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Abstract

We introduce a kernel-based method for change-point analysis within a sequence
of temporal observations. Change-point analysis of an unlabelled sample of obser-
vations consists in, first, testing whether a change in the distribution occurs within
the sample, and second, if a change occurs, estimating the change-point instant
after which the distribution of the observations switches from one distribution to
another different distribution. We propose a test statistic based upon the maximum
kernel Fisher discriminant ratio as a measure of homogeneity between segments.
We derive its limiting distribution under the null hypothesis (no change occurs),
and establish the consistency under the alternative hypothesis (a change occurs).
This allows to build a statistical hypothesis testing procedure for testing the pres-
ence of a change-point, with a prescribed false-alarm probability and detection
probability tending to one in the large-sample setting. If a change actually occurs,
the test statistic also yields an estimator of the change-point location. Promising
experimental results in temporal segmentation of mental tasks from BCI data and
pop song indexation are presented.

1 Introduction

The need to partition a sequence of observations into several homogeneous segments arises in many
applications, ranging from speaker segmentation to pop song indexation. So far, such tasks were
most often dealt with using probabilistic sequence models, such as hidden Markov models [1], or
their discriminative counterparts such as conditional random fields [2]. These probabilistic models
require a sound knowledge of the transition structure between the segments and demand careful
training beforehand to yield competitive performance; when data are acquired online, inference in
such models is also not straightforward (see, e.g., [3, Chap. 8]). Such models essentially perform
multiple change-pointestimation, while one is often also interested in meaningful quantitative mea-
sures for thedetectionof a change-point within a sample.

When a parametric model is available to model the distributions before and after the change, a com-
prehensive literature for change-point analysis has been developed, which provides optimal criteria
from the maximum likelihood framework, as described in [4]. Nonparametric procedures were also
proposed, as reviewed in [5], but were limited to univariate data and simple settings. Online coun-
terparts have also been proposed and mostly built upon the cumulative sum scheme (see [6] for
extensive references). However, so far, even extensions to the case where the distribution before the
change is known, and the distribution after the change is not known, remains an open problem [7].
This brings to light the need to develop statistically grounded change-point analysis algorithms,
working on multivariate, high-dimensional, and also structured data.
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We propose here a regularized kernel-based test statistic, which allows to simultaneously provide
quantitative answers to both questions: 1) is there a change-point within the sample? 2) if there is
one, then where is it? We prove that our test statistic for change-point analysis has a false-alarm prob-
ability tending toα and a detection probability tending to one as the number of observations tends
to infinity. Moreover, the test statistic directly provides an accurate estimate of the change-point
instant. Our method readily extends to multiple change-point settings, by performing a sequence of
change-point analysis insliding windowsrunning along the signal. Usually, physical considerations
allow to set the window-length to a sufficiently small length for being guaranteed thatat most one
change-pointoccurs within each window, and sufficiently large length for our decision rule to be
statistically significant (typicallyn > 50).

In Section 2, we set up the framework of change-point analysis, and in Section 3, we describe how
to devise a regularized kernel-based approach to the change-point problem. Then, in Section 4
and in Section 5, we respectively derive the limiting distribution of our test statistic under the null
hypothesisH0 : ”no change occurs“, and establish the consistency in power under the alternative
HA : ”a change occurs“. These theoretical results allow to build a test statistic which has provably a
false-alarm probability tending to a prescribed levelα, and a detection probability tending to one, as
the number of observations tends to infinity. Finally, in Section 7, we display the performance of our
algorithm for respectively, segmentation into mental tasks from BCI data and temporal segmentation
of pop songs.

2 Change-point analysis

In this section, we outline the change-point problem, and describe formally a strategy for building
change-point analysis test statistics.

Change-point problem Let X1, . . . , Xn be a time series ofindependentrandom variables. The
change-point analysis of the sample{X1, . . . , Xn} consists in the following two steps.

