
Near-Minimax Recursive Density Estimation
on the Binary Hypercube

Maxim Raginsky
Duke University

Durham, NC 27708
m.raginsky@duke.edu

Svetlana Lazebnik
UNC Chapel Hill

Chapel Hill, NC 27599
lazebnik@cs.unc.edu

Rebecca Willett
Duke University

Durham, NC 27708
willett@duke.edu

Jorge Silva
Duke University

Durham, NC 27708
jg.silva@duke.edu

Abstract

This paper describes a recursive estimation procedure for multivariate binary den-
sities using orthogonal expansions. Ford covariates, there are2d basis coefficients
to estimate, which renders conventional approaches computationally prohibitive
whend is large. However, for a wide class of densities that satisfy a certain spar-
sity condition, our estimator runs in probabilistic polynomial time and adapts to
the unknown sparsity of the underlying density in two key ways: (1) it attains
near-minimax mean-squared error, and (2) the computational complexity is lower
for sparser densities. Our method also allows for flexible control of the trade-off
between mean-squared error and computational complexity.

1 Introduction

Multivariate binary data arise in a variety of fields, such as biostatistics [1], econometrics [2] or
artificial intelligence [3]. In these and other settings, it is often necessary to estimate a proba-
bility density from a number of independent observations. Formally, we haven i.i.d. samples
from a probability densityf (with respect to the counting measure) on thed-dimensionalbi-
nary hypercubeBd, B △

= {0, 1}, and seek an estimatêf of f with a small mean-squared error
MSE(f, f̂) = E

{∑
x∈Bd(f(x)− f̂(x))2

}
.

In many cases of practical interest, the number of covariatesd is much larger thanlog n, so direct
estimation off as a multinomial density with2d parameters is both unreliable and impractical. Thus,
one has to resort to “nonparametric” methods and search for good estimators in a suitably defined
class whose complexity grows withn. Some nonparametric methods proposed in the literature, such
as kernels [4] and orthogonal expansions [5, 6], either have very slow rates of MSE convergence or
are computationally prohibitive for larged. For example, the kernel method [4] requiresO(n2d)
operations to compute the estimate at anyx ∈ Bd, yet its MSE decays asO(n−4/(4+d)) [7], which is
extremely slow whend is large. In contrast, orthogonal function methods generally have much better
MSE decay rates, but rely on estimating2d coefficients in a fixed basis, which requires enormous
computational resources for larged. For instance, using the Fast Hadamard Transform to estimate
the coefficients in the so-calledWalsh basisusingn samples requiresO(nd2d) operations [5].

In this paper we take up the problem of accurate, computationally tractable estimation of a density
on the binary hypercube. We take the minimax point of view, where we assume thatf comes from
a particular function classF and seek an estimator that approximately attains the minimax MSE

R∗
n(F)

△

= inf
bf

sup
f∈F

MSE(f, f̂),

where the infimum is over all estimators based onn i.i.d. samples. We will define our function class
to reflect another feature often encountered in situations involving multivariate binary data: namely,



that the shape of the underlying density is strongly influenced by small constellations of thed co-
variates. For example, when working with panel data [2], it may be the case that the answers to some
specific subset of questions are highly correlated among a particular group of the panel participants,
and the responses of these participants to other questions are nearly random; moreover, there may
be several such distinct groups in the panel. To model such “constellation effects” mathematically,
we will consider classes of densities that satisfy a particularsparsity condition.

Our contribution consists in developing a thresholding density estimator that adapts to the unknown
sparsity of the underlying density in two key ways: (1) it is near-minimax optimal, with the error
decay rate depending upon the sparsity, and (2) it can be implemented using a recursive algorithm
that runs in probabilistic polynomial time and whose computational complexity is lower for sparser
densities. The algorithm entails recursively examining empirical estimates of wholeblocksof the
2d basis coefficients. At each stage of the algorithm, the weights of the coefficients estimated at
previous stages are used to decide which remaining coefficients are most likely to be significant,
and computing resources are allocated accordingly. We show that this decision is accurate with high
probability. An additional attractive feature of our approach is that it gives us a principled way of
trading off MSE against computational complexity by controlling the decay of the threshold as a
function of the recursion depth.

