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Abstract

This paper describes a recursive estimation procedure for multivariate binary den-
sities using orthogonal expansions. Eaovariates, there ag¥ basis coefficients

to estimate, which renders conventional approaches computationally prohibitive
whend is large. However, for a wide class of densities that satisfy a certain spar-
sity condition, our estimator runs in probabilistic polynomial time and adapts to
the unknown sparsity of the underlying density in two key ways: (1) it attains
near-minimax mean-squared error, and (2) the computational complexity is lower
for sparser densities. Our method also allows for flexible control of the trade-off
between mean-squared error and computational complexity.

1 Introduction

Multivariate binary data arise in a variety of fields, such as biostatistics [1], econometrics [2] or
artificial intelligence [3]. In these and other settings, it is often necessary to estimate a proba-
bility density from a number of independent observations. Formally, we havied. samples

from a probability densityf (with respect to the counting measure) on theimensionalbi-

nary hypercube3?, B = {0,1}, and seek an estimap@ of f with a small mean-squared error
MSE(f, f) = E{ ¥ epa(f(2) — f(2))?}.

In many cases of practical interest, the number of covariatesnuch larger thatog n, so direct
estimation off as a multinomial density with? parameters is both unreliable and impractical. Thus,
one has to resort to “nonparametric” methods and search for good estimators in a suitably defined
class whose complexity grows with Some nonparametric methods proposed in the literature, such
as kernels [4] and orthogonal expansions [5, 6], either have very slow rates of MSE convergence or
are computationally prohibitive for largé For example, the kernel method [4] requi@én?d)
operations to compute the estimate at any B¢, yet its MSE decays a8(n—*/(4+9) [7], which is
extremely slow whed is large. In contrast, orthogonal function methods generally have much better
MSE decay rates, but rely on estimati2g coefficients in a fixed basis, which requires enormous
computational resources for large For instance, using the Fast Hadamard Transform to estimate
the coefficients in the so-callélalsh basisisingn samples require®(nd2?) operations [5].

In this paper we take up the problem of accurate, computationally tractable estimation of a density
on the binary hypercube. We take the minimax point of view, where we assumg ¢bates from
a particular function clasg and seek an estimator that approximately attains the minimax MSE

R%(F) = inf sup MSE(/, f),
f fer

where the infimum is over all estimators basecdhan.d. samples. We will define our function class
to reflect another feature often encountered in situations involving multivariate binary data: namely,



that the shape of the underlying density is strongly infludrme small constellations of theé co-

variates. For example, when working with panel data [2], it may be the case that the answers to some
specific subset of questions are highly correlated among a particular group of the panel participants,
and the responses of these participants to other questions are nearly random; moreover, there may
be several such distinct groups in the panel. To model such “constellation effects” mathematically,
we will consider classes of densities that satisfy a particaparsity condition

Our contribution consists in developing a thresholding density estimator that adapts to the unknown
sparsity of the underlying density in two key ways: (1) it is near-minimax optimal, with the error
decay rate depending upon the sparsity, and (2) it can be implemented using a recursive algorithm
that runs in probabilistic polynomial time and whose computational complexity is lower for sparser
densities. The algorithm entails recursively examining empirical estimates of wloalesof the

2¢ pasis coefficients. At each stage of the algorithm, the weights of the coefficients estimated at
previous stages are used to decide which remaining coefficients are most likely to be significant,
and computing resources are allocated accordingly. We show that this decision is accurate with high
probability. An additional attractive feature of our approach is that it gives us a principled way of
trading off MSE against computational complexity by controlling the decay of the threshold as a
function of the recursion depth.

2 Préiminaries

We first list some definitions and results needed in the sequel. Throughout the@@apel; denote
generic constants whose values may change from line to line. For two real nuimdoeas, a A b
anda V b denote, respectively, the smaller and the larger of the two.