1) Decide between

H0 : PX1
= · · · = PXk

= · · · = PXn

HA : there exists1 < k⋆ < n such that (1)

PX1
= · · · = PXk⋆ 6= PXk⋆+1

= · · · = PXn
.

2) Estimatek⋆ from the sample{X1, . . . , Xn} if HA is true.

While sharing many similarities with usual machine learning problems, the change-point problem is
different.

Statistical hypothesis testing An important aspect of the above formulation of the change-
point problem is its natural embedding in a statistical hypothesis testing framework. Let us re-
call briefly the main concepts in statistical hypothesis testing, in order to rephrase them within
the change-point problem framework (see, e.g., [8]). The goal is to build a decision rule to
answer question 1) in the change-point problem stated above. Set afalse-alarm probabilityα
with 0 < α < 1 (also called level or Type I error), whose purpose is to theoretically guar-
antee thatP(decide HA, when H0 is true) is close toα. Now, if there actually is a change-
point within the sample, one would like not to miss it, that is that thedetection probability
π = P(decide HA, when HA is true)—also called power and equal to one minus the Type II
error—should be close to one. The purpose of Sections 4-5 is to give theoretical guarantees to those
practical requirements in the large-sample setting, that is when the number of observationsn tends
to infinity.

Running maximum partition strategy An efficient strategy for building change-point analysis
procedures is to select the partition of the sample which yields a maximum heterogeneity between
the two segments: given a sample{X1, . . . , Xn} and a candidate change pointk with 1 < k < n,
assume we may compute a measure of heterogeneity∆n,k between the segments{X1, . . . , Xk} on
the one hand, and{Xk+1, . . . , Xn} on the other hand. Then, the “running maximum partition strat-
egy” consists in usingmax1<k<n ∆n,k as a building block for change-point analysis (cf. Figure 1).
Not onlymax1<k<n ∆n,k may be used to test for thepresenceof a change-point and assess/discard

2



�
�
�
�

�
�
�
�

������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

����������������

P
(ℓ)

P
(r)

1 k k⋆ n

Figure 1: The running maximum strategy for change-point analysis. The test statistic for change-
point analysis runs a candidate change-pointk with 1 < k < n along the sequence of observations,
hoping to catch the true change-pointk⋆.

the overall homogeneity of the sample; besides,k̂ = argmax1<k<n∆n,k provides a sensible estima-
tor of the true change-point instantk⋆ [5].

3 Kernel Change-point Analysis

In this section, we describe how the kernel Fisher discriminant ratio, which has proven relevant for
measuring the homogeneity of two samples in [9], may be embedded into therunning maximum par-
tition strategyto provide a powerful test statistic, coinedKCpA for Kernel Change-pointAnalysis,
for addressing the change-point problem. This is described in the operator-theoretic framework,
developed for the statistical analysis of kernel-based learning and testing algorithms in [10, 11].

Reproducing kernel Hilbert space Let (X , d) be a separable measurable metric space. Let
X be anX -valued random variable, with probability measureP; the expectation with respect to
P is denoted byE[·] and the covariance byCov(·, ·). Consider a reproducing kernel Hilbert space
(RKHS) (H, 〈·, ·〉H) of functions fromX to R. To each pointx ∈ X , there corresponds an element
Φ(x) ∈ H such that〈Φ(x), f〉H = f(x) for all f ∈ H, and〈Φ(x),Φ(y)〉H = k(x, y), where
k : X × X → R is a positive definite kernel [12]. In the following, we exclusively work with the
Aronszajn-map, that is, we takeΦ(x) = k(x, ·) for all x ∈ X . It is assumed from now on that
H is a separable Hilbert space. Note that this is always the case ifX is a separable metric space
and if the kernel is continuous [13]. We make the following two assumptions on the kernel (which
are satisfied in particular for the Gaussian kernel; see [14]): (A1) the kernelk is bounded, that is
sup(x,y)∈X×X k(x, y) < ∞, (A2) for all probability distributionsP on X , the RKHS associated
with k(·, ·) is dense inL2(P).

