain, while labeling is expensive or time consuming.
For example, it is easy to download a large number of webpages, however, it typically requires man-
ual effort to produce classification labels for these pages. Randomly selecting unlabeled instances
for labeling is inefficient in many situations, since non-informative or redundant instances might be
selected. Hence, active learning (i.e., selective sampling) methods have been adopted to control the
labeling process in many areas of machine learning, with the goal of reducing the overall labeling
effort.

Given a large pool of unlabeled instances, active learning provides a way to iteratively select the
most informative unlabeled instances—the queries—to label. This is the typical setting of pool-
based active learning. Most active learning approaches, however, have focused on selecting only one
unlabeled instance at one time, while retraining the classifier on each iteration. When the training
process is hard or time consuming, this repeated retraining is inefficient. Furthermore, if a parallel
labeling system is available, a single instance selection system can make wasteful use of the re-
source. Thus, a batch mode active learning strategy that selects multiple instances each time is more
appropriate under these circumstances. Note that simply using a single instance selection strategy to
select more than one unlabeled instance in each iteration does not work well, since it fails to take the
information overlap between the multiple instances into account. Principles for batch mode active
learning need to be developed to address the multi-instance selection specifically. In fact, a few
batch mode active learning approaches have been proposed recently [2, 8, 9, 17, 19]. However, most
extend existing single instance selection strategies into multi-instance selection simply by using a
heuristic score or greedy procedure to ensure both the instance diversity and informativeness.



In this paper, we propose a new discriminative batch mode active learning strategy that exploits
information from an unlabeled set to attempt to learn a good classifier directly. We define a good
classifier to be one that obtains high likelihood on the labeled training instances and low uncertainty
on labels of the unlabeled instances. We therefore formulate the instance selection problem as an
optimization problem with respect to auxiliary instance selection variables, taking a combination
of discriminative classification performance and label uncertainty as the objective function. Un-
fortunately, this optimization problem is NP-hard, thus seeking the optimal solution is intractable.
However, we can approximate it locally using a second order Taylor expansion and obtain a subop-
timal solution using a quasi-Newton local optimization technique.

The instance selection variables we introduce can be interpreted as indicating self-supervised, op-
timistic guesses for the labels of the selected unlabeled instances. A concern about the instance
selection process, therefore, is that some information in the unlabeled data that is inconsistent with
the true classification partition might mislead instance selection. Fortunately, the active learning
method can immediately tell whether it has been misled, by comparing the true labels with its opti-
mized guesses. Therefore, one can then adjust the active selection strategy to avoid such over-fitting
in the next iteration, whenever a mismatch between the labeled and unlabeled data has been detected.
An empirical study on UCI datasets shows that the proposed batch mode active learning method is
more effective than some current state-of-the-art batch mode active learning algorithms.

2 Reated Work

Many researchers have addressed the active learning problem in a variety of ways. Most have
focused on selecting a single most informative unlabeled instance to label at a time. Many such
approaches therefore make myopic decisions based solely on the current learned classifier, and select
the unlabeled instance for which there is the greatest uncertainty. [10] chooses the unlabeled instance
with conditional probability closest to 0.5 as the most uncertain instance. [5] takes the instance on
which a committee of classifiers disagree the most. [3, 18] suggest choosing the instance closest
to the classification boundary, where [18] analyzes this active learning strategy as a version space
reduction process. Approaches that exploit unlabeled data to provide complementary information
for active learning have also been proposed. [4, 20] exploit unlabeled data by using the prior density
p(x) as uncertainty weights. [16] selects the instance that optimizes the expected generalization error
over the unlabeled data. [11] uses an EM approach to integrate information from unlabeled data. [13,
22] consider combining active learning with semi-supervised learning. [14] presents a mathematical
model that explicitly combines clustering and active learning. [7] presents a discriminative approach
that implicitly exploits the clustering information contained in the unlabeled data by considering
optimistic labelings.

Since single instance selection strategies require tedious retraining with each instance labeled (and,
moreover, since they cannot take advantage of parallel labeling systems), many batch mode active
learning methods have recently been proposed. [2, 17, 19] extend single instance selection strategies
that use support vector machines. [2] takes the diversity of the selected instances into account, in
addition to individual informativeness. [19] proposes a representative sampling approach that selects
the cluster centers of the instances lying within the margin of a support vector machine. [8, 9]
choose multiple instances that efficiently reduce the Fisher information. Overall, these approaches
use a variety of heuristics to guide the instance selection process, where the selected batch should
be informative about the classification model while being diverse enough so that their information
overlap is minimized.