Biased Walsh bases. Let 114 denote the counting measure on thdimensional binary hypercube
B<. Then the space of all real-valued functions8fis the real Hilbert spacé?(j) with the
standard inner produdif, g) = > zene f(x)g(x). Given anyn € (0,1), we can construct an
orthonormal systend, ,, in L?(uq) as follows. Define two functiongg ,,, v1,, : B — R by

po(@) = (L= P =2 and oy y(2) = (1)1 -2 2 e 0,1} (1)
Now, for anys = (s(1), ..., s(d)) € B¢ define the functiorp; ,, : B — R by

d
eun(@) 2 [[oaoala®). Vo =@).....a(d) € 5 @

(this is written more succinctly as, ,, = @(1),, @ - .- ® Ps(a),n, Where is the tensor product).
The set®,,, = {ps., : s € B4} is an orthonormal system ih?(u,), which is referred to as the
Walsh system with biag[8, 9]. Any functionf € L?(u4) can be uniquely represented as

f = Z 93,77903,77,

seB

whereb, ,, = (f,¢s,). Whenn = 1/2, we get the standard Walsh system used in [5, 6]; in that
case, we shall omit the index = 1/2 for simplicity. The product structure of the biased Walsh
bases makes them especially convenient for statistical applications as it allows for a computation-
ally efficient recursive method for computing accurate estimates of squared coefficients in certain
hierarchically structured sets.

Sparsity and weak-¢,, balls. We are interested in densities whose representations in some biased
Walsh basis satisfy a certain sparsity constraint. Giyen (0, 1) and a functionf € L?(uq4), let
6(f) denote the list of its coefficients i®,,. We are interested in cases when the components
of 6(f) decay according to a power law. Formally, &t),...,0, whereM = 2¢, be the
components ofl(f) arranged in decreasing order of magnitugigyy| > [02)| > ... > [0an |-
Given somd) < p < oo, we say that(f) belongs to thaveak?,, ball of radiusR [10], and write
0(f) € wlp(R), if

0y < R-m~/P, 1<m< M. ()



It is not hard to show that the coefficients of any probabiligpsity on3¢ in &, ,, are bounded by

R(n) = [nV (1 —n)]¥2. With this in mind, let us define the clags(p, n) of all functionsf on B¢
satisfyingé(f) € wl,(R(n)) in RM. We are particularly interested in the cdse: p < 2. When

n = 1/2, with R(n) = 2-%4/2, we shall write simplyF,(p).

We will need approximation properties of weéjballs as listed, e.g., in [11]. The basic fact is that
the power-law condition (3) is equivalent to the concentration estimate

[{s € B: 10, > A} < (R/NP,  VA>0. (4)
Foranyl < k < M, letfx(f) denote the vecto(f) with 0411y, ...,0.n) Setto zero. Then it

follows from (3) thatl|0(f) — 0k (f)llez, < CREK™", wherer = 1/p—1/2, andC is some constant

that depends only op. Given anyf € F4(p,n) and denoting byf; the function obtained from it
by retaining only thek largest coefficients, we get from Parseval'’s identity that
If = fellL2uy) < CRETT. (5)

To get a feeling for what the class&S(p,n) could model in practice, we note that, for a fixed

€ (0,1), the product ofl Bernoulli(n*) densities withy* = /77/( /7 + /T — 1) is the unique
sparsest density in the entire scaleff(p,n) spaces with) < p < 2: all of its coefficients in
Fa,, are zero, except fdt, , with s = (0,...,0), which is equal ton*/,/7)?. Other densities in
{®4(p,n) : 0 < p < 2} include, for example, mixtures of components that, up to a permutation
of {1,...,d}, can be written as a tensor product of a large numb&eofioulli(n*) densities and
some other density. The parameieran be interpreted either as the default noise level in measuring
an individual covariate or as a smoothness parameter that interpolates between the point masses
d(0,...,0) @ndd(y, . 1y. We assume thaj is known (e.g., from some preliminary exploration of the
data or from domain-specific prior information) and fixed.

In the following, we limit ourselves to the “noisiest” cage= 1/2 with R(1/2) = 2=4/2, Our
theory can be easily modified to cover any othef (0, 1): one would need to replade = 2~%/2

with the corresponding(n) and use the bountlp; ,, [ < R(n) instead of| ¢ |- < 2792 when
estimating variances and higher moments.

3 Density estimation viarecursive Walsh thresholding

We now turn to our problem of estimating a dengityn 3¢ from a sampld X;}"_, whenf € F4(p)
for some unknowi < p < 2. The minimax theory for weak; balls [10] says that

R:(Fa(p)) = CM—P/2n=2r/Cri) =1 /p—1/2

whereM = 2¢. We shall construct an estimator tratapts to unknown sparsitf f in the sense
that it achieves this minimax rate up to a logarithmic factor without prior knowledgeaof that
its computational complexity improves as— 0.