Kernel Fisher Discriminant Ratio Consider a sequence of independent observations
X1, . . . , Xn ∈ X . For any[i, j] ⊂ {2, . . . , n − 1}, define the corresponding empirical mean el-
ements and covariance operators as follows

µ̂i:j :=
1

j − i + 1

j
∑

ℓ=i

k(Xℓ, ·) , Σ̂i:j :=
1

j − i + 1

j
∑

ℓ=i

{k(Xℓ, ·) − µ̂i:j} ⊗ {k(Xℓ, ·) − µ̂i:j} .

These quantities have obvious population counterparts, the population mean element and the pop-
ulation covariance operator, defined for any probability measureP as 〈µP, f〉H := E[f(X)] for
all f ∈ H, and〈f,ΣPg〉H := CovP[f(X), g(X)] for f, g ∈ H. For all k ∈ {2, . . . , n − 1} the
(maximum)kernel Fisher discriminant ratio, which we abbreviate asKFDR is defined as

KFDRn,k;γ(X1, . . . , Xn) :=
k(n − k)

n

∥

∥

∥

∥

∥

(

k

n
Σ̂1:k +

n − k

n
Σ̂k+1:n + γI

)−1/2

(µ̂k+1:n − µ̂1:k)

∥

∥

∥

∥

∥

2

H

.

Note that, if we merge two labelled samples{X1, . . . , Xn1
} and{X ′

1, . . . , X
′
n2
} into a single sample

as{X1, . . . , Xn1
, X ′

1, . . . , X
′
n2
}, then withKFDRn1+n2,n1+1;γ(X1, . . . , Xn1

, X ′
1, . . . , X

′
n2

) we re-
cover the test statistic considered in [9] for testing the homogeneity of two samples{X1, . . . , Xn1

}
and{X ′

1, . . . , X
′
n2
}.
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Following [9], we make the following assumptions on all the covariance operatorsΣ considered in
this paper: (B1) the eigenvalues{λp(Σ)}p≥1 satisfy

∑∞
p=1 λ

1/2
p (Σ) < ∞, (B2) there are infinitely

many strictly positive eigenvalues{λp(Σ)}p≥1 of Σ.

Kernel change-point analysis Now, we may apply the strategy described before (cf. Figure 1)
to obtain the main building block of our test statistic for change-point analysis. Indeed, we define
our test statisticTn,k;γ as

Tn;γ(k) := max
an<k<bn

KFDRn,k;γ − d1,n,k;γ(Σ̂W
n,k)

√
2 d2,n,k;γ(Σ̂W

n,k)
,

wherenΣ̂W
n,k := kΣ̂1:k + (n− k)Σ̂k+1:n. The quantitiesd1,n,k;γ(Σ̂W

n,k) andd2,n,k;γ(Σ̂W
n,k), defined

respectively as

d1,n,k;γ(Σ̂W
n,k) := Tr{(Σ̂W

n,k + γI)−1Σ̂W
n,k} , d2,n,k;γ(Σ̂W

n,k) := Tr{(Σ̂W
n,k + γI)−2(Σ̂W

n,k)2} ,

act as normalizing constants forTn;γ(k) to have zero-mean and unit-variance asn tends to infinity,
a standard statistical transformation known asstudentization. The maximum is searched within the
interval [an, bn] with an > 1 and bn < n, which is restriction of]1, n[, in order to prevent the
test statistic from uncontrolled behaviour in the neighborhood of the interval boundaries, which is
standard practice in this setting [15].

Remark Note that, if the input space is Euclidean, for instanceX = R
d, and if the kernel is linear

k(x, y) = xT y, thenTn;γ(k) may be interpreted as a regularized version of the classical maximum-
likelihood multivariate test statistic used to test change in mean with unequal covariances, under the
assumption of normal observations, described in [4, Chap. 3]. Yet, as the next section shall show,
our test statistic is truly nonparametric, and its large-sample propertiesdo not requireany “gaussian
in the feature space”-type of assumption. Moreover, in practice it may be computed thanks to the
kernel trick, adapted to the kernel Fisher discriminant analysis and outlined in [16, Chapter 6].

