
Agreement-Based Learning

Percy Liang
Computer Science Division

University of California
Berkeley, CA 94720

pliang@cs.berkeley.edu

Dan Klein
Computer Science Division

University of California
Berkeley, CA 94720

klein@cs.berkeley.edu

Michael I. Jordan
Computer Science Division

University of California
Berkeley, CA 94720

jordan@cs.berkeley.edu

Abstract

The learning of probabilistic models with many hidden variables and non-
decomposable dependencies is an important and challenging problem. In contrast
to traditional approaches based on approximate inference in a single intractable
model, our approach is to train a set of tractable submodels by encouraging them
to agree on the hidden variables. This allows us to capture non-decomposable
aspects of the data while still maintaining tractability. We propose an objective
function for our approach, derive EM-style algorithms for parameter estimation,
and demonstrate their effectiveness on three challenging real-world learning tasks.

1 Introduction

Many problems in natural language, vision, and computational biology require the joint modeling of
many dependent variables. Such models often include hidden variables, which play an important role
in unsupervised learning and general missing data problems. The focus of this paper is on models
in which the hidden variables have natural problem domain interpretations and are the object of
inference.

Standard approaches for learning hidden-variable models involve integrating out the hidden vari-
ables and working with the resulting marginal likelihood. However, this marginalization can be in-
tractable. An alternative is to develop procedures that merge the inference results of several tractable
submodels. An early example of such an approach is the use of pseudolikelihood [1], which deals
with many conditional models of single variables rather than a single joint model. More generally,
composite likelihood permits a combination of the likelihoods of subsets of variables [7]. Another
approach is piecewise training [10, 11], which has been applied successfully to several large-scale
learning problems.

All of the above methods, however, focus on fully-observed models. In the current paper, we develop
techniques in this spirit that work for hidden-variable models. The basic idea of our approach is to
create several tractable submodels and train them jointly to agree on their hidden variables. We
present an intuitive objective function and efficient EM-style algorithms for training a collection of
submodels. We refer to this general approach as agreement-based learning.

Sections 2 and 3 presents the general theory for agreement-based learning. In some applications, it
is infeasible computationally to optimize the objective function; Section 4 provides two alternative
objectives that lead to tractable algorithms. Section 5 demonstrates that our methods can be ap-
plied successfully to large datasets in three real world problem domains—grammar induction, word
alignment, and phylogenetic hidden Markov modeling.

1

2 Agreement-based learning of multiple submodels

Assume we have M (sub)models pm(x, z; θm), m = 1, . . . ,M , where each submodel specifies a
distribution over the observed data x ∈ X and some hidden state z ∈ Z . The submodels could be
parameterized in completely different ways as long as they are defined on the common event space
X × Z . Intuitively, each submodel should capture a different aspect of the data in a tractable way.

To learn these submodels, the simplest approach is to train them independently by maximizing the
sum of their log-likelihoods:

Oindep(θ) def= log
∏
m

∑
z

pm(x, z; θm) =
∑
m

log pm(x; θm), (1)

where θ = (θ1, . . . , θM) is the collective set of parameters and pm(x; θm) =
∑

z pm(x, z; θm)
is the likelihood under submodel pm.1 Given an input x, we can then produce an output z by
combining the posteriors pm(z | x; θm) of the trained submodels.

If we view each submodel as trying to solve the same task of producing the desired posterior over
z, then it seems advantageous to train the submodels jointly to encourage “agreement on z.” We
propose the following objective which realizes this insight:

Oagree(θ) def= log
∑
z

∏
m

pm(x, z; θm) =
∑
m

log pm(x; θm) + log
∑
z

∏
m

pm(z | x; θm). (2)

The last term rewards parameter values θ for which the submodels assign probability mass to the
same z (conditioned on x); the summation over z reflects the fact that we do not know what z is.

Oagree has a natural probabilistic interpretation. Imagine defining a joint distribution over M inde-
pendent copies over the data and hidden state, (x1, z1), . . . , (xM , zM), which are each generated
by a different submodel: p((x1, z1), . . . , (xM , zM); θ) =

∏
m p(xm, zm; θm). Then Oagree is the

probability that the submodels all generate the same observed data x and the same hidden state:
p(x1 = · · · = xM = x, z1 = · · · = zM ; θ).