Our method is based on the thresholding of empirical Walsh coefficients. A thresholding estimator

is any estimator of the form
F= 2 Lir@za, Oses

seBd

whered, = (1/n) Y1, ¢s(X;) are empirical estimates of the Walsh coefficientsfofl’(-) is
some statistic, and., is an indicator function. The threshold, depends on the sample size. For

example, in [5, 6] the statisti€'(6,) = 62 was used with the thresholj, = 1/M(n + 1). This
choice was motivated by the considerations of bias-variance trade-off for each individual coefficient.

The main disadvantage of such direct methods is the need to estimafe-alt’ Walsh coefficients.

While this is not an issue wheh= log n, it is clearly impractical whed >> logn. To deal with this

issue, we will consider a recursive thresholding approach that will allow us to reject gionips

of coefficients based on efficiently computable statistics. This approach is motivated as follows. For
anyl < k < d, we can write anyf € L?(u4) with the Walsh coefficient( f) as

f: Z Z ouUQOuv: Z fu®§0ua

ueBk veBi—k ueBk



wherewv denotes the concatenation of e B* andv € Bd—’C and, for eachu € B¥, f, =

> vepi-t Ouvpy lies in L (uq_y). By Parseval's identityfV,, = Hf“HL2 (han) = =Y epii 02,
This means that itV,, < \ for someu € B*, thend?, < X for everyv € B4~*. Thus, we could
start atu = 0 andu = 1 and check whethéi/,, > )\. If not, then we would discard atl,,,, with

v € B4, otherwise, we would proceed on#6 andu1. At the end of this process, we will be left
only with thoses € B¢ for which§2 > ). Let f, denote the resulting function. Jf € F,(p) for

somep, then we will havd| f — fAHLz () S CM™ L(M)=2r/ 1),

We will follow this reasoning in constructing our estimator. We begin by developing an estimator
for W,,.. We will use the following fact, easily proved using the definitions (1) and (2) of the Walsh
functions: for any density on B3¢, anyk andu € B*, we have

Fuly) = Ep {pu(me(X) o x)=y3 } ¥y € BTFand Wy = Ef {pu(me(X)) fu(on(X))}

wherery,(z) = (z(1),...,z(k)) andoy(z) = (z(k +1),...,z(d)) for anyz € B?. This suggests
that we can estimatd’,, by

- 1 n n
Wu=— S eulmi (X)) u(mr(Xis)) oy (X0, )= (X1} (6)

11=112=1

Using induction and Egs. (1) and (2), we can prove fiat = Y veBd-—k é?w. An advantage of

computingWu indirectly via (6) rather than as a sum éﬁu, v € B?* is that, while the latter
hasO(29~*n) complexity, the former has onl§(n?d) complexity. This can lead to significant
computational savings for smail Whenk > d — log(nd), it becomes more efficient to use the
direct estimator.

Now we can define our density estimation procedure. Instead of using a single threshold for all
1 < k < d, we consider a more flexible strategy: for evérywe shall compare ead, to a
threshold that depends not only anbut also ork. Specifically, we will let

ag logn

n
wherea = {ak}gzl satisfies; > ai > ag > 0. (Thisk-dependent scaling will allow us to trade
off MSE and computational complexity.) Given= {\,,}¢_,, define the setl(\) = {s € B :
Wir(s) = Akn, V1 < k < d} and the corresponding estimator

Frwr = Z Irsean))0sps, (8)
seBd

where RWT stands for “recursive Walsh thresholding.” To implenfg@itr on a computer, we adapt

the algorithm of Goldreich and Levin [12], originally developed for cryptography and later applied
to the problem of learning Boolean functions from membership queries [13]: we call the routine
RECURSIVEWALSH, shown in Algorithm 1, withu = & (the empty string) and with from (7).

Analysis of the estimator. \We now turn to the asymptotic analysis of the MSE and the computa-
tional complexity of frwr. We first prove thafrwr adapts to unknown sparsity @f

Theorem 3.1 Suppose the threshold sequence= {\}¢_, is such thatny > (20d + 25)2 /24
Then for all0 < p < 2 the estimator (8) satisfies

sup MSE(f, fawr) = sup Ef|f— fRVVTHL%ud S 54
feFa(p) feFa(p)

2oy ] 2r/(2r+1)
o (PR @

n

where the constar@ depends only op.