Instead of using heuristic measures, in this paper, we formulate batch mode active learning as an
optimization problem that aims to learn a good classifier directly. Our optimization selects the best
set of unlabeled instances and their labels to produce a classifier that attains maximum likelihood
on labels of the labeled instances while attaining minimum uncertainty on labels of the unlabeled
instances. It is intractable to conduct an exhaustive search for the optimal solution; our optimization
problem is NP-hard. Nevertheless we can exploit a second-order Taylor approximation and use
a quasi-Newton optimization method to quickly reach a local solution. Our proposed approach
provides an example of exploiting optimization techniques in batch model active learning research,
much like other areas of machine learning where optimization techniques have been widely applied

[1].



3 Logistic Regression

In this paper, we use binary logistic regression as the base classification algorithm. Logistic re-
gression is a well-known and mature statistical model for probabilistic classification that has been
actively studied and applied in machine learning. Given a test instance X, binary logistic regression
models the conditional probability of the class label y € {+1,—1} by

1
1+ exp(—yw 'x)

pylx, w) =

where w is the model parameter. Here the bias term is omitted for simplicity of notation. The model
parameters can be trained by maximizing the likelihood of the labeled training data, i.e., minimizing
the logloss of the training instances
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where L indexes the training instances, and 5
over-fitting problems. Logistic regression is a robust classifier that can be trained efficiently using
various convex optimization techniques [12]. Although it is a linear classifier, it is easy to obtain

nonlinear classifications by simply introducing kernels [21].

4 Discriminative Batch Mode Active L earning

For active learning, one typically encounters a small number of labeled instances and a large number
of unlabeled instances. Instance selection strategies based only on the labeled data therefore ignore
potentially useful information embodied in the unlabeled instances. In this section, we present
a new discriminative batch mode active learning algorithm for binary classification that exploits
information in the unlabeled instances. The proposed approach is discriminative in the sense that
(1) it selects a batch of instances by optimizing a discriminative classification model; and (2) it
selects instances by considering the best discriminative configuration of their labels leading to the
best classifier. Unlike other batch mode active learning methods, which identify the most informative
batch of instances using heuristic measures, our approach aims to identify the batch of instances that
directly optimizes classification performance.

4.1 Optimization Problem

An optimal active learning strategy selects a set of instances to label that leads to learning the best
classifier. We assume the learner selects a set of a fixed size m, which is chosen as a parameter. Su-
pervised learning methods typically maximize the likelihood of training instances. With unlabeled
data being available, semi-supervised learning methods have been proposed that train by simultane-
ously maximizing the likelihood of labeled instances and minimizing the uncertainty of the labels
for unlabeled instances [6]. That is, to achieve a classifier with better generalization performance,
one can maximizing the expected log likelihood of the labeled data and minimize the entropy of the
missing labels on the unlabeled data, according to

> log Pyilxi,w) +a Y Y P(ylx;, w)log P(ylx;, w) )
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where « is a tradeoff parameter used to adjust the relative influence of the labeled and unlabeled data,
w specifies the conditional model, L indexes the labeled instances, and U indexes the unlabeled
instances.

The new active learning approach we propose is motivated by this semi-supervised learning princi-
ple. We propose to select a batch of m unlabeled instances, S, to label in each iteration from the
total unlabeled set U , with the goal of maximizing the objective (2). Specifically, we define the
score function for a set of selected instances S in iteration ¢ 4 1 as follows
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where w!t! is the parameter set for the conditional classification model trained on the new la-
beled set L™ = L' U S, and H (y|x;, w'™!) denotes the entropy of the conditional distribution
P(y|x;j, w'™h), such that

H(ylx;,w'™) = — Z P(ylx;, w't) log P(y|x;,w')
y==%1

The proposed active learning strategy is to select the batch of instances that has the highest score.

In practice, however it is problematic to use the f(S) score directly to guide instance selection: the
labels for instances S are not known when the selection is conducted. One typical solution for this
problem is to use the expected f(.5) score computed under the current conditional model specified
by w!

