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Abstract

We extend position and phase-shift tuning, concepts already well established in
the disparity energy neuron literature, to motion energy neurons. We show that
Reichardt-like detectors can be considered examples of position tuning, and that
motion energy filters whose complex valued spatio-temporal receptive fields are
space-time separable can be considered examples of phase tuning. By combining
these two types of detectors, we obtain an architecture for constructing motion
energy neurons whose center frequencies can be adjusted by both phase and posi-
tion shifts. Similar to recently described neurons in the primary visual cortex,
these new motion energy neurons exhibit tuning that is between purely space-
time separable and purely speed tuned. We propose a functional role for this
intermediate level of tuning by demonstrating that comparisons between pairs of
these motion energy neurons can reliably discriminate between inputs whose
velocities lie above or below a given reference velocity.

1  Introduction
Image motion is an important cue used by both biological and artificial visual systems to extract
information about the environment. Although image motion is commonly used, there are different
models for image motion processing in different systems. The Reichardt model is a dominant
model for motion detection in insects, where image motion analysis occurs at a very early stage [1].
For mammals, the bulk of visual processing for motion is thought to occur in the cortex, and the
motion energy model is one of the dominant models [2][3]. However, despite the differences in
complexity between these two models, they are mathematically equivalent given appropriate
choices of the spatial and temporal filters [4].

The motion energy model is very closely related to the disparity energy model, which has been
used to model the outputs of disparity selective neurons in the visual cortex [5]. The disparity tun-
ing of neurons in this model can be adjusted via two mechanisms: a position shift between the cen-
ter locations of the receptive fields in the left and right eyes or a phase shift between the receptive
field organization in the left and right eyes [6][7]. It appears that biological systems use a combina-
tion of these two mechanisms. 

In Section 2, we extend the concepts of position and phase tuning to the construction of motion
energy neurons. We combine the Reichardt model and the motion energy model to obtain an archi-
tecture for constructing motion energy neurons whose tuning can be adjusted by the analogs of
position and phase shifts. In Section 3, we investigate the functional advantages of position and
phase shifts, inspired by a similar comparison from the disparity energy literature. We show that by
simply comparing the outputs of pair of motion energy cells with combined position/phase shift
tuning enables us to discriminate reliably between stimuli moving above and below a reference



velocity. Finally, in Section 4, we place this work in the context of recent results on speed tuning in
V1 neurons.

2  Extending Position/Phase Tuning to Motion Energy Models
Figure 1(a) shows a 1D array of three Reichardt detectors[1] tuned to motion from left to right.
Each detector computes the correlation between its photosensor input and the delayed input from
the photosensor to the left. The delay could be implemented by a low pass filter. Usually, the corre-
lation is assumed to be computed by a multiplication between the current and delayed signals. For
consistency with the following discussion, we show the output as a summation followed by a
squaring. Squaring the sum is essentially equivalent to the product, since the product could be
recovered by subtracting the sum of the squared inputs from the squared sum (e.g.

). 

Delbruck proposed a modification of the Reichardt detector (Figure 1(b)), which switches the order
of the delay and the sum, resulting in a delay-line architecture [8]. The output of a detector is the
sum of its photosensor input and the delayed output of the detector to the left. This recurrent con-
nection extends the spatio-temporal receptive field of the detector, since the input from the second-
nearest-neighboring photosensor to the left is now connected to the detector through two delays,
whereas the Reichardt detector never sees the output of its second-nearest-neighboring photosen-
sor.

The velocity tuning of these detectors is determined by the combination of the temporal delay and
the position shift between the neighboring detectors. As the delay increases, the tuned velocity
decreases. As the position shift increases, the tuned velocity also increases. This position-tuning of
velocity is reminiscent of the position-tuning of disparity energy neurons, where the larger the posi-
tion shift between the spatial receptive fields being combined from the left and right eyes, the larger
the disparity tuning [9].