False-alarm and detection probability In order to build a principled testing procedure, a proper
theoretical analysis from a statistical point of view is necessary. First, as the next section shows, for a
prescribedα, we may build a procedure which has, asn tends to infinity, the false-alarm probability
α under the null hypothesisH0, that is when the sample is completely homogeneous and contains
no-change-point. Besides, when the sample actually contains at most one change-point, we prove
that our test statistic is able to catch it with probability one asn tends to infinity.

Large-sample setting For the sake of generality, we describe here the large-sample setting for
the change-point problem under the alternative hypothesisHA. Essentially, it corresponds to nor-
malizing the signal sampling interval to[0, 1] and letting the resolution increase as we observe more
data points [4].

Assume there is0 < k⋆ < n such thatPX1
= · · · = PXk⋆ 6= PXk⋆+1

= · · · = PXn
. Define

τ⋆ := k⋆/n such thatτ⋆ ∈]0, 1[, and defineP(ℓ) the probability distribution prevailing within the
left segment of lengthτ⋆, andP

(r) the probability distribution prevailing within the right segment
of length1 − τ⋆. Then, we want to study what happens if we have⌊nτ⋆⌋ observations fromP

(ℓ)

(before change) and⌊n(1 − τ⋆)⌋ observations fromP
(r) (after change) wheren is large andτ⋆ is

kept fixed.

4 Limiting distribution under the null hypothesis

Throughout this section, we work under the null hypothesisH0 that isPX1
= · · · = PXk

= · · · =
PXn

for all 2 ≤ k ≤ n. The first result gives the limiting distribution ofTn;γ(k) as the number of
observationsn tends to infinity.

Before stating the theoretical results, let us describe informally the crux of our approach. We may
prove, underH0, using operator-theoretic pertubation results similar to [9], that it is sufficient to
study the large-sample behaviour ofT̃n;γ(k) := maxan<k<bn

(
√

2 d2;γ(Σ))−1Qn,∞;γ(k) where

Qn,∞;γ(k) :=
k(n − k)

n

∥

∥

∥
(Σ + γI)

−1/2
(µ̂k+1:n − µ̂1:k)

∥

∥

∥

2

H
− d1;γ(Σ) , 1 < k < n , (2)
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andd1;γ(Σ) andd2;γ(Σ) are respectively the population recentering and rescaling quantities with
Σ = Σ1:n = ΣW

1:n the within-class covariance operator. Note that the only remaining stochastic
term in (2) isµ̂k+1:n − µ̂1:k. Let us expand (2) onto the eigenbasis{λp, ep}p≥1 of the covariance
operatorΣ, as follows:

Qn,∞;γ(k) =

∞
∑

p=1

(λp + γ)−1

{

k(n − k)

n
〈µk+1:n − µ1:k, ep〉2 − λp

}

, 1 < k < n . (3)

Then, definingS1:k,p := n−1/2
∑k

i=1 λ
−1/2
p (ep(Xi) − E[ep(X1)]), we may rewriteQn,∞;γ(k) as

an infinite-dimensional quadratic form in the tied-down partial sumsS1:k,p − k
nS1:n,p, which yields

Qn,∞;γ(k) =
∞
∑

p=1

(λp + γ)−1λp

{

n2

k(n − k)

(

S1:k,p − k

n
S1:n,p

)2

− 1

}

, 1 < k < n . (4)