Proof: Letus decompose the squarktierror offRWT as

If = Frwrl22 (1) = ZI{SeA a1 (0s — 0)% + > Teane 02 = 1 + To.



Algorithm 1 RECURSIVEWALSH(u, )
k < length(u)
if £ = dthen

o~ n —~ o~
computed, — L 3 ¢, (X;);if 62 > Ay, then output u, 6,; return
=1

end if

compute Wyo «— 75 >° > @uo (Tt 1(Xiy)Pu0 (Tt 1 (Xio ) {041 (X0, )=oni1 (Xiy)}

11=112=1

compute Wy1 « ;3 2 2 pur (Mt (Kin))un (meen (Xia ) Lo (X0 =0 (X))
11=112=

if Wo < Ak+1,n then return else RECURSIVEWALSH(u0, A); end if

if Wu1 < Agt1,n thenreturn else RECURSIVEWALSH(ul, A); end if

3~

We start by observing thate A(X) only if @j > Ag.n, While for anys € A(X)¢ there exists some
1 < k < dsuch tha@ < Men < M. Defining the setsd; = {s € B? : 55 > Aan} and

={seB: 82 <\, },wegetl <3, Iriea,y(8s —0,)? andTy < 3, I{oca,)62. Further,
definingB = {s € B 0% < \gn/2}andS = {s € B : 62 > 3\, ,,/2}, we can write

ZI{seAmB}w — 9 2+ Zf{seAch (6s — 0. $)? = T + Tz,
Ty = ZI{SeAmS}9S + ZI{seAzﬂSC}95 =To1 + Too.
First we deal with the easy terrfigs, T52. Applying (4), (5) and a bit of algebra, we get

2 1 2 v 1 —2r/(2r+1)
—Hs 0; > Aan/2}| < <—n , (10

ETis

IA

Mg n - M

C (Majlogn r/(r+1)
ETs < Z I{92< (30, /2) log n/n} 07 < i (T) : (11)
seBd
Next we deal with the large-deviation terfis, and7s;. Using Cauchy—Schwarz, we get
1/2
ETH<Z[ (0, —8,) (seAlﬂB)} . (12)

To estimate the fourth moment in (12), we use Rosenthal’'s inequality [14] t&(@et— 6 ) <
c/M2 2. To bound the probability that € A; N B, we observe that € A; N B implies that

|95 — 0] > (1/5)4/Ad,n, and then use Bernstein’s inequality [14] to get
P (105 — 6s] > (1/5)\/ Aan) < 2exp __P?logn — o~ B /120426/3)] < 9= (5-1)/2
o= "= 2(1+243/3)
with 3 = (1/5)v/Mag > 4d + 5. Sincen~(#—1/2 < p=2(d+1) 'we have
ET, < Cn~ 4D < O/ (Mn). (13)
Finally, ET>; <> P(s € AN S)#2. Using the same argument as above, welgete 4, NS) <
2n~(=1/2 ‘wherey = (1/5)v/Ma;. Sincefd? < 1/M for all s € B% and sincey > 4, this gives

E Ty < 2n 20440 < 2/(Mn). (14)
Putting together Egs. (10), (11), (13), and (14), we get (9), and the theorem is proved. R

Our second result concerns the running time of Algorithm 1.Kéiv, p) = 3¢, a;p/Q.

Theorem 3.2 Given anys € (0, 1), provided eacly,, is chosen so that

V2kagnlogn > 5 [Cav/n + (log(d/d) + k)/loge] , (15)
Algorithm 1 runs inO(n2d(n/M logn)P/? K («, p)) time with probability at least — 4.



