Learning the 2-D Topology of Images

Part of Advances in Neural Information Processing Systems 20 (NIPS 2007)

Bibtex Metadata Paper

Authors

Nicolas Roux, Yoshua Bengio, Pascal Lamblin, Marc Joliveau, Balázs Kégl

Abstract

We study the following question: is the two-dimensional structure of images a very strong prior or is it something that can be learned with a few examples of natural images? If someone gave us a learning task involving images for which the two-dimensional topology of pixels was not known, could we discover it automatically and exploit it? For example suppose that the pixels had been permuted in a fixed but unknown way, could we recover the relative two-dimensional location of pixels on images? The surprising result presented here is that not only the answer is yes but that about as few as a thousand images are enough to approximately recover the relative locations of about a thousand pixels. This is achieved using a manifold learning algorithm applied to pixels associated with a measure of distributional similarity between pixel intensities. We compare different topology-extraction approaches and show how having the two-dimensional topology can be exploited.