The idea is to view{Qn,∞;γ(k)}1<k<n as a stochastic process, that is a random function[k 7→
Qn,∞;γ(k, ω)] for any ω ∈ Ω, where(Ω,F , P) is a probability space. Then, invoking the so-
calledinvariance principle in distribution[17], we realize that the random sumS1:⌊nt⌋,p(ω), which
for all ω linearly interpolates between the valuesS1:i/n,p(ω) at pointsi/n for i = 1, . . . , n, be-
haves, asymptotically asn tends to infinity, like a Brownian motion (also calledWiener process)
{Wp(t)}0<t<1. Hence, along each componentep, we may define a Brownian bridge{Bp(t)}0<t<1,
that is a tied-down brownian motionBp(t) := Wp(t) − tWp(1) which yields continuous approx-
imation in distributionof the corresponding{S1:k,p − k

nS1:n,p}1<k<n. The proof (omitted due to
space limitations) consists in deriving a functional (noncentral) limit theorem forKFDRn,k;γ , and
then applying a continuous mapping argument.

Proposition 1 Assume (A1) and (B1), and thatH0 holds, that isPXi
= P for all 1 ≤ i ≤ n.

Assume in addition that the regularization parameterγ is held fixed asn tends to infinity, and that
an/n → u > 0 andbn/n → v < 1 asn tends to infinity. Then,

Tn;γ(k)
D−→ sup

u<t<v
Q∞;γ(t) :=

1√
2d2;γ(Σ)

∞
∑

p=1

λp(Σ)

λp(Σ) + γ

(

B
2
p(t)

t(1 − t)
− 1

)

,

where{λp(Σ)}p≥1 is the sequence of eigenvalues of the overall covariance operatorΣ, while
{Bp(t)}p≥1 is a sequence of independent brownian bridges.

Definet1−α as the(1−α)-quantile ofsupu<t<v Q∞;γ(t). We may computet1−α either by Monte-
Carlo simulations, as described in [18], or by bootstrap resampling under the null hypothesis (see).
The next result proves that, using the limiting distribution under the null stated above, we may build
a test statistic with prescribed false-alarm probabilityα for largen.

Corollary 2 The testmaxan<k<bn
Tn,γ(k) ≥ t1−α(Σ, γ) has false-alarm probabilityα, asn tends

to infinity.

Besides, when the sequence of regularization parameters{γn}n≥1 decreases to zero slowly enough
(in particular slower thann−1/2), the test statisticmaxan<k<bn

Tn,γn
(k) turns out to be asymptot-

ically kernel-independentasn tends to infinity. While the proof hinges upon martingale functional
limit theorems [17], still, we may point out that if we replaceγ byγn in the limiting null distribution,
thenQ∞;γ(·) is correctly normalized for alln ≥ 1 to have zero-mean and variance one.

Proposition 3 Assume (A1) and (B1-B2) and thatH0 holds, that isPXi
= P for all 1 ≤ i ≤ n.

Assume in addition that the regularization parameters{γn}n≥1 is such that

γn +
d1,n;γn

(Σ)

d2,n;γn
(Σ)

γ−1
n n−1/2 → 0 ,

and thatan/n → u > 0 andbn/n → v < 1 asn tends to infinity. Then,

max
an<k<bn

Tn;γn
(k)

D−→ sup
u<t<v

B(t)
√

t(1 − t)
.
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Remark A closer look at Proposition 1 brings to light that the reweighting byt(1 − t) of the
squared brownian bridges on each component is crucial for our test statistic to be immune against
imbalance between segment lengths under the alternativeHA, that is whenτ⋆ is far from 1/2.
Indeed, swapping out the reweighting byt(1− t), to simply consider the corresponding unweighted
test statistic is hazardous, and yields a loss of power for alternatives whenτ⋆ is far from1/2.

This section allowed us get anα-level test statistic for the change-point problem, by looking at the
large-sample behaviour of the test statistic under the null hypothesisH0. The next step is to prove
that the test statistic isconsistent in power, that is the detection probability tends to one asn tends
to infinity under the alternative hypothesisHA.

5 Consistency in power

This section shows that, when the alternative hypothesisHA holds, our test statistic is able to detect
presence of a change with probability one in the large-sample setting. The next proposition is proved
within the same framework as the one considered in the previous section, except that now, along each
componentep, one has to split the random sum into three parts[1, k], [k + 1, k⋆], [k⋆ + 1, n], and
then the large-sample behaviour of each projected random sum is the one of a two-sided Brownian
motion with drifts.