E[f(S)] =) _ P(yslxs,w")f(S)

However, using P(ys|xgs, w') as weights, this expectation might aggravate any ambiguity that al-
ready exists in the current classification model w!, since it has been trained on a very small labeled
set L!. Instead, we propose an optimistic strategy: use the best f(S) score that the batch of unla-
beled instances .S can achieve over all possible label configurations. This optimistic scoring function
can be written as

_ . . t+1y . t+1
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Thus the problem becomes how to select a set of instances S that achieves the best optimistic f(S)
score defined in (4). Although this problem can be solved using an exhaustive search on all size
m subsets, S, of the unlabeled set U, it is intractable to do so in practice since the search space is
exponentially large. Explicit heuristic search approaches seeking a local optima do not exist either,
since it is hard to define an efficient set of operators that can transfer from one position to another
one within the search space while guaranteeing improvements to the optimistic score.

Instead, in this paper we propose to approach the problem by formulating optimistic batch mode
active learning as an explicit mathematical optimization. Given the labeled set L? and unlabeled set
U after iteration ¢, the task in iteration ¢ + 1 is to select a size m subset S from U* that achieves the
best score defined in (4). To do so, we first introduce a set of {0, 1}-valued instance selection vari-
ables . In particular, g is a |[U*| x 2 sized indicator matrix, where each row vector H; corresponds
to the two possible labels {+1, —1} of the jth instance in U*. Then the optimistic instance selection
for iteration ¢ + 1 can be formulated as the following optimization problem

max > log P(yilxi, W) + 8 Y Vil —a > (1 - pie)H(ylx;, w't)  (5)
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where v;’-'H is a row vector [log P(y = 1|x;,wi™) log P(y = —1|x;,w!*1)]; e is a 2-entry

column vector with all 1s; 1 is a |U t\—entry column vector with all 1s; E is a U! x 2 sized matrix
with all Is; e is matrix inner product; € is a user-provided parameter that controls class balance
during instance selection; and 3 is a parameter that we will use later to adjust our belief in the
guessed labels. Note that, the selection variables p not only choose instances from U?, but also
select labels for the selected instances. Solving this optimization yields the optimal g for instance
selection in iteration ¢ 4 1.

The optimization problem (5) is an integer programming problem that produces equivalent results
to using exhaustive search to optimize (4), except that we have additional class balance constraints
(9). Integer programming is an NP-hard problem. Thus, the first step toward solving this problem
in practice is to relax it into a continuous optimization by replacing the integer constraints (6) with



continuous constraints 0 < p < 1, yielding the relaxed formulation
mﬁx Z log P(yi|xi, w'™) + 3 Z V§-+1u; -« Z (1- uje)H(y|xj,Wt+1) (10)
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If we can solve this continuous optimization problem, a greedy strategy can then be used to recover
the integer solution by iteratively setting the largest non-integer p value to 1 with respect to the
constraints. However, this relaxed optimization problem is still very complex: the objective function
(10) is not a concave function of u." Nevertheless, standard continuous optimization techniques can
be used to solve for a local maxima.

4.2 Quasi-Newton Method

To derive a local optimization technique, consider the objective function (10) as a function of the
instance selection variables

flp) = Z log P(yi|x;, w'™) + 3 Z v;-“u;r —a Z (1- uje)H(y|xj,wt+1) (15)
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As noted, this function is non-concave, therefore convenient convex optimization techniques that
achieve global optimal solutions cannot be applied. Nevertheless, a local optimization approach
exploiting quasi-Newton methods can quickly determine a local optimal solution p*. Such a local
optimization approach iteratively updates p to improve the objective (15), and stops when a local
maximum is reached. At each iteration, it makes a local move that allows it to achieve the largest
improvement in the objective function along the direction decided by cumulative information ob-
tained from the sequence of local gradients. Suppose fi(; is the starting point for iteration k. We

first derive a second-order Taylor approximation f(g) for the objective function f(u) at g,

~ 1
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where vec(-) is a function that transforms a matrix into a column vector, and V fi, = V f(f;,) and
Hj, denote the gradient vector and Hessian matrix of f(u) at point (i, respectively. Since our
original optimization function f () is smooth, the quadratic function f (p) can reasonably approx-
imate it in a small neighborhood of fi;). Thus we can determine our update direction by solving
a quadratic programming with the objective (16) and linear constraints (11), (12), (13) and (14).
Suppose the optimal solution for this quadratic program is [Lz‘k.). Then a reasonable update direction
di, = (k) — (k) can be obtained for iteration k. Given this direction, a backtrack line search can be
used to guarantee improvement over the original objective (15). Note that for each different value of
w, w1 has to be retrained on L! U S to evaluate the new objective value, since S is determined by
p. In order to reduce the computational cost, we approximate the training of w'*! in our empirical
study, by limiting it to a few Newton-steps with a starting point given by w' trained only on L*.