Proof: The complexity is determined by the number of calls ®cRRSIVEWALSH. For eachk,
a call to RECURSIVEWALSH is made at every. € B* with W, > Akn. Letus say that a call to
RECURSIVEWALSH(u, A) is correctif W,, > Ax.,/2. We will show that, with probability at least
1 — 4, only the correct calls are made. The probability of making at least one incorrect call is

d d
P < U U W= e, W < A,m/z}> <> 3r (/Wu > Aoy Wa < Ak,n/Q) :

k=1 ueBk k=1ueBk
For a givenu € B*, W, > Men @andW, < A, /2 together imply thaf| f, — ﬁLHQp(Md,k) >
(1/5),/3\,67”, wheref, £ Y veBd—k §w<pv. Now, it can be shown that, for everyc B*, the norm
| fu = fullL2(ua_,) CaN be expressed as a supremum of an empirical process [15] over a certain

function class that depends érfdetails are omitted for lack of space). We can then use Talagrand’s
concentration-of-measure inequality for empirical processes [16] to get

]P’(Wu > Aoy Wi < Agn/2) < exp{ —nCy (2’“@%7” A 2]“/2(1;@7”)},

whereay, , = (1/5)/ay logn/n—C2/v2kn, andC, C; are the absolute constants in Talagrand’s
bound. If we choose, as in (15), thel®(W,, > M., Wy < Ain/2) < 6/(d2¢7F) for allu € B*.
Summing ovek, u € B¥, we see that, with probability 1 — d, only the correct calls will be made.

It remains to bound the number of the correct calls. For dadliy, > X, ,,/2 implies that there
exists at least one € B¢~* such that?, > Ak.n/2. Since for everyl < k < d eachd, contributes
to exactly ondV,,, we have by the pigeonhole principle that

{ueBF W, > New/2}| < [{s € BY: 02 > Nw/2}| < (2/MAien)?/?,

where in the second inequality we used (4) with= 1/v/ M. Hence, the number of correct
recursive calls is bounded by = S>¢_, (2/M Ay ,)?/% = (2n/M log n)P/2K (e, p). At each call,
we compute an estimate of the correspondirig, and W,,;, which requiresO(n2d) operations.
Therefore, with probability at least— §, the time complexity will be as stated in the theorenil

MSE vs. complexity. By controlling the rate at which the sequeneg decays withk, we can

trade off MSE against complexity. Consider the following two extreme caseswi (& ... =

ag ~ 1/M and (2)ay, ~ 297%/M. The first case, which reduces to term-by-term threshold-
ing, achieves the best bias-variance trade-off with the MBBog n/n)%"/2"+1)(1/M)). How-

ever, it hasK (o, p) = O(MP/2d), resulting inO(d?n?(n/logn)P/?) complexity. The second
case, which leads to a very severe estimator that will tend to reject a lot of coefficients, has MSE
of O((logn/n)?"/Cr+UAr=1/Cr+1)) "put K (ar, p) = O(MP/?), leading to a considerably better
O(dn?(n/logn)P/?) complexity. From the computational viewpoint, it is preferable to use rapidly
decaying thresholds. However, this reduction in complexity will be offset by a corresponding in-
crease in MSE. In fact, using exponentially decayings in practice is not advisable as its low
complexity is mainly due to the fact that it will tend to reject even the big coefficients very early on,
especially wher is large. To achieve a good balance between complexity and MSE, a moderately
decaying threshold sequence might be best, @9~ (d—k+1)™/M for somem > 1. Asp — 0,

the effect ofA on complexity becomes negligible, and the complexity tend3(te?d).

Positivity and normalization issues. As is the case with orthogonal series estimatﬁugﬁ,T may
not necessarily be a bona fide density. In particular, there may beseni# such thatfrwr () <

0, and it may happen thdt frwrdia # 1. In principle, this can be handled by clipping the negative
values at zero and renormalizing, which can only improve the MSE. In practice renormalization may
be computationally expensive whdns very large. If the estimate is suitably sparse, however, the
renormalization can be carried out approximately using Monte-Carlo methods.

4 Simulations

The focus of our work is theoretical, consisting in the derivation of a recursive thresholding proce-
dure for estimating multivariate binary densities (Algorithm 1), with a proof of its near-minimaxity



and an asymptotic analysis of its complexity. Although amreegive empirical evaluation is outside

the scope of this paper, we have implemented the proposed estimator, and now present some simula-
tion results to demonstrate its small-sample performance. We generated synthetic observations from
a mixture density’ on a 15-dimensional binary hypercube. The mixture has 10 components, where
each component is a product density with 12 randomly chosen covariates Bavinguilli(1/2)
distributions, and the other three haviBgrnoulli(0.9) distributions. For = 15, it is still feasible

to quickly compute the ground truth, consisting of 32768 valueg ahd its Walsh coefficients.