2 Preliminaries

We first list some definitions and results needed in the sequel. Throughout the paper,C andc denote
generic constants whose values may change from line to line. For two real numbersa andb, a ∧ b
anda ∨ b denote, respectively, the smaller and the larger of the two.

Biased Walsh bases. Let µd denote the counting measure on thed-dimensional binary hypercube
Bd. Then the space of all real-valued functions onBd is the real Hilbert spaceL2(µd) with the
standard inner product〈f, g〉 △

=
∑

x∈Bd f(x)g(x). Given anyη ∈ (0, 1), we can construct an
orthonormal systemΦd,η in L2(µd) as follows. Define two functionsϕ0,η, ϕ1,η : B → R by

ϕ0,η(x)
△

= (1 − η)x/2η(1−x)/2 and ϕ1,η(x)
△

= (−1)xηx/2(1− η)(1−x)/2, x ∈ {0, 1}. (1)

Now, for anys = (s(1), . . . , s(d)) ∈ Bd define the functionϕs,η : Bd → R by

ϕs,η(x)
△

=
d∏

i=1

ϕs(i),η(x(i)), ∀x = (x(1), . . . , x(d)) ∈ Bd (2)

(this is written more succinctly asϕs,η = ϕs(1),η ⊗ . . . ⊗ ϕs(d),η, where⊗ is the tensor product).
The setΦd,η = {ϕs,η : s ∈ Bd} is an orthonormal system inL2(µd), which is referred to as the
Walsh system with biasη [8, 9]. Any functionf ∈ L2(µd) can be uniquely represented as

f =
∑

s∈Bd

θs,ηϕs,η,

whereθs,η = 〈f, ϕs,η〉. Whenη = 1/2, we get the standard Walsh system used in [5, 6]; in that
case, we shall omit the indexη = 1/2 for simplicity. The product structure of the biased Walsh
bases makes them especially convenient for statistical applications as it allows for a computation-
ally efficient recursive method for computing accurate estimates of squared coefficients in certain
hierarchically structured sets.

Sparsity and weak-ℓp balls. We are interested in densities whose representations in some biased
Walsh basis satisfy a certain sparsity constraint. Givenη ∈ (0, 1) and a functionf ∈ L2(µd), let
θ(f) denote the list of its coefficients inΦd,η. We are interested in cases when the components
of θ(f) decay according to a power law. Formally, letθ(1), . . . , θ(M), whereM = 2d, be the
components ofθ(f) arranged in decreasing order of magnitude:|θ(1)| ≥ |θ(2)| ≥ . . . ≥ |θ(M)|.
Given some0 < p < ∞, we say thatθ(f) belongs to theweak-ℓp ball of radiusR [10], and write
θ(f) ∈ wℓp(R), if

|θ(m)| ≤ R ·m−1/p, 1 ≤ m ≤M. (3)



It is not hard to show that the coefficients of any probability density onBd in Φd,η are bounded by
R(η) = [η ∨ (1− η)]d/2. With this in mind, let us define the classFd(p, η) of all functionsf onBd

satisfyingθ(f) ∈ wℓp(R(η)) in R
M . We are particularly interested in the case0 < p < 2. When

η = 1/2, with R(η) = 2−d/2, we shall write simplyFd(p).

We will need approximation properties of weak-ℓp balls as listed, e.g., in [11]. The basic fact is that
the power-law condition (3) is equivalent to the concentration estimate

∣∣{s ∈ Bd : |θs| ≥ λ
}∣∣ ≤ (R/λ)p, ∀λ > 0. (4)

For any1 ≤ k ≤ M , let θk(f) denote the vectorθ(f) with θ(k+1), . . . , θ(M) set to zero. Then it

follows from (3) that‖θ(f)− θk(f)‖ℓ2
M

≤ CRk−r, wherer
△

= 1/p− 1/2, andC is some constant
that depends only onp. Given anyf ∈ Fd(p, η) and denoting byfk the function obtained from it
by retaining only thek largest coefficients, we get from Parseval’s identity that

‖f − fk‖L2(µd) ≤ CRk−r. (5)

To get a feeling for what the classesFd(p, η) could model in practice, we note that, for a fixed
η ∈ (0, 1), the product ofd Bernoulli(η∗) densities withη∗ △