Oagree is also related to the likelihood of a proper probabilistic model pnorm, obtained by normalizing
the product of the submodels, as is done in [3]. Our objective Oagree is then a lower bound on the
likelihood under pnorm:

pnorm(x; θ) def=
∑

z

∏
m pm(x, z; θm)∑

x,z

∏
m
pm(x, z; θm)

≥
∑

z

∏
m pm(x, z; θm)∏

m

∑
x,z
pm(x, z; θm)

= Oagree(θ). (3)

The inequality holds because the denominator of the lower bound contains additional cross terms.
The bound is generally loose, but becomes tighter as each pm becomes more deterministic. Note
that pnorm is distinct from the product-of-experts model [3], in which each “expert” model pm has
its own set of (nuisance) hidden variables: ppoe(x) ∝

∏
m

∑
z pm(x, z; θm). In contrast, pnorm has

one set of hidden variables z common to all submodels, which is what provides the mechanism for
agreement-based learning.

2.1 The product EM algorithm

We now derive the product EM algorithm to maximize Oagree. Product EM bears many striking
similarities to EM: both are coordinate-wise ascent algorithms on an auxiliary function and both
increase the original objective monotonically. By introducing an auxiliary distribution q(z) and
applying Jensen’s inequality, we can lower bound Oagree with an auxiliary function L:

Oagree(θ) = log
∑
z

q(z)
∏
m pm(x, z; θm)

q(z)
≥ Eq(z) log

∏
m pm(x, z; θm)

q(z)
def= L(θ, q) (4)

The product EM algorithm performs coordinate-wise ascent on L(θ, q). In the (product) E-step, we
optimize L with respect to q. Simple algebra reveals that this optimization is equivalent to mini-
mizing a KL-divergence: L(θ, q) = −KL(q(z)||

∏
m pm(x, z; θm)) + constant, where the constant

1To simplify notation, we consider one data point x. Extending to a set of i.i.d. points is straightforward.

2

does not depend on q. This quantity is minimized by setting q(z) ∝
∏
m pm(x, z; θm). In the (prod-

uct) M-step, we optimize L with respect to θ, which decomposes into M independent objectives:
L(θ, q) =

∑
m Eq log pm(x, z; θm) + constant, where this constant does not depend on θ. Each

term corresponds to an independent M-step, just as in EM for maximizing Oindep.

Thus, our product EM algorithm differs from independent EM only in the E-step, in which the
submodels are multiplied together to produce one posterior over z rather than M separate ones.
Assuming that there is an efficient EM algorithm for each submodel pm, there is no difficulty in
performing the product M-step. In our applications (Section 5), each pm is composed of multinomial
distributions, so the M-step simply involves computing ratios of expected counts. On the other hand,
the product E-step can become intractable and we must develop approximations (Section 4).

3 Exponential family formulation

Thus far, we have placed no restrictions on the form of the submodels. To develop a richer under-
standing and provide a framework for making approximations, we now assume that each submodel
pm is an exponential family distribution:

pm(x, z; θm) = exp{θTmφm(x, z)−Am(θm)} for x ∈ X , z ∈ Zm and 0 otherwise, (5)

where φm are sufficient statistics (features) and Am(θm) = log
∑

x∈X ,z∈Zm
exp{θTmφm(x, z)} is

the log-partition function,2 defined on θm ∈ Θm ⊂ RJ . We can think of all the submodels pm as
being defined on a common spaceZ∪ = ∪mZm, but the support of q(z) as computed in the E-step is
only the intersectionZ∩ = ∩mZm. Controlling this support will be essential in developing tractable
approximations (Section 4.1).