Proposition 4 Assume (A1-A2) and (B1-B2), and thatHA holds, that is there is existsu < τ⋆ < v
with u > 0 andv < 1 such thatPX⌊nτ⋆⌋

6= PX⌊nτ⋆⌋+1 for all 1 ≤ i ≤ n. Assume in addition that
the regularization parameterγ is held fixed asn tends to infinity, and thatlimn→∞ an/n > u and
limn→∞ bn/n < v. Then, for any0 < α < 1, we have

PHA

(

max
an<k<bn

Tn;γ(k) > t1−α

)

→ 1 , asn → ∞ . (5)

6 Extensions and related works

Extensions It is worthwhile to note that we may also have built similar procedures from the
maximum mean discrepancy (MMD) test statistic proposed by [19]. Note also that, instead of the
Tikhonov-type regularization of the covariance operator, other regularization schemes may also be
applied, such as the spectral truncation regularization of the covariance operator, equivalent to pre-
processing by a centered kernel principal component analysis [20, 21], as used in [22] for instance.

Related works A related problem is the abrupt change detection problem, explored in [23],
which is naturally also encompassed by our framework. Here, one is interested in the early de-
tection of a change from a nominal distribution to an erratic distribution. The procedureKCD of
[23] consists in running a window-limited detection algorithm, using two one-class support vector
machines trained respectively on the left and the right part of the window, and comparing the sets
of obtained weights; Their approach differs from our in two points. First, we have the limiting
null distribution ofKCpA, which allows to compute decision thresholds in a principled way. Sec-
ond, our test statistic incorporates a reweighting to keep power against alternatives with unbalanced
segments.

7 Experiments

Computational considerations In all experiments, we setγ = 10−5 and took the Gaussian ker-
nel with isotropic bandwidth set by the plug-in rule used in density estimation. Second, since fromk
to k + 1, the test statistic changes fromKFDRn,k;γ to KFDRn,k+1;γ , it corresponds to take into ac-
count the change from{(X1, Y1 = −1), . . . , (Xk, Yk = −1), (Xk+1, Yk+1 = +1), . . . , (Xn, Yn =
+1)} to {(X1, Y1 = −1), . . . , (Xk, Yk = −1), (Xk+1, Yk+1 = −1), (Xk+2, Yk+2 =
+1) . . . , (Xn, Yn = +1)} in the labelling inKFDR [9, 16]. This motivates an efficient strategy
for the computation of the test statistic. We compute the matrix inversion of the regularized kernel
gram matrix once for all, at the cost ofO(n3), and then compute all values of the test statistic for all
partitions in one matrix multiplication—inO(n2). As for computing the decision thresholdt1−α,
we used bootstrap resampling calibration with10, 000 runs. Other Monte-Carlo based calibration
procedures are possible, but are left for future research.
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Subject 1 Subject 2 Subject 3
KCpA 79% 74% 61%
SVM 76% 69% 60%

Table 1: Average classification accuracy for each subject

Brain-computer interface data Signals acquired during Brain-Computer Interface (BCI) trial
experiments naturally exhibit temporal structure. We considered a dataset proposed in BCI compe-
tition III 1 acquired during 4 non-feedback sessions on 3 normal subjects, where each subject was
asked to perform different tasks, the time where the subject switches from one task to another being
random (see also [24]). Mental tasks segmentation is usually tackled with supervised classification
algorithms, which require labelled data to be acquired beforehand. Besides, standard supervised
classification algorithms are context-sensitive, and sometimes yield poor performance on BCI data.
We performed a sequence of change-point analysis on sliding windows overlapping by20% along
the signals. We provide here two ways of measuring the performance of our method. First, in Fig-
ure 2 (left), we give in theempirical ROC-curveof our test statistic, averaged over all the signals at
hand. This shows that our test statistic yield competitive performance for testing the presence of a
change-point, when compared with a standard parametric multivariate procedure (param) [4]. Sec-
ond, in Table 1, we give experimental results in terms ofclassification accuracy, which proves that
we can reach comparable/better performance assupervisedmulti-class (one-versus-one) classifica-
tion algorithms (SVM) with our completelyunsupervisedkernel change-point analysis algorithm.
If each segment is considered as a sample of a given class, then the classification accuracy corre-
sponds here to the proportion of correctly assigned points at the end of the segmentation process.
This also clearly shows thatKCpA algorithm give accurate estimates of the change-points, since the
change-point estimation error is directly measured by the classification accuracy.
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Figure 2: Comparison of ROC curves for task segmentation fromBCI data (left), and pop songs
segmentation (right).