Figure 1(c) shows a 1D array of three motion energy detectors[2][3]. At each spatial location, the
outputs of the photosensors in a neighborhood around each spatial location are combined through
even and odd symmetric linear spatial receptive fields, which are here modelled by spatial Gabor
functions. In 1D, the even and odd symmetric Gabor receptive field profiles are the real and imagi-
nary parts of the function

(1)

where  determines the preferred spatial frequency of the receptive field, and  determines its
spatial extent. The even and odd spatial filter outputs are then combined through temporal filters to
produce two outputs which are then squared and summed to produce the motion energy. In many
cases, the temporal receptive field profiles are also Gabor functions. The combined spatial and tem-
poral receptive fields of the two neurons are separable when considered as a single complex valued
function:

(2)

where  and  determine the preferred temporal frequency and temporal extent of the temporal
receptive fields. Strictly speaking, these spatio-temporal filters are not velocity tuned, since the
velocity at which a moving sine-wave grating stimulus produces maximum response varies with
the spatial frequency of the sine-wave grating. However, since spatial frequencies of  lead to the
largest responses, the filter is sometimes thought of as having a preferred velocity
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One problem with using spatio-temporal Gabor functions is that they are non-causal in time. In this
work, we consider the use of a causal recurrently implemented temporal filter. If we let the real and
imaginary parts of  denote the even and odd spatial filter outputs, then the two temporal fil-

(a)

(b)

(c)

(d)

Figure 1. (a) 1D array of three Reichardt detectors tuned to motion from left to right. The  block
represents a temporal delay. The semi-circles represent photosensors. (b) Delbruck delay-line
detector. (c) 1D array of three motion energy detectors. The bottom blocks represent even and odd
symmetric spatial receptive fields modelled by Gabor functions. (d) The proposed motion detector
by combining the position and phase tuning mechanisms of (b) and (c).
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ter outputs of the temporal filter are given by the real and imaginary parts of , which satis-
fies

(3)
where  and  are real valued constants. We derive this equation from Fig. 1(c) by consider-
ing the time delay  as a unit sample discrete time delay. We consider discrete time operation here
for consistency with our experimental results, however, a corresponding continuous time temporal
filter can be obtained by replacing the time delay by a first order continuous-time recurrent filter
with time constant . The frequency response of this complex-valued filter is

(4)

where  and  are spatial and temporal frequency variables. This function achieves unity max-
imum value at , independently of . Assuming the same Gabor spatial receptive field,
the combined spatio-temporal receptive field can be approximated by the continuous function:

(5)

where  is the unit step function, and . Again, strictly speaking, the filter is not
velocity tuned, but for input sine-wave gratings with a spatial frequency near , the composite
spatio-temporal filter has a preferred velocity near .

The velocity tuning of this filter is determined by the combination of the time delay and a phase
shift  between the input  and the output . The longer the time delay, the
slower the preferred velocity. However, the larger the phase-shift, the higher the preferred velocity.
This phase-tuning of velocity is reminiscent of the phase-tuning of disparity tuned neurons, where
the larger the phase shift between the left and right receptive fields, the larger the preferred dispar-
ity.

The possibility to adjust velocity tuning using two complementary mechanisms, suggests that it
should be possible to combine these two methods, as observed in disparity neurons. Figure 1(d)
shows how the position and phase tuning mechanisms of Figures 1(b) and 1(c) can be combined.
The preferred velocity for spatial frequencies  will be determined by the sum of the preferred
velocities determined by the position and phase-shift mechanisms, i.e. ,
assuming a unit spatial displacement between adjacent photosensors.

3  Motion energy pairs for velocity discrimination
Given the possibility of combining the position and phase tuning mechanisms, an interesting ques-
tion is how these two mechanisms might be exploited when constructing populations of motion
energy neurons. Velocity can be estimated using a population of neurons tuned to different spatio-
temporal frequencies [10][11]. However, the output of a single motion energy neuron is an ambigu-
ous indicator of velocity, since its output depends upon other stimulus dimensions in addition to
motion, (e.g. orientation, contrast).

Given the long history of position/phase shifts in disparity tuning, it is natural to start with an inspi-
ration taken from the context of binocular vision. It has been shown that the responses from a pop-
ulation of phase-tuned disparity energy are more comparable than the responses from a population
of position-tuned disparity energy neurons [12]. In particular, the preferred disparity of the neuron
with maximum response in a population of phase tuned neurons is a more reliable indicator of the
stimulus disparity than the preferred disparity of the neuron with maximum response in a popula-
tion of position tuned neurons, especially for neurons with small phase shifts. The disadvantage of
purely phase tuned neurons is that their preferred disparities can be tuned only over a limited range
due to phase-wraparound in the sinusoidal modulation of the spatial Gabor. However, there is no
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restriction on the range of preferred disparities when using position shifts. Thus, it has been sug-
gested that position shifts can be used to “bias” the preferred disparity of a population around a
rough estimate of the stimulus disparity, and then use a population of neurons tuned by phase shifts
to obtain a more accurate estimation of the actual disparity.