In the general formulation, we required only that the submodels share the same event space X ×
Z . Now we make explicit the possibility of the submodels sharing features, which give us more
structure for deriving approximations. In particular, suppose each feature j of submodel pm can be
decomposed into a part that depends on x (which is specific to that particular submodel) and a part
that depends on z (which is the same for all submodels):

φmj(x, z) =
I∑
i=1

φXmji(x)φZi (z), or in matrix notation, φm(x, z) = φXm(x)φZ(z), (6)

where φXm(x) is a J × I matrix and φZ(z) is a I × 1 vector. When z is discrete, such a decompo-
sition always exists by defining φZ(z) to be an |Z∪|-dimensional indicator vector which is 1 on the
component corresponding to z. Fortunately, we can usually obtain more compact representations of
φZ(z). We can now express our objective L(θ, q) (4) using (5) and (6):

L(θ, q) =
(∑

m

θTmφ
X
m(x)

)
(Eq(z)φ

Z(z)) +H(q)−
∑
m

Am(θm) for q ∈ Q(Z∩), (7)

where Q(Z ′) def= {q : q(z) = 0 for z 6∈ Z ′} is the set of distributions with support Z ′. For
convenience, define bTm = θTmφ

X
m(x) and b =

∑
m bm, which summarize the parameters θ for the

E-step. Note that for any θ, the q maximizing L always has the following exponential family form:

q(z;β) = exp{βTφZ(z)−AZ∩(β)} for z ∈ Z∩ and 0 otherwise, (8)

where AZ∩(β) = log
∑

z∈Z∩ exp{βTφZ(z)} is the log-partition function. In a minor abuse of
notation, we write L(θ, β) = L(θ, q(·;β)). Specifically, L(θ, β) is maximized by setting β = b.

It will be useful to express (7) using convex duality [12]. The key idea of convex duality is the
existence of a mapping between the canonical exponential parameters β ∈ RI of an exponential
family distribution q(z;β) and the mean parameters defined by µ = Eq(z;β)φ

Z(z) ∈M(Z∩) ⊂ RI ,
whereM(Z ′) = {µ : ∃q ∈ Q(Z ′) : EqφZ(z) = µ} is the set of realizable mean parameters. The
Fenchel-Legendre conjugate of the log-partition function AZ∩(β) is

A∗Z∩(µ) def= sup
β∈RI

{βTµ−AZ∩(β)} for µ ∈M(Z∩), (9)

2Our applications use directed graphical models, which correspond to curved exponential families where
each Θm is defined by local normalization constraints and Am(θm) = 0.

3

which is also equal to −H(q(z;β)), the negative entropy of any distribution q(z;β) corresponding
to µ. Substituting µ and A∗Z∩(µ) into (7), we obtain an objective in terms of the dual variables µ:

L∗(θ, µ) def=
(∑

m

θTmφ
X
m(x)

)
µ−A∗Z∩(µ)−

∑
m

Am(θm) for µ ∈M(Z∩). (10)

Note that the two objectives are equivalent: supβ∈RI L(θ, β) = supµ∈M(Z∩) L∗(θ, µ) for each θ.
The mean parameters µ are exactly the z-specific expected sufficient statistics computed in the prod-
uct E-step. The dual is an attractive representation because it allows us to form convex combinations
of different µ, an operation does not have a direct correlate in the primal formulation. The product
EM algorithm is summarized below:

Product EM
E-step: µ = argmaxµ′∈M(Z∩){bTµ′ −A∗Z∩(µ′)}
M-step: θm = argmaxθ′m∈Θm

{θ′TmφX (x)µ−Am(θ′m)}

4 Approximations

The product M-step is tractable provided that the M-step for each submodel is tractable, which
is generally the case. The corresponding statement is not true for the E-step, which in general
requires explicitly summing over all possible z ∈ Z∩, often an exponentially large set. We will thus
consider alternative E-steps, so it will be convenient to succinctly characterize an E-step. An E-step
is specified by a vector b′ (which depends on θ and x) and a set Z ′ (which we sum z over):

E(b′,Z ′) computes µ = argmax
µ′∈M(Z′)

{b′Tµ′ −A∗Z′(µ′)}. (11)

Using this notation, E(bm,Zm) is the E-step for training the m-th submodel independently using
EM and E(b,Z∩) is the E-step of product EM. Though we write E-steps in the dual formulation, in
practice, we compute µ as an expectation over all z ∈ Z ′, perhaps leveraging dynamic programming.