=
√

η/(
√

η +
√

1− η) is the unique
sparsest density in the entire scale ofFd(p, η) spaces with0 < p < 2: all of its coefficients in
Fd,η are zero, except forθs,η with s = (0, . . . , 0), which is equal to(η∗/

√
η)d. Other densities in

{Φd(p, η) : 0 < p < 2} include, for example, mixtures of components that, up to a permutation
of {1, . . . , d}, can be written as a tensor product of a large number ofBernoulli(η∗) densities and
some other density. The parameterη can be interpreted either as the default noise level in measuring
an individual covariate or as a smoothness parameter that interpolates between the point masses
δ(0,...,0) andδ(1,...,1). We assume thatη is known (e.g., from some preliminary exploration of the
data or from domain-specific prior information) and fixed.

In the following, we limit ourselves to the “noisiest” caseη = 1/2 with R(1/2) = 2−d/2. Our
theory can be easily modified to cover any otherη ∈ (0, 1): one would need to replaceR = 2−d/2

with the correspondingR(η) and use the bound‖ϕs,η‖∞ ≤ R(η) instead of‖ϕs‖∞ ≤ 2−d/2 when
estimating variances and higher moments.

3 Density estimation via recursive Walsh thresholding

We now turn to our problem of estimating a densityf onBd from a sample{Xi}ni=1 whenf ∈ Fd(p)
for some unknown0 < p < 2. The minimax theory for weak-ℓp balls [10] says that

R∗
n(Fd(p)) ≥ CM−p/2n−2r/(2r+1), r = 1/p− 1/2

whereM = 2d. We shall construct an estimator thatadapts to unknown sparsityof f in the sense
that it achieves this minimax rate up to a logarithmic factor without prior knowledge ofp and that
its computational complexity improves asp→ 0.

Our method is based on the thresholding of empirical Walsh coefficients. A thresholding estimator
is any estimator of the form

f̂ =
∑

s∈Bd

I{T (bθs)≥λn}θ̂sϕs,

where θ̂s = (1/n)
∑n

i=1 ϕs(Xi) are empirical estimates of the Walsh coefficients off , T (·) is
some statistic, andI{·} is an indicator function. The thresholdλn depends on the sample size. For

example, in [5, 6] the statisticT (θ̂s) = θ̂2
s was used with the thresholdλn = 1/M(n + 1). This

choice was motivated by the considerations of bias-variance trade-off for each individual coefficient.

The main disadvantage of such direct methods is the need to estimate allM = 2d Walsh coefficients.
While this is not an issue whend ≍ log n, it is clearly impractical whend≫ log n. To deal with this
issue, we will consider a recursive thresholding approach that will allow us to reject wholegroups
of coefficients based on efficiently computable statistics. This approach is motivated as follows. For
any1 ≤ k ≤ d, we can write anyf ∈ L2(µd) with the Walsh coefficientsθ(f) as

f =
∑

u∈Bk

∑

v∈Bd−k

θuvϕuv =
∑

u∈Bk

fu ⊗ ϕu,



whereuv denotes the concatenation ofu ∈ Bk and v ∈ Bd−k and, for eachu ∈ Bk, fu
△

=∑
v∈Bd−k θuvϕv lies in L2(µd−k). By Parseval’s identity,Wu

△

= ‖fu‖2L2(µd−k) =
∑

v∈Bd−k θ2
uv.

This means that ifWu < λ for someu ∈ Bk, thenθ2
uv < λ for everyv ∈ Bd−k. Thus, we could

start atu = 0 andu = 1 and check whetherWu ≥ λ. If not, then we would discard allθuv with
v ∈ Bd−1; otherwise, we would proceed on tou0 andu1. At the end of this process, we will be left
only with thoses ∈ Bd for which θ2

s ≥ λ. Let fλ denote the resulting function. Iff ∈ Fd(p) for
somep, then we will have‖f − fλ‖2L2(µd) ≤ CM−1(Mλ)−2r/(2r+1).