In this section, we demonstrate that a similar phenomenon holds for motion energy neurons. In par-
ticular, we show that we can use position shifts to place the tuned velocity (for a spatial frequency
of ) in a population of two neurons around a desired bias velocity, , and then use phase
shifts with equal magnitude but opposite sign to place the preferred velocities symmetrically
around this bias velocity. We then show that by comparing the outputs of these two neurons, we can
accurately discriminate between velocities above and below . 

The equation describing the complex valued output of the spatio-temporal filtering stage 
for the detector shown in Figure 1(d) is 

(6)
The frequency response is

(7)

and achieves its maximum along the line , as seen in the contour plot of the spatio-
temporal frequency response magnitude of the cascade of (1) and (7) in Fig. 2(a). In comparison,
the spatio-temporal frequency response of the cascade of (1) and (4) shown in Fig. 2(e), achieves its
maximum at  independently of . For a moving sine wave grating input with spatial and tem-
poral frequencies  and , the steady state motion energy outputs will be proportional to the
squared magnitudes of the spatio-temporal frequency response evaluated at . 

Assume that we have two such motion cells with the same preferred spatial frequency
 but opposite temporal frequencies . The motion energy cell with

positive  is tuned to fast velocities, while the motion energy cell with negative  is tuned to
slow velocities. If we compare the frequency response magnitudes at frequency , the
boundary between the regions in the  plane where the magnitude of one is larger than the
other is a line passing thorough the origin with slope equal to 1, as shown in Fig. 2(c). This suggests
that we can determine whether the velocity of the grating is faster or slower than 1 pixel per frame
by checking the relative magnitude of the motion energy outputs, at least for sine-wave gratings.

Although the sine-wave grating is a particularly simple input, this property is not shared by other
pairs of motion energy neurons. For example, Fig. 2(f) shows the spatio-temporal frequency
responses two motion energy neurons that have the same spatio-temporal center frequencies as con-
sidered above, but are constructed by phase tuning (the cascade of (1) and (4)). In this case, the
boundary is a horizontal line. Thus, the velocity boundary depends upon the spatial frequency. For
lower spatial frequencies, the relative magnitudes will switch at higher velocities. Another com-
monly considered arrangement of Gabor-filters is to place the center frequencies around a circle.
For two neurons, this corresponds to displacing the two center frequencies by an equal amount per-
pendicularly to the line  (Fig. 2(k)). For motion energy filters built from non-causal
Gabor filters, the spatio-temporal frequency responses exhibit perfect circular symmetry, and the
decision boundary also coincides with the diagonal line  (see Figure 9 in [13]). However,
non-causal filters are not physically realizable. If we consider motion energy neurons constructed
from temporally causal functions (e.g. the cascade (1) and (4)), the boundary only matches the
diagonal line in a small neighborhood of , as shown in Fig. 2(i).

We have characterized the performance of the three motion pairs on the fast/slow velocity discrim-
ination task for a variety of inputs, including sine-wave gratings, square wave gratings, and drifting
random dot stimuli with varying coherence.

We first consider drifting sinusoidal gratings with spatial frequencies  and veloci-
ties . For each spatial frequency and velocity, we compare the two motion energy
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outputs at different phase shifts of the input grating, and calculate the percentage where the
response of the fast cell is larger than that of the slow cell. Fig. 3(a)-(c) show the percentages as the
grey scale value for each combination of input spatial frequency and velocity. Ideally, the top half
should be white (i.e. the fast cell’s response is larger for all inputs whose velocity is greater than
one), and the bottom half should be black. For the phase-shifted motion cells with unit position-
tuned velocity bias, the responses are correct over a wide range of spatial frequencies. On the other
hand, for the motion pairs with the same center frequencies but tuned by pure phase shifts
(Fig. 3(c)), the velocity at which the relative responses switch decreases with spatial frequency.
This is consistent with the horizontal decision boundary computed by comparing the frequency
response magnitudes. For the phase-tuned motion-energy cells with orthogonally displaced center
frequencies, the boundary rapidly diverges from the horizontal as the spatial frequency moves away
from . Fig. 3(d) shows the overall accuracy by combining the responses over all velocities. The
detector utilizing the phase-tuned cells with position bias have the highest accuracy over the widest
range of spatial frequencies.