If E(bm,Zm) is tractable and all submodels have the same dynamic programming structure (e.g.,
if z is a tree and all features are local with respect to that tree), then E(b,Z∩) is also tractable: we
can incorporate all the features into the same dynamic program and simply run product EM (see
Section 5.1 for an example).

However, E(b,Z∩) is intractable in general, owing to two complications: (1) we can sum over each
Zm efficiently but not the intersectionZ∩; and (2) each bm corresponds to a decomposable graphical
model, but the combined b =

∑
m bm corresponds to a loopy graph. In the sequel, we describe two

approximate objective functions addressing each complication, whose maximization can be carried
out by performing M independent tractable E-steps.

4.1 Domain-approximate product EM

Assume that for each submodel pm, E(b,Zm) is tractable (see Section 5.2 for an example). We
propose maximizing the following objective:

L∗dom(θ, µ1, . . . , µm) def=
1
M

∑
m

[(∑
m′

θTm′φ
X
m′(x)

)
µm −A∗Zm

(µm)
]
−
∑
m

Am(θm), (12)

with each µm ∈M(Zm). This objective can be maximized via coordinate-wise ascent:

Domain-approximate product EM

E-step: µm = argmaxµ′m∈M(Zm){bTµ′m −A∗Zm
(µ′m)} [E(b,Zm)]

M-step: θm = argmaxθ′m∈Θm
{θ′TmφX (x)

(
1
M

∑
m′ µm′

)
−Am(θ′m)}

The product E-step consists of M separate E-steps, which are each tractable because each involves
the respective Zm instead of Z∩. The resulting expected sufficient statistics are averaged and used
in the product M-step, which breaks down into M separate M-steps.

4

While we have not yet established any relationship between our approximation L∗dom and the original
objectiveL∗, we can, however, relateL∗dom toL∗∪, which is defined as an analogue ofL∗ by replacing
Z∩ with Z∪ in (10).

Proposition 1. L∗dom(θ, µ1, . . . , µM) ≤ L∗∪(θ, µ̄) for all θ and µm ∈ M(Zm) and µ̄ =
1
M

∑
m µm.

Proof. First, since M(Zm) ⊂ M(Z∪) and M(Z∪) is a convex set, µ̄ ∈ M(Z∪), so L∗∪(θ, µ̄)
is well-defined. Subtracting the L∪ version of (10) from (12), we obtain L∗dom(θ, µ1, . . . , µM) −
L∗∪(θ, µ̄) = A∗Z∪(µ̄) − 1

M

∑
mA

∗
Zm

(µm). It suffices to show A∗Z∪(µ̄) ≤ 1
M

∑
mA

∗
Z∪(µm) ≤

1
M

∑
mA

∗
Zm

(µm). The first inequality follows from convexity ofA∗Z∪(·). For the second inequality:
since Zm ⊃ Z∪, AZ∪(µm) ≥ AZm

(µm); by inspecting (9), it follows that A∗Z∪(µm) ≤ A∗Zm
(µm).

4.2 Parameter-approximate product EM

Now suppose that for each submodel pm, E(bm,Z∩) is tractable (see Section 5.3 for an example).
We propose maximizing the following objective:

L∗par(θ, µ1, . . . , µm) def=
1
M

∑
m

[
(MθTmφ

X
m(x))µm −A∗Z∩(µm)

]
−
∑
m

Am(θm), (13)

with each µm ∈M(Z∩). This objective can be maximized via coordinate-wise ascent, which again
consists of M separate E-steps E(Mbm,Z∩) and the same M-step as before:

Parameter-approximate product EM

E-step: µm = argmaxµ′m∈M(Zm){(Mbm)Tµ′m −A∗Z∩(µ′m)} [E(Mbm,Z∩)]

M-step: θm = argmaxθ′m∈Θm
{θ′TmφX (x)

(
1
M

∑
m′ µm′

)
−Am(θ′m)}

We can show that the maximum value of L∗par is at least that of L∗, which leaves us maximizing an
upper bound of L∗. Although less logical than maximizing a lower bound, in Section 5.3, we show
that our approach is nonetheless a reasonable approximation which importantly is tractable.

Proposition 2. maxµ1∈M(Z∩),...,µM∈M(Z∩) L∗par(θ, µ1, . . . , µM) ≥ maxµ∈M(Z∩) L∗(θ, µ).