The remaining issue is to compute the local gradient V f (ﬁ( k)) and the Hessian matrix Hy. We

assume w'T! remains constant with small local updates on f. Thus the local gradient can be ap-
proximated as

Vf(ﬁj(k)) =p V;“ +a [H(Z/|Xj7 WtH)v H(ylx;, Wt“)]
and therefore V f(f1(;) can be constructed from the individual V f (ﬁj(k)). We then use BFGS

(Broyden-Fletcher-Goldfarb-Shanno) to compute the Hessian matrix, which starts as an identity
matrix for the first iteration, and is updated in each iteration as follows [15]
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"Note that w'™? is the classification model parameter set trained on L'™ = L' U S, where S indexes the
unlabeled instances selected by pt. Therefore w'™! is a function of .



where yi = V fr11 — V fi, and si, = [ 11y — Fgy- This Hessian matrix accumulates information
from the sequences of local gradients to help determine better update directions.

4.3 Adjustment Strategy

In the discriminative optimization problem formulated in Section 4.1, the p variables are used to
optimistically select both instances and their labels, with the goal of achieving the best classification
model according to the objective (5). However, when the labeled set is small and the discriminative
partition (clustering) information contained in the large unlabeled set is inconsistent with the true
classification, the labels optimistically guessed for the selected instances through g might not match
the underlying true labels. When this occurs, the instance selected will not be very useful for iden-
tifying the true classification model. Furthermore, the unlabeled data might continue to mislead the
next instance selection iteration.

Fortunately, we can immediately identify when the process has been misled once the true labels for
the selected instances have been obtained. If the true labels are different from the labels guessed by
the optimization, we need to make an adjustment for the next instance selection iteration. We have
tried a few adjustment strategies in our study, but report the most effective one in this paper. Note
that the being-misled problem is caused by the unlabeled data, which affects the target classification
model through the term 55 jeut V§+1/1,;-r. Therefore, a simple way to fix the problem is to adjust
the parameter 3. Specifically, at the end of each iteration ¢, we obtain the true labels y g for the
selected instances S, and compare them with our guessed labels y ¢ indicated by p*. If they are
consistent, we will set 5 = 1, which means we trust the partition information from the unlabeled
data as same as the label information in the labeled data for building the classification model. If
Ys # ¥s, apparently we should reduce the (3 value, that is, reducing the influence of the unlabeled
data for the next selection iteration ¢ + 1. We use a simple heuristic procedure to determine the (3
value in this case. Starting from 3 = 1, we then multiplicatively reduce its value by a small factor,
0.5, until a better objective value for (15) can be obtained when replacing the guessed indicator
variables p* with the true label indicators. Note that, if we reduce ( to zero, our optimization
problem will be exactly equivalent to picking the most uncertain instance (when m = 1).

5 Experiments

To investigate the empirical performance of the proposed discriminative batch mode active learning
algorithm (Discriminative), we conducted a set of experiments on nine two-class UCI datasets, com-
paring with a baseline random instance selection algorithm (Random), a non-batch myopic active
learning method that selects the most uncertain instance each time (MostUncertain), and two batch
mode active learning methods proposed in the literature: svmD, an approach that incorporates diver-
sity in active learning with SVM [2]; and Fisher, an approach that uses Fisher information matrix for
instance selection [9]. The UCI datasets we used include (we show the name, followed by the num-
ber of instances and the number of attributes): Australian(690;14), Cleve(303;13), Corral(128;6),
Crx(690;15), Flare(1066;10), Glass2(163;9), Heart(270;13), Hepatitis(155;20) and Vote(435;15).