These values are shown in Fig. 1 (left). As can be seen from the coefficient profile in the bottom of
the figure, this density is clearly sparse. Fig. 1 also shows the estimated probabilities and the Walsh
coefficients for sample sizes= 5000 (middle) andn = 10000 (right).

Ground truth ¢) FrwT, 7 = 5000 frwT, n = 10000

x 10 x10”" x10 "

i

probability

probability
probability
in

0.5,

absolute value | x 297
s
v diz,
absolute value | x 27°)
s
v diz,
absolute value | x 2
s

D:ﬁ% ot ;I

Figure 1: Ground truth (left) and estimated density far= 5000 (middle) andn = 10000 (right) with
constant thresholding. Top: true and estimated probabilities (clipped at zero and renormalized) arranged in
lexicographic order. Bottom: absolute values of true and estimated Walsh coefficients arranged in lexicographic
order. For the estimated densities, the coefficient plots also show the threshold level (dotted line) and absolute
values of the rejected coefficients (lighter color).
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Figure 2: Small-sample performance thc(WT in estimating f wth three different thresholding schemes:
(a) MSE; (b) running time (in seconds); (c) number of recursive calls; (d) number of coefficients retained by

the algorithm. All results are averaged over five independent runs for each sample size (the error bars show the
standard deviations).

To study the trade-off between MSE and complexity, we implemented three different thresholding
schemes: (1) constant, ,, = 2logn/(2n), (2) logarithmic\y ,, = 2log(d — k +2) logn/(2%n),

and (3) linear)\;,, = 2(d — k + 1)logn/(2%n). Up to thelogn factor (dictated by the theory),

the thresholds at = d are set to twice the variance of the empirical estimate of any coefficient
whose value is zero; this forces the estimator to reject empirical coefficients whose values cannot
be reliably distinguished from zero. Occasionally, spurious coefficients get retained, as can be seen
in Fig. 1 (middle) for the estimate for = 5000. Fig 2 shows the performance ¢&wr. Fig. 2(a)

is a plot of MSE vs. sample size. In agreement with the theory, MSE is the smallest for the con-
stant thresholding scheme [which is simply an efficient recursive implementation of a term-by-term
thresholding estimator with,, ~ logn/(Mn)], and then it increases for the logarithmic and for

the linear schemes. Fig. 2(b,c) shows the running time (in seconds) and the number of recursive



calls made to RCURSIVEWALSH vs. sample size. The number of recursive calls is a platform-
independent way of gauging the computational complexity of the algorithm, although it should be
kept in mind that each recursive call h@$n?d) overhead. The running time increases polynomi-
ally with n, and is the largest for the constant scheme, followed by the logarithmic and the linear
schemes. We see that, while the MSE of the logarithmic scheme is fairly close to that of the constant
scheme, its complexity is considerably lower, in terms of both the number of recursive calls and the
running time. In all three cases, the number of recursive calls decreases duthto the fact that
weight estimates become increasingly accurate wijtivhich causes the expected number of false
discoveries (i.e., making a recursive call at an internal node of the tree only to reject its descendants
later) to decrease. Finally, Fig. 2(d) shows the number of coefficients retained in the estimate. This
number grows withm as a consequence of the fact that the threshold decreases,withile the
number of accurately estimated coefficients increases. The true d¢risity 40 parameters: 9 to
specify the weights of the components, 3 per component to locate the indices of the nonuniform
covariates, and the single Bernoulli parameter of the nonuniform covariates. It is interesting to note
that the maximal number of coefficients returned by our algorithm approaches 40.

Overall, these preliminary simulation results show that our implemented estimator behaves in accor-

dance with the theory even in the small-sample regime. The performance of the logarithmic thresh-

olding scheme is especially encouraging, suggesting that it may be possible to trade off MSE against
complexity in a way that will scale to large valuesdf In the future, we plan to test our method

on high-dimensional real data sets. Our particular interest is in social network data, e.g., records of
meetings among large groups of individuals. These are represented by binary strings most of whose
entries are zero (i.e., only a very small number of people are present at any given meeting). To model
their densities, we plan to experiment with Walsh bases whiased toward unity.
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