We will follow this reasoning in constructing our estimator. We begin by developing an estimator
for Wu. We will use the following fact, easily proved using the definitions (1) and (2) of the Walsh
functions: for any densityf onBd, anyk andu ∈ Bk, we have

fu(y) = Ef

{
ϕu(πk(X))I{σk(X)=y}

}
, ∀y ∈ Bd−k and Wu = Ef {ϕu(πk(X))fu(σk(X))} ,

whereπk(x)
△

= (x(1), . . . , x(k)) andσk(x)
△

= (x(k + 1), . . . , x(d)) for anyx ∈ Bd. This suggests
that we can estimateWu by

Ŵu =
1

n2

n∑

i1=1

n∑

i2=1

ϕu(πk(Xi1))ϕu(πk(Xi2 ))I{σk(Xi1
)=σk(Xi2

)}. (6)

Using induction and Eqs. (1) and (2), we can prove thatŴu =
∑

v∈Bd−k θ̂2
uv. An advantage of

computingŴu indirectly via (6) rather than as a sum ofθ̂2
uv, v ∈ Bd−k, is that, while the latter

hasO(2d−kn) complexity, the former has onlyO(n2d) complexity. This can lead to significant
computational savings for smallk. Whenk ≥ d − log(nd), it becomes more efficient to use the
direct estimator.

Now we can define our density estimation procedure. Instead of using a single threshold for all
1 ≤ k ≤ d, we consider a more flexible strategy: for everyk, we shall compare eacĥWu to a
threshold that depends not only onn, but also onk. Specifically, we will let

λk,n =
αk log n

n
, 1 ≤ k ≤ d (7)

whereα = {αk}dk=1 satisfiesα1 ≥ αk ≥ αd > 0. (Thisk-dependent scaling will allow us to trade

off MSE and computational complexity.) Givenλ = {λk,n}dk=1, define the setA(λ)
△

= {s ∈ Bd :

Ŵπk(s) ≥ λk,n, ∀1 ≤ k ≤ d} and the corresponding estimator

f̂RWT
△

=
∑

s∈Bd

I{s∈A(λ)}θ̂sϕs, (8)

where RWT stands for “recursive Walsh thresholding.” To implementf̂RWT on a computer, we adapt
the algorithm of Goldreich and Levin [12], originally developed for cryptography and later applied
to the problem of learning Boolean functions from membership queries [13]: we call the routine
RECURSIVEWALSH, shown in Algorithm 1, withu = ∅ (the empty string) and withλ from (7).

Analysis of the estimator. We now turn to the asymptotic analysis of the MSE and the computa-
tional complexity off̂RWT. We first prove that̂fRWT adapts to unknown sparsity off :

Theorem 3.1 Suppose the threshold sequenceλ = {λk}dk=1 is such thatαd ≥ (20d + 25)2/2d.
Then for all0 < p < 2 the estimator (8) satisfies

sup
f∈Fd(p)

MSE(f, f̂RWT) = sup
f∈Fd(p)

Ef ‖f − f̂RWT‖2L2(µd) ≤
C

2d

(
2dα1 log n

n

)2r/(2r+1)

, (9)

where the constantC depends only onp.

Proof: Let us decompose the squaredL2 error of f̂RWT as

‖f − f̂RWT‖2L2(µd) =
∑

s

I{s∈A(λ)}(θs − θ̂s)
2 +

∑

s

I{s∈A(λ)c}θ
2
s ≡ T1 + T2.



Algorithm 1 RECURSIVEWALSH(u, λ)

k ← length(u)
if k = d then

compute θ̂u ← 1
n

n∑
i=1

ϕu(Xi); if θ̂2
u ≥ λd,n then output u, θ̂u; return

end if

compute Ŵu0 ← 1
n2

n∑
i1=1

n∑
i2=1

ϕu0(πk+1(Xi1))ϕu0(πk+1(Xi2))I{σk+1(Xi1
)=σk+1(Xi2

)}

compute Ŵu1 ← 1
n2

n∑
i1=1

n∑
i2=1

ϕu1(πk+1(Xi1))ϕu1(πk+1(Xi2))I{σk+1(Xi1
)=σk+1(Xi2

)}

if Ŵu0 ≤ λk+1,n then return else RECURSIVEWALSH(u0, λ); end if
if Ŵu1 ≤ λk+1,n then return else RECURSIVEWALSH(u1, λ); end if

We start by observing thats ∈ A(λ) only if θ̂2
s ≥ λd,n, while for anys ∈ A(λ)c there exists some