We consider a hard case of active learning, where only a few labeled instances are given at the
start. In each experiment, we start with four randomly selected labeled instances, two in each class.
We then randomly select 2/3 of the remaining instances as the unlabeled set, using the remaining
instances for testing. All the algorithms start with the same initial labeled set, unlabeled set and
testing set. For a fixed batch size m, each algorithm repeatedly select m instances to label each time.
In this section, we report the experimental results with m = 5, averaged over 20 times repetitions.

Figure 1 shows the comparison results on the nine UCI datasets. These results suggest that although
the baseline random sampling method, Random, works surprisingly well in our experiments, the
proposed algorithm, Discriminative, always performs better or at least achieves a comparable per-
formance. Moreover, Discriminative also apparently outperforms the other two batch mode algo-
rithms, svmD and Fisher, on five datasets—Australian, Cleve, Flare, Heart and Hepatitis, and reaches
a tie on two datasets—Crx and Vote. The myopic most uncertain selection method, MostUncertain,
shows an overall inferior performance to Discriminative on Australian, Cleve, Crx, Heart and Hep-
atitis, and achieves a tie on Flare and Vote. However, Discriminative demonstrates weak perfor-



australian cleve corral

08 0.8]
0.9
0.75] 0.75]
oy Iy 2085
I I I
s s s
3 0.7 3 07 3
Q Q Q
Q o Q
< < < 0.8]
0.65] 0.65]
—+Random —+Random —+Random
06 ~$~ MostUncertain sl I ~$- MostUncertain 0.75 ~5- MostUncertain
——svmD I/ —9—svmD ~—svmD
~©—Fisher —©~Fisher ~©—Fisher
—#— Discriminative ~4#-D —#— Discriminative
0 0 20 40 60 80 100 0 0 20 40 60 80 100 0’70 10 20 30 40 50 60 0 80
Number of Labeled Instances Number of Labeled Instances Number of Labeled Instances
crx flare glass2
0.85] T T T T T T 0. T T T
08  he¥ A o004
08
0.7|
0.75]
0.75]
0.7
Y Iy 2065
© @ I
g g g
3 0.7 3 0.65] 3
o o Q
o (5} Q
< < o6 < 0§
0.65]
——Random 055 ——Random —— Random
06 ~$~ MostUncertain B¢ 5> MostUncertain 055 ~b- MostUncertain
~6—svmD 05| —9-svmD ~6-svmD
~©—Fisher —©~Fisher ~©~ Fisher
—#— Discriminative —4—Di 4= Discriminative
0 0 20 40 60 80 100 o4 0 20 40 60 80 100 0 0 20 40 60 80 100
Number of Labeled Instances Number of Labeled Instances Number of Labeled Instances

heart hepatitis vote

0.75] 08

Accuracy
-
|4
Accuracy
-
)
Accuracy

0.65]

o
2

——Random ——Random d ——Random

06 ~b—MostUncertain 0.65] / ~b—MostUncertain ~H— MostUncertain
~—svmD ~—svmD ~6—svmD
—©—Fisher —©—Fisher ~©~Fisher
—#— Discriminative ) ) ——Di —#— Discriminative

100 45 0 100

2‘0 4‘0 éO 80 1‘0 1‘5 Z‘U 25 3‘0 35 Z‘U 4‘0 (;0 80
Number of Labeled Instances Number of Labeled Instances Number of Labeled Instances

Figure 1: Results on UCI Datasets

mance on two datasets—Corral and Glass2, where the evaluation lines for most algorithms in the
figures are strangely very bumpy. The reason behind this remains to be investigated.

These empirical results suggest that selecting unlabeled instances through optimizing the classifi-
cation model directly would obtain more relevant and informative instances, comparing with using
heuristic scores to guide the selection. Although the original optimization problem formulated is
NP-hard, a relaxed local optimization method that leads to a local optimal solution still works effec-
tively.

6 Conclusion

In this paper, we proposed a discriminative batch mode active learning approach that exploits in-
formation in unlabeled data and selects a batch of instances by optimizing the target classification
model. Although the proposed technique could be overly optimistic about the information presented
by the unlabeled set, and consequently be misled, this problem can be identified immediately after
obtaining the true labels. A simple adjustment strategy can then be used to rectify the problem in the
following iteration. Experimental results on UCI datasets show that this approach is generally more
effective comparing with other batch mode active learning methods, a random sampling method,
and a myopic non-batch mode active learning method. Our current work is focused on 2-class clas-
sification problems, however, it is easy to be extended to multiclass classification problems.
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