Proof. From the definitions of L∗par (13) and L∗ (10), it is easy to see that L∗par(θ, µ, . . . , µ) =
L∗(θ, µ) for all µ ∈ M(Z∩). If we maximize L∗par with M distinct arguments, we cannot end up
with a smaller value.

The product E-step could also be approximated by mean-field or loopy belief propagation variants.
These methods and the two we propose all fall under the general variational framework for approx-
imate inference [12]. The two approximations we developed have the advantage of permitting exact
tractable solutions without resorting to expensive iterative methods which are only guaranteed to
converge to a local optima.

While we still lack a complete theory relating our approximations L∗dom and L∗par to the original
objective L∗, we can give some intuitions. Since we are operating in the space of expected sufficient
statistics µm, most of the information about the full posterior pm(z | x) must be captured in these
statistics alone. Therefore, we expect our approximations to be accurate when each submodel has
enough capacity to represent the posterior pm(z | x; θm) as a low-variance unimodal distribution.

5 Applications

We now empirically validate our algorithms on three concrete applications: grammar induction using
product EM (Section 5.1), unsupervised word alignment using domain-approximate product EM
(Section 5.2), and prediction of missing nucleotides in DNA sequences using parameter-approximate
product EM (Section 5.3).

5

e1 e2 e3

a1 a2 a3 a4

f1 f2 f3 f4

e1 e2 e3

a1 a2 a3

f1 f2 f3 f4

(a) Submodel p1 (b) Submodel p2

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 1 2 3 4 5 6 7 8 9 10

al
ig

nm
en

t e
rr

or
 r

at
e

iteration

HMM model
Independent EM

Domain-approximate product EM

Figure 1: The two instances of IBM model 1 for word alignment are shown in (a) and (b). The graph
shows gains from agreement-based learning.

5.1 Grammar induction

Grammar induction is the problem of inducing latent syntactic structures given a set of observed
sentences. There are two common types of syntactic structure (one based on word dependencies and
the other based on constituent phrases), which can each be represented as a submodel. [5] proposed
an algorithm to train these two submodels. Their algorithm is a special case of our product EM
algorithm, although they did not state an objective function. Since the shared hidden state is a tree
structure, product EM is tractable. They show that training the two submodels to agree significantly
improves accuracy over independent training. See [5] for more details.

5.2 Unsupervised word alignment

Word alignment is an important component of machine translation systems. Suppose we have a set
of sentence pairs. Each pair consists of two sentences, one in a source language (say, English) and
its translation in a target language (say, French). The goal of unsupervised word alignment is to
match the words in a source sentence to the words in the corresponding target sentence. Formally,
let x = (e, f) be an observed pair of sentences, where e = (e1, . . . , e|e|) and f = (f1, . . . , f|f |); z
is a set of alignment edges between positions in the English and positions in the French.

Classical models for word alignment include IBM models 1 and 2 [2] and the HMM model [8].
These are asymmetric models, which means that they assign non-zero probability only to alignments
in which each French word is aligned to at most one English word; we denote this set Z1. An
element z ∈ Z1 can be parameterized by a vector a = (a1, . . . , a|f |), with aj ∈ {NULL, 1, . . . , |e|},
corresponding to the English word (if any) that French word fj is aligned to. We define the first
submodel on X × Z1 as follows (specializing to IBM model 1 for simplicity):

p1(x, z; θ1) = p1(e, f ,a; θ1) = p1(e)
|f |∏
j=1

p1(aj)p1(fj | eaj
; θ1), (14)

where p1(e) and p1(aj) are constant and the canonical exponential parameters θ1 are the transition
log-probabilities {log t1;ef} for each English word e (including NULL) and French word f .

Written in exponential family form, φZ(z) is an (|e|+ 1)(|f |+ 1)-dimensional vector whose com-
ponents are {φZij(z) ∈ {0, 1} : i = NULL, 1, . . . , |e|, j = NULL, 1, . . . , |f |}. We have φZij(z) = 1
if and only if English word ei is aligned to French word fj and zNULLj = 1 if and only if fj is not
aligned to any English word. Also, φXef ;ij(x) = 1 if and only if ei = e and fj = f . The mean
parameters associated with an E-step are {µ1;ij}, the posterior probabilities of ei aligning to fj ;
these can be computed independently for each j. We can define a second submodel p2(x, z; θ2) on
X × Z2 by reversing the roles of English and French. Figure 1(a)–(b) shows the two models.