1 ≤ k ≤ d such that̂θ2
s < λk,n ≤ λ1,n. Defining the setsA1 = {s ∈ Bd : θ̂2

s ≥ λd,n} and
A2 = {s ∈ Bd : θ̂2

s < λ1,n}, we getT1 ≤
∑

s I{s∈A1}(θs− θ̂s)
2 andT2 ≤

∑
s I{s∈A2}θ

2
s . Further,

definingB = {s ∈ Bd : θ2
s < λd,n/2} andS = {s ∈ Bd : θ2

s ≥ 3λ1,n/2}, we can write

T1 =
∑

s

I{s∈A1∩B}(θs − θ̂s)
2 +

∑

s

I{s∈A1∩Bc}(θs − θ̂s)
2 ≡ T11 + T12,

T2 =
∑

s

I{s∈A2∩S}θ
2
s +

∑

s

I{s∈A2∩Sc}θ
2
s ≡ T21 + T22.

First we deal with the easy termsT12, T22. Applying (4), (5) and a bit of algebra, we get

E T12 ≤
1

Mn

∣∣{s : θ2
s ≥ λd,n/2

}∣∣ ≤ 1

Mn

(
2

Mλd,n

)p/2

≤ 1

M
n−2r/(2r+1), (10)

E T22 ≤
∑

s∈Bd

I{θ2
s
<(3α1/2) log n/n}θ

2
s ≤

C

M

(
Mα1 log n

n

)2r/(2r+1)

. (11)

Next we deal with the large-deviation termsT11 andT21. Using Cauchy–Schwarz, we get

E T11 ≤
∑

s

[
E(θs − θ̂s)

4 · P(s ∈ A1 ∩B)
]1/2

. (12)

To estimate the fourth moment in (12), we use Rosenthal’s inequality [14] to getE(θs − θ̂s)
4 ≤

c/M2n2. To bound the probability thats ∈ A1 ∩ B, we observe thats ∈ A1 ∩ B implies that
|θ̂s − θs| ≥ (1/5)

√
λd,n, and then use Bernstein’s inequality [14] to get

P
(
|θ̂s − θs| ≥ (1/5)

√
λd,n

)
≤ 2 exp

(
− β2 log n

2(1 + 2β/3)

)
= 2n−β2/[2(1+2β/3)] ≤ 2n−(β−1)/2

with β = (1/5)
√

Mαd ≥ 4d + 5. Sincen−(β−1)/2 ≤ n−2(d+1), we have

E T11 ≤ Cn−(d+1) ≤ C/(Mn). (13)

Finally,E T21 ≤
∑

s P(s ∈ A2∩S)θ2
s . Using the same argument as above, we getP(s ∈ A2∩S) ≤

2n−(γ−1)/2, whereγ = (1/5)
√

Mα1. Sinceθ2
s ≤ 1/M for all s ∈ Bd and sinceγ ≥ β, this gives

E T21 ≤ 2n−2(d+1) ≤ 2/(Mn). (14)

Putting together Eqs. (10), (11), (13), and (14), we get (9), and the theorem is proved. �

Our second result concerns the running time of Algorithm 1. LetK(α, p)
△

=
∑d

k=1 α
−p/2
k .

Theorem 3.2 Given anyδ ∈ (0, 1), provided eachαk is chosen so that
√

2kαkn log n ≥ 5
[
C2

√
n + (log(d/δ) + k)/ log e

]
, (15)

Algorithm 1 runs inO(n2d(n/M log n)p/2K(α, p)) time with probability at least1− δ.



Proof: The complexity is determined by the number of calls to RECURSIVEWALSH. For eachk,
a call to RECURSIVEWALSH is made at everyu ∈ Bk with Ŵu ≥ λk,n. Let us say that a call to
RECURSIVEWALSH(u, λ) is correct if Wu ≥ λk,n/2. We will show that, with probability at least
1− δ, only the correct calls are made. The probability of making at least one incorrect call is

P

(
d⋃

k=1

⋃

u∈Bk

{Ŵu ≥ λk,n, Wu < λk,n/2}
)
≤

d∑

k=1

∑

u∈Bk

P

(
Ŵu ≥ λk,n, Wu < λk,n/2

)
.