Pop song segmentation Indexation of music signals aims to provide a temporal segmentation
into several sections with different dynamic or tonal or timbral characteristics. We investigated
the performance ofKCpA on a database of100 full-length “pop music” signals, whose manual
segmentation is available. In Figure 2 (right), we provide the respective ROC-curves ofKCD of [23]
andKCpA. Our approach is indeed competitive in this context.

8 Conclusion

We proposed a principled approach for the change-point analysis of a time-series of independent
observations. It provides a powerful testing procedure for testing the presence of a change in distri-
bution in a sample. Moreover, we saw in experiments that it also allows to accurately estimate the
change-point when a change occurs. We are currently exploring several extensions ofKCpA. Since
experimental results are promising on real data, in which the assumption of independence is rather
unrealistic, it is worthwhile to analyze the effect of dependence on the large-sample behaviour of our

1seehttp://ida.first.fraunhofer.de/projects/bci/competition_iii/

7



test statistic, and explain why the test statistic remains powerful even for (weakly) dependent data.
We are also investigatingadaptiveversions of the change-point analysis, in which the regularization
parameterγ and the reproducing kernelk are learned from the data.
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[5] M. Csörgö and L. Horv́ath. Limit Theorems in Change-Point Analysis. Wiley and sons, 1998.

[6] M. Basseville and N. Nikiforov.Detection of abrupt changes. Prentice-Hall, 1993.

[7] T. L. Lai. Sequential analysis: some classical problems and new challenges.Statistica Sinica,
11, 2001.

[8] E. Lehmann and J. Romano.Testing Statistical Hypotheses (3rd ed.). Springer, 2005.

[9] Z. Harchaoui, F. Bach, and E. Moulines. Testing for homogeneity with kernel Fisher discrimi-
nant analysis. InAdv. NIPS, 2007.

[10] G. Blanchard, O. Bousquet, and L. Zwald. Statistical properties of kernel principal component
analysis.Machine Learning, 66, 2007.

[11] K. Fukumizu, F. Bach, and A. Gretton. Statistical convergence of kernel canonical correlation
analysis.JLMR, 8, 2007.

[12] C. Gu.Smoothing Spline ANOVA Models. Springer, 2002.

[13] I. Steinwart, D. Hush, and C. Scovel. An explicit description of the rkhs of gaussian RBF
kernels.IEEE Trans. on Inform. Th., 2006.

[14] B. K. Sriperumbudur, A. Gretton, K. Fukumizu, G. R. G. Lanckriet, and B. Schölkopf. Injective
hilbert space embeddings of probability measures. InCOLT, 2008.

[15] B. James, K. L. James, and D. Siegmund. Tests for a change-point.Biometrika, 74, 1987.

[16] J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Camb. UP, 2004.

[17] P. Billingsley.Convergence of Probability Measures (2nd ed.). Wiley Interscience, 1999.

[18] P. Glasserman.Monte Carlo Methods in Financial Engineering (1rst ed.). Springer, 2003.

[19] A. Gretton, K. Borgwardt, M. Rasch, B. Schoelkopf, and A.J. Smola. A kernel method for the
two-sample problem. InAdv. NIPS, 2006.
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