Fig. 3(e)-(h) show the responses of the motion pairs to square wave gratings. The results are similar
to the case of sinusoidal gratings, except that the performance at low spatial frequencies is worse.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2. Frequency response amplitudes of the motion pairs formed by types of motion cells. First
row: Phase and position tuned motion cells. The center frequencies of the fast (a) and slow (b) cells
are  and  respectively. Second row: Vertically displaced
phase-tuned motion energy cells. The center frequencies of the fast (e) and slow (f) cells are

 and  respectively. Third row: Orthogonally displaced phase-tuned
motion energy cells. The center frequencies of the fast (i) and slow (j) cells are 
and  respectively. The third column shows the contour plot of difference between
the frequency response amplitudes of the fast cell from the slow cell. The dashed line shows the
decision boundary at zero. The fourth column shows the cross sections of the frequency response
amplitudes along the line connecting the two center frequencies (fast = solid, slow = dashed). Zero
denotes the point on the line that crosses .
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this is expected, since for low spatial frequencies, the square wave gratings have large constant
intensity areas that convey no motion information.

Fig. 3(i)-(l) show the responses for drifting random dot stimuli at different velocities and coherence
levels. The dots were one pixel wide. The motion pair using the phase-shifted cells with position
tuned bias velocity maintain a consistently higher accuracy over all coherence levels tested.

4  Discussion
We described a new architecture for motion energy filters obtained by combining the position tun-
ing mechanism of the Reichardt-like detectors and the phase tuning mechanism of motion energy
detectors based on complex-valued spatio-temporal separable filters. Motivated by results with dis-
parity energy neurons indicating that the responses of phase-tuned neurons with small phase shifts
are more comparable, we have examined the ability of the proposed velocity detectors to discrimi-
nate between input stimuli above and below a fixed velocity. Our experimental and analytical
results confirm that comparisons between pairs constructed by using a position shift to center the
tuned velocities around the border and using phase shifts to offset the tuned velocity of the pair to
opposite sides of the boundary is consistently better than previously proposed architectures that
were based on pure phase tuning.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3. Performance on the velocity discrimination task for different stimuli. First row: sine
wave gratings; second row: square wave gratings; third row: drifting random dots. The first three
columns show the percentage of stimuli where the fast motion energy cell’s response is larger than
the slow cell’s response. First column: motion cells with position-tuned velocity bias; second
column: phase tuned motion cells with the same center frequencies; third column: phase-tuned
motion cells with orthogonal offset. The fourth column shows the average accuracy over all input
velocities. Solid line: motion cells with position-tuned velocity bias; dashed line: phase tuned
motion cells with the same center frequencies; dash-dot line: phase-tuned motion cells with
orthogonal offset.

si
ne

 w
av

e 
gr

at
in

gs

position/phase tuned phase-tuned (vertical) phase-tuned (orthogonal) average accuracy

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

input spatial frequency

ve
lo

ci
ty

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

input spatial frequency

ve
lo

ci
ty

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

input spatial frequency

ve
lo

ci
ty

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5

0.6

0.7

0.8

0.9

1

input spatial frequency

sq
ua

re
 w

av
e 

gr
at

in
gs

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

input spatial frequency

ve
lo

ci
ty

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

ve
lo

ci
ty

input spatial frequency
0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.5

1

1.5

2

ve
lo

ci
ty

input spatial frequency
0 0.1 0.2 0.3 0.4 0.5 0.6

0.5

0.6

0.7

0.8

0.9

1

ac
cu

ra
cy

input spatial frequency

dr
ift

in
g 

ra
nd

om
 d

ot
s

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

coherence level

ve
lo

ci
ty

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

ve
lo

ci
ty

coherence level
0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

ve
lo

ci
ty

coherence level
0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

0.9

1

coherence level

ac
cu

ra
cy



Recent experimental evidence has cast doubt upon the belief that the motion neurons in V1 and MT
have very distinct properties. Traditionally, the tuning of V1 motion sensitive neurons is thought to
be separable along the spatial and temporal frequency dimensions, while the frequency tuning MT
neurons is inseparable, consistent with constant speed tuning. However, it now seems that both V1
and MT neurons actually show a continuum in the degree to which preferred velocity changes with
spatial frequency [14][15][16]. Our proposed neurons constructed by position and phase shifts also
show an intermediate behavior between speed tuning and space-time separable tuning. With pure
phase shifts, the tuning is space-time separable. With position shifts, the neurons become speed
tuned. An intermediate tuning is obtained by combining position and phase tuning. Our results on a
simple velocity discrimination task suggest a functional role for this intermediate level of tuning in
creating motion energy pairs whose relative responses truly indicate changes in velocity around a
reference level for stimuli with a broad band of spatial frequency content. Pair-wise comparisons
have been previously proposed as a potential method for coding image speed [17][18]. Here, we
have demonstrated a systematic way of constructing reliably comparable pairs of neurons using
simple neurally plausible circuits.
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