For a givenu ∈ Bk, Ŵu ≥ λk,n andWu < λk,n/2 together imply that‖fu − f̂u‖2L2(µd−k) ≥
(1/5)

√
λk,n, wheref̂u

△

=
∑

v∈Bd−k θ̂uvϕv. Now, it can be shown that, for everyu ∈ Bk, the norm

‖fu − f̂u‖L2(µd−k) can be expressed as a supremum of an empirical process [15] over a certain
function class that depends onk (details are omitted for lack of space). We can then use Talagrand’s
concentration-of-measure inequality for empirical processes [16] to get

P(Ŵu ≥ λk,n, Wu < λk,n/2) ≤ exp
{
− nC1(2

ka2
k,n ∧ 2k/2ak,n)

}
,

whereak,n = (1/5)
√

αk log n/n−C2/
√

2kn, andC1, C2 are the absolute constants in Talagrand’s

bound. If we chooseαk as in (15), thenP(Ŵu ≥ λk,n, Wu < λk,n/2) ≤ δ/(d2d−k) for all u ∈ Bk.
Summing overk, u ∈ Bk, we see that, with probability≥ 1− δ, only the correct calls will be made.

It remains to bound the number of the correct calls. For eachk, Wu ≥ λk,n/2 implies that there
exists at least onev ∈ Bd−k such thatθ2

uv ≥ λk,n/2. Since for every1 ≤ k ≤ d eachθs contributes
to exactly oneWu, we have by the pigeonhole principle that

∣∣{u ∈ Bk : Wu ≥ λk,n/2
}∣∣ ≤

∣∣{s ∈ Bd : θ2
s ≥ λk,n/2

}∣∣ ≤ (2/Mλk,n)p/2,

where in the second inequality we used (4) withR = 1/
√

M . Hence, the number of correct
recursive calls is bounded byN =

∑d
k=1(2/Mλk,n)p/2 = (2n/M log n)p/2K(α, p). At each call,

we compute an estimate of the correspondingWu0 andWu1, which requiresO(n2d) operations.
Therefore, with probability at least1− δ, the time complexity will be as stated in the theorem.�

MSE vs. complexity. By controlling the rate at which the sequenceαk decays withk, we can
trade off MSE against complexity. Consider the following two extreme cases: (1)α1 = . . . =
αd ∼ 1/M and (2)αk ∼ 2d−k/M . The first case, which reduces to term-by-term threshold-
ing, achieves the best bias-variance trade-off with the MSEO((log n/n)2r/(2r+1)(1/M)). How-
ever, it hasK(α, p) = O(Mp/2d), resulting inO(d2n2(n/ logn)p/2) complexity. The second
case, which leads to a very severe estimator that will tend to reject a lot of coefficients, has MSE
of O((log n/n)2r/(2r+1)M−1/(2r+1)), but K(α, p) = O(Mp/2), leading to a considerably better
O(dn2(n/ log n)p/2) complexity. From the computational viewpoint, it is preferable to use rapidly
decaying thresholds. However, this reduction in complexity will be offset by a corresponding in-
crease in MSE. In fact, using exponentially decayingαk ’s in practice is not advisable as its low
complexity is mainly due to the fact that it will tend to reject even the big coefficients very early on,
especially whend is large. To achieve a good balance between complexity and MSE, a moderately
decaying threshold sequence might be best, e.g.,αk ∼ (d−k+1)m/M for somem ≥ 1. Asp→ 0,
the effect ofλ on complexity becomes negligible, and the complexity tends toO(n2d).

Positivity and normalization issues. As is the case with orthogonal series estimators,f̂RWT may
not necessarily be a bona fide density. In particular, there may be somex ∈ Bd such that̂fRWT(x) <

0, and it may happen that
∫

f̂RWTdµd 6= 1. In principle, this can be handled by clipping the negative
values at zero and renormalizing, which can only improve the MSE. In practice renormalization may
be computationally expensive whend is very large. If the estimate is suitably sparse, however, the
renormalization can be carried out approximately using Monte-Carlo methods.