We cannot use product EM algorithm to train p1 and p2 because summing over all alignments
in Z∩ = Z1 ∩ Z2 is NP-hard. However, we can use domain-approximate product EM because
E(b1 + b2,Zm) is tractable—the tractability here does not depend on decomposability of b but the
asymmetric alignment structure of Zm. The concrete change from independent EM is slight: we
need to only change the E-step of each pm to use the product of translation probabilities t1;ef t2;fe

and change the M-step to use the average of the edge posteriors obtained from the two E-steps.

6

dA1

dB1 dC1

dD1 dE1

dA2

dB2 dC2

dD2 dE2

dA3

dB3 dC3

dD3 dE3

dA4

dB4 dC4

dD4 dE4

dA1

dB1 dC1

dD1 dE1

dA2

dB2 dC2

dD2 dE2

dA3

dB3 dC3

dD3 dE3

dA4

dB4 dC4

dD4 dE4

(a) Submodel p1 (b) Submodel p2

Figure 2: The two phylogenetic HMM models, one for the even slices, the other for the odd ones.

[6] proposed an alternative method to train two models to agree. Their E-step computes µ1 =
E(b1,Z1) and µ2 = E(b2,Z2), whereas our E-steps incorporate the parameters of both models
in b1 + b2. Their M-step uses the elementwise product of µ1 and µ2, whereas we use the average
1
2 (µ1 + µ2). Finally, while their algorithm appears to be very stable and is observed to converge
empirically, no objective function has been developed; in contrast, our algorithm maximizes (12).
In practice, both algorithms perform comparably.

We conducted our experiments according to the setup of [6]. We used 100K unaligned sentences
for training and 137 for testing from the English-French Hansards data of the NAACL 2003 Shared
Task. Alignments are evaluated using alignment error rate (AER); see [6] for more details. We
trained two instances of the HMM model [8] (English-to-French and French-to-English) using 10
iterations of domain-approximate product EM, initializing with independently trained IBM model 1
parameters. For prediction, we output alignment edges with sufficient posterior probability: {(i, j) :
1
2 (µ1;ij + µ2;ij) ≥ δ}. Figure 1 shows how agreement-based training improves the error rate over
independent training for the HMM models.

5.3 Phylogenetic HMM models

Suppose we have a set of species s ∈ S arranged in a fixed phylogeny (i.e., S are the nodes
of a directed tree). Each species s is associated with a length L sequence of nucleotides ds =
(ds1, . . . , dsL). Let d = {ds : s ∈ S} denote all the nucleotides, which consist of some observed
ones x and unobserved ones z.

A good phylogenetic model should take into consideration both the relationship between nucleotides
of the different species at the same site and the relationship between adjacent nucleotides in the same
species. However, such a model would have high tree-width and be intractable to train. Past work
has focused on traditional variational inference in a single intractable model [9, 4]. Our approach is
to instead create two tractable submodels and train them to agree. Define one submodel to be

p1(x, z; θ1) = p1(d; θ1) =
∏
j odd

∏
s∈S

∏
s′∈CH(s)

p1(ds′j | dsj ; θ1)p1(ds′j+1 | ds′j , ds(j+1); θ1), (15)

where CH(s) is the set of children of s in the tree. The second submodel p2 is defined similarly,
only with the product taken over j even. The parameters θm consist of first-order mutation log-
probabilities and second-order mutation log-probabilities. Both submodels permit the same set of
assignments of hidden nucleotides (Z∩ = Z1 = Z2). Figure 2(a)–(b) shows the two submodels.

Exact product EM is not tractable since b = b1 + b2 corresponds to a graph with high tree-width.
We can apply parameter-approximate product EM, in which the E-step only involves computing
µm = E(2bm,Z∩). This can be done via dynamic programming along the tree for each two-
nucleotide slice of the sequence. In the M-step, the average 1

2 (µ1 + µ2) is used for each model,
which has a closed form solution.