4 Simulations

The focus of our work is theoretical, consisting in the derivation of a recursive thresholding proce-
dure for estimating multivariate binary densities (Algorithm 1), with a proof of its near-minimaxity



and an asymptotic analysis of its complexity. Although an extensive empirical evaluation is outside
the scope of this paper, we have implemented the proposed estimator, and now present some simula-
tion results to demonstrate its small-sample performance. We generated synthetic observations from
a mixture densityf on a 15-dimensional binary hypercube. The mixture has 10 components, where
each component is a product density with 12 randomly chosen covariates havingBernoulli(1/2)
distributions, and the other three havingBernoulli(0.9) distributions. Ford = 15, it is still feasible
to quickly compute the ground truth, consisting of 32768 values off and its Walsh coefficients.
These values are shown in Fig. 1 (left). As can be seen from the coefficient profile in the bottom of
the figure, this density is clearly sparse. Fig. 1 also shows the estimated probabilities and the Walsh
coefficients for sample sizesn = 5000 (middle) andn = 10000 (right).

Ground truth (f ) bfRWT, n = 5000 bfRWT, n = 10000

Figure 1: Ground truth (left) and estimated density forn = 5000 (middle) andn = 10000 (right) with
constant thresholding. Top: true and estimated probabilities (clipped at zero and renormalized) arranged in
lexicographic order. Bottom: absolute values of true and estimated Walsh coefficients arranged in lexicographic
order. For the estimated densities, the coefficient plots also show the threshold level (dotted line) and absolute
values of the rejected coefficients (lighter color).
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Figure 2: Small-sample performance ofbfRWT in estimatingf wth three different thresholding schemes:
(a) MSE; (b) running time (in seconds); (c) number of recursive calls; (d) number of coefficients retained by
the algorithm. All results are averaged over five independent runs for each sample size (the error bars show the
standard deviations).

To study the trade-off between MSE and complexity, we implemented three different thresholding
schemes: (1) constant,λk,n = 2 logn/(2dn), (2) logarithmic,λk,n = 2 log(d−k+2) logn/(2dn),
and (3) linear,λk,n = 2(d − k + 1) log n/(2dn). Up to thelog n factor (dictated by the theory),
the thresholds atk = d are set to twice the variance of the empirical estimate of any coefficient
whose value is zero; this forces the estimator to reject empirical coefficients whose values cannot
be reliably distinguished from zero. Occasionally, spurious coefficients get retained, as can be seen
in Fig. 1 (middle) for the estimate forn = 5000. Fig 2 shows the performance of̂fRWT. Fig. 2(a)
is a plot of MSE vs. sample size. In agreement with the theory, MSE is the smallest for the con-
stant thresholding scheme [which is simply an efficient recursive implementation of a term-by-term
thresholding estimator withλn ∼ log n/(Mn)], and then it increases for the logarithmic and for
the linear schemes. Fig. 2(b,c) shows the running time (in seconds) and the number of recursive



calls made to RECURSIVEWALSH vs. sample size. The number of recursive calls is a platform-
independent way of gauging the computational complexity of the algorithm, although it should be
kept in mind that each recursive call hasO(n2d) overhead. The running time increases polynomi-
ally with n, and is the largest for the constant scheme, followed by the logarithmic and the linear
schemes. We see that, while the MSE of the logarithmic scheme is fairly close to that of the constant
scheme, its complexity is considerably lower, in terms of both the number of recursive calls and the
running time. In all three cases, the number of recursive calls decreases withn due to the fact that
weight estimates become increasingly accurate withn, which causes the expected number of false
discoveries (i.e., making a recursive call at an internal node of the tree only to reject its descendants
later) to decrease. Finally, Fig. 2(d) shows the number of coefficients retained in the estimate. This
number grows withn as a consequence of the fact that the threshold decreases withn, while the
number of accurately estimated coefficients increases. The true densityf has 40 parameters: 9 to
specify the weights of the components, 3 per component to locate the indices of the nonuniform
covariates, and the single Bernoulli parameter of the nonuniform covariates. It is interesting to note
that the maximal number of coefficients returned by our algorithm approaches 40.

Overall, these preliminary simulation results show that our implemented estimator behaves in accor-
dance with the theory even in the small-sample regime. The performance of the logarithmic thresh-
olding scheme is especially encouraging, suggesting that it may be possible to trade off MSE against
complexity in a way that will scale to large values ofd. In the future, we plan to test our method
on high-dimensional real data sets. Our particular interest is in social network data, e.g., records of
meetings among large groups of individuals. These are represented by binary strings most of whose
entries are zero (i.e., only a very small number of people are present at any given meeting). To model
their densities, we plan to experiment with Walsh bases withη biased toward unity.
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