Our experiments used a multiple alignment consisting of L = 20, 000 consecutive sites belonging
to the L1 transposons in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene
(chromosome 7). Eight eutherian species were arranged in the phylogeny shown in Figure 3. The
data we used is the same as that of [9]. Some nucleotides in the sequences were already missing. In
addition, we held out some fraction of the observed ones for evaluation. We trained two models using
30 iterations of parameter-approximate product EM.3 For prediction, the posteriors over heldout

3We initialized with a small amount of noise around uniform parameters plus a small bias towards identity
mutations.

7

(hidden)

(hidden)

baboon (hidden)

chimp human

(hidden)

(hidden)

cow pig

(hidden)

cat dog

(hidden)

mouse rat

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 5 10 15 20 25

ac
cu

ra
cy

iteration

20% heldout

Independent EM
Parameter-approximate product EM

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25

ac
cu

ra
cy

iteration

50% heldout

Independent EM
Parameter-approximate product EM

Figure 3: The tree is the phylogeny topology used in experiments. The graphs show the predic-
tion accuracy of independent versus agreement-based training (parameter-approximate product EM)
when 20% and 50% of the observed nodes are held out.

nucleotides under each model are averaged and the one with the highest posterior is chosen. Figure 3
shows the prediction accuracy. Though independent and agreement-based training eventually obtain
the same accuracy, agreement-based training converges much faster. This gap grows as the amount
of heldout data increases.

6 Conclusion

We have developed a general framework for agreement-based learning of multiple submodels. View-
ing these submodels as components of an overall model, our framework permits the submodels to be
trained jointly without paying the computational cost associated with an actual jointly-normalized
probability model. We have presented an objective function for agreement-based learning and three
EM-style algorithms that maximize this objective or approximations to this objective. We have also
demonstrated the applicability of our approach to three important real-world tasks. For grammar in-
duction, our approach yields the existing algorithm of [5], providing an objective for that algorithm.
For word alignment and phylogenetic HMMs, our approach provides entirely new algorithms.

Acknowledgments We would like to thank Adam Siepel for providing the phylogenetic data
and acknowledge the support of the Defense Advanced Research Projects Agency under contract
NBCHD030010.

References
[1] J. Besag. The analysis of non-lattice data. The Statistician, 24:179–195, 1975.
[2] P. F. Brown, S. A. D. Pietra, V. J. D. Pietra, and R. L. Mercer. The mathematics of statistical machine

translation: Parameter estimation. Computational Linguistics, 19:263–311, 1993.
[3] G. Hinton. Products of experts. In International Conference on Artificial Neural Networks, 1999.
[4] V. Jojic, N. Jojic, C. Meek, D. Geiger, A. Siepel, D. Haussler, and D. Heckerman. Efficient approximations

for learning phylogenetic HMM models from data. Bioinformatics, 20:161–168, 2004.
[5] D. Klein and C. D. Manning. Corpus-based induction of syntactic structure: Models of dependency and

constituency. In Association for Computational Linguistics (ACL), 2004.
[6] P. Liang, B. Taskar, and D. Klein. Alignment by agreement. In Human Language Technology and North

American Association for Computational Linguistics (HLT/NAACL), 2006.
[7] B. Lindsay. Composite likelihood methods. Contemporary Mathematics, 80:221–239, 1988.
[8] H. Ney and S. Vogel. HMM-based word alignment in statistical translation. In International Conference

on Computational Linguistics (COLING), 1996.
[9] A. Siepel and D. Haussler. Combining phylogenetic and hidden Markov models in biosequence analysis.

Journal of Computational Biology, 11:413–428, 2004.
[10] C. Sutton and A. McCallum. Piecewise training of undirected models. In Uncertainty in Artificial Intel-

ligence (UAI), 2005.
[11] C. Sutton and A. McCallum. Piecewise pseudolikelihood for efficient CRF training. In International

Conference on Machine Learning (ICML), 2007.
[12] M. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference.

Technical report, Department of Statistics, University of California at Berkeley, 